分子标记辅助选择小麦抗白粉病兼抗赤霉病聚合体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦白粉病和赤霉病是小麦生产上的两大重要病害。近年来,在我国的西南地区,随着灌溉水平的提高以及氮肥的大量施用,小麦白粉病和赤霉病危害日益严重,因此防治这两种病害也变得更加重要。化学防治这两种病害虽然取得了一定的成效,但需花费大量人力、物力、财力,而且还会引起环境污染等生态问题。因此培育和推广抗病品种被公认为是防治小麦白粉病和赤霉病最经济、有效、安全的途径。通过杂交或转基因技术培育出即高抗白粉病,又对赤霉病具有较好抗性,且综合性状也较好的新材料、新品种对于防治这两种病害具有重要意义。
     本研究通过将抗赤霉病的小麦品系苏麦3号与抗白粉病的小麦品种内麦9号(含抗白粉病基因Pm21)进行杂交,利用抗白粉病基因Pm21的SCAR特异标记和覆盖苏麦3号抗赤霉病主效QTL(Qfhs. ndsu-3BS)的4个SSR标记(Xgwm493、Xgwm533、Xgwm389和Xbarc87)在F2代进行分子标记辅助选择,并结合田间白粉病和赤霉病的抗病性鉴定,以期筛选对小麦白粉病免疫(含抗白粉病基因Pm21),且携带有苏麦3号的抗赤霉病基因的聚合体,该聚合体可能成为小麦育种的优良新材料。
     对203株F2代群体进行田间抗病性鉴定,鉴定结果如下。白粉病抗病性鉴定结果表明:138株抗白粉病,抗病株表现出免疫至高抗,与内麦9号抗病性表现一致;65株感白粉病,感病株表现出高感,未发现中抗至中感的中间型抗病性表现的单株;赤霉病抗病性鉴定结果表明:感病对照绵阳31号平均病小穗率为48.27%,严重度3~5级;内麦9号平均病小穗率为41.27%,严重度3~5级;抗病对照苏麦3号平均病小穗率为14.75%,严重度1~2级。F2代203个单株中病小穗率为0~10%的有40个单株,严重度1~2级,占20%,初步认为抗病性与苏麦3号相当;小穗率为10~25%的有55个单株,严重度2级,占27%,小穗率为25~50%的有51个单株,严重度3级,占25%,小穗率为50~75%的有28个单株,严重度4级占14%,小穗率为75~100%的有29个单株,严重度5级,占14%。其中病小穗率小于25%(严重度1~2级)的单株有95株,视为抗病株,其余的108株病小穗率大于25%视为感病株。综合两种病害的鉴定结果来看:41个单株对白粉病高抗至免疫且对赤霉病抗性与苏麦3号相当,初步作为筛选到得的双抗单株,再利用分子标记检测其抗病基因。
     分子标记检测结果:抗白粉病基因Pm21的特异SCAR标记检测这41株双抗单株均能扩增出一条约1400bp的特异条带,而感病单株未扩增出该条带;利用覆盖苏麦3号3BS染色体上抗赤霉病主效QTL的4个SSR标记对初选到得41个双抗单株进行PCR扩增,结果表明其中的12个单株能扩增出扩增出Xgwm493(210bp). Xgwm533(140bp).Xgwm389(130bp)和Xbarc87(100bp)Qfhs.Ndsu-3BS特异目标片段,其余单株只能扩增出4个标记中的1~3个。
     本研究经过田间抗病性鉴定的初选以及分子标记检测复选,在F2代中成功筛选到12株小麦单株,其既携带抗白粉病基因Pm21,又含有苏麦3号3BS上抗赤霉病主效QTL的小麦植株,对白粉病和赤霉病皆具有良好的抗性,而且含有内麦9号的大量优良基因,其农艺性状明显优于苏麦3号,因此可作为多抗优质育种的中间材料,有望在此基础上培育出优良品种。
Powdery mildew and Fusarium head blight (FHB) are two important diseases in wheat. In recent years, China's southwest region, with irrigation levels and the large number of nitrogen fertilizer, wheat powdery mildew and FHB damage are growing, so the fighting against both diseases is becoming more important. Although chemical control of these two diseases has made certain achievements, but it took a lot of manpower, material and financial resources, but also caused environmental pollution and ecological problems. Therefore, cultivation and promotion of resistant cultivars was recognized as against wheat powdery mildew and FHB the most economical, effective and safe way. By hybrid or genetically modified that was highly resistant to powdery mildew, it also has good resistance to FHB, and the characters were better integrated new materials, new varieties of disease for both prevention and treatment was important.
     In this study, Sumai 3, a resistant wheat variety to FHB, was crossed with Neimai 9, a wheat commercial cultivar with the resistance to powdery mildew. The SCAR(sequence characterized amplified region)markers of powdery mildew resistance gene Pm21 and four SSR (simple sequence repeats) markers (Xgwm493, Xgwm533, Xgwm389 and Xbarc87) covering the major FHB resistance QTL (Qfhs. ndsu-3BS) in Sumai 3 were used to detect the resistance loci by marker assisted selection (MAS) in the plants of the F2 population, combined with powdery mildew and FHB in the field Identification of disease resistance to wheat powdery mildew and FHB. It is want to obtain some plants out of the population with resistance to wheat powdery mildew(including powdery mildew resistance gene Pm21) and FHB (including FHB resistance gene form Sumai 3).The plants perhaps are excellent new parental materials for wheat breeding.
     The results showed that resistance in field identification:in the 203 plants of the F2 population, the powdery mildew resistance identification results showed that: 138 plants were resistant to powdery mildew, and they showed high resistance to immunization, and they showed the same resistance to Neimai 9; 65 plants susceptible to powdery mildew, they showed high sense, not found in the anti-sense intermediate between the performance of plant disease resistance. Identification of FHB resistance showed that:average spikelet disease rate of Mianyang 31 was 48.27%, the severity of 3 to 5; average spikelet disease rate of Neimai 9 was 41.27%, the severity of 3 to 5; resistant control Sumai 3, the average spikelet disease rate was 14.75%, the severity of 1 to 2. Hybrid plant in the F2 generation of 203 patients was 0~10% of the spikelets were 40 plant and severity of 1 to 2, accounting for 20% of the preliminary view that Sumai 3 resistance and considerable; spikelet disease rate of 55 plant was 10~25%, severity level 2, accounting for 27%; spikelet disease rate of 51 plant was 25~50%, and severity level 3, accounting for 25%; spikelet disease rate of 28 plant was 50~75%,, severity level 4, accounting for 14%, spikelet disease rate of 29 plant was 75~100%, severity level 5, accounting for 14%. Spikelet disease rate among patients less than 25%(severity of 1~2)of the plant with 95, as resistant strains of the remaining 108 patients greater than 25% of the spike rate as a sense of strain. On the whole there were 41 individual plants with high resistance to powdery mildew and FHB immune and Sumai 3 very preliminary, as screened, double anti-plant, then resistance genes using molecular markers.
     Marker test results:powdery mildew resistance gene Pm21 in specific SCAR markers that 41 pairs of monoclonal anti-treaty could amplify a 1400bp specific band, while the plant was not susceptible amplified this band; using covering Sumai 3 chromosome 3BS FHB resistance QTL main effects of the four SSR markers were 41 pairs of primary resistance to plant for PCR amplification, the results showed that 12 of them could be amplified plant expansion the Xgwm493(210bp), Xgwm533(140bp), Xgwm389 (130bp) and Xbarc87(100bp) Qfhs. Ndsu-3BS specific target fragment, the remaining plant only four markers were amplified in 1 to 3.
     After this study, the primary field identification of disease resistance and molecular markers check, successfully screened in the F2 generation to 12 while carrying powdery mildew resistance gene Pm21, then with Sumai 3 on 3BS FHB resistance QTL main effect wheat plants, and within the wheat with a large number of excellent genes Neimai 9, its agronomic traits superior to Sumai 3. Therefore, they can be used as much quality and resistance breeding in the middle of materials on this basis is expected to breed improved varieties.
引文
[1]刘万才,邵振润.我国小麦自粉病大区流行的气候因素分析[J].植保技术与推广,1998,18(1):3-5
    [2]李振岐.麦类病害[M].北京:中国农业出版社,1997,57-58
    [3]张增艳,陈孝,张超等.分子标记选择抗白粉病基因Pm4b, Pml3和Pm2l聚合体[J].中国农业科学,2002,35(7):789-793
    [4]张海泉.小麦抗白粉病分子育种研究进展[J].中国生态农业学报,2008,16(4):1060-1066
    [5]Lillemo M, Asalf B, Singh R P, et al. The adult plant rust resistance loci Lr34/Yrl8 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar[J]. Theor.Appl. Genet,2008,116:1155-1166
    [6]P.G Luo, H. Y. Luo, Z. J. Chang, et al. Characterization and chromosomal location of Pm40 in common wheat:a new gene for resistance to powdery mildew derived from Elytrigia intermedium [J]. Theor.Appl. Genet,2009,118:1059-1064
    [7]Li G Q, Fang T L, Xie C J, et al. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides) [J]. Theor.Appl. Genet,2009,119:531-539
    [8]Hua W, Liu Z. Zhu J, et al. Identification and genetic mapping of Pm42, a new recessive powdery mildew resistance gene in wheat derived from wild emmer (Triticum turgidum var. dicoccoides) [J]. Theor.Appl. Genet,2009,119(2):223-230
    [9]李根桥,房体麟,张宏涛等.来自野生二粒小麦IW3和IWIO的两个抗白粉病基因的鉴定及SSR标记定位[J].作物学报,2009,35(5)761-767
    [10]Huang X. Q., Hsam S. L. K., Zeller F. J. Chromosomal location of two novel genes for resistance to powdery mildew in Chinese landraces(Triticum aestivum L. em. Thell.)[J]. Genet. Breed,2000, 54:311-317
    [11]Hartl L., Weiss H., Zeller F.J, et al. Use of RFLP markers for the identification of alleles of the Pm3 locus conferring powdery mildew resistance in wheat(Triticuma estivum L.)[J].Theor. Appl, Genet,1993,86:956-963
    [12]Ma,Z.Q., Sorrells, M.E, Tanksley, S.D. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3 and Pm4 in wheat[J]. Genome,1994,37:871-875
    [13]Tao W, Liu D., Liu J., et al. Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis[J]. Theor. Appl. Genet,2000,100(3/4):564-568
    [14]Rong J., K, Millet E., Manissterski J., et al. A new powdery mildew resistance gene:Introgression from wild emmer into common wheat and RFLP-based mapping [J].Euphytica,2000,115(2):121-126
    [15]Zeller, F.J., Kong, L.R., Hartl, L. et al. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.. Em Thell.) 7. Gene Pm29 in line Pova [J].Euphytica,2002,123:187-194
    [16]刘金元,刘大钧,陶文静等.小麦白粉病抗性基因Pm4a的RFLP标记转化为STS标记的研究[J].农业生物技术学报,1999,7(2):113-116
    [17]陈松柏,蔡一林,周荣华等.小麦抗白粉病基因Pm4的STS标记[J].西南农业大学学报,2002,(3):231-23
    [18]Hartl L.H., Weiss F.J, Stephan U., et al. Molecular identification of powdery mildew resistance genes in common wheat(Triticuma esavem L.)[J].Theor. Appl. Genet,1995,90:601-606
    [19]Hu,X.Y, Ohm, H.W. Identification of RAPD markers linked to the gene Pml for resistance to powdery mildew in wheat[J]. Theor. Appl. Genet,1997,94:823-840
    [20]刘金元,陶文静,刘大钧等.与小麦白粉病抗性基因Pm2紧密连锁RAPD标记的筛选研究[J].遗传学报,2000,127(2):139-145
    [21]王心宇,元增军,马正强等.小麦抗白粉病基因Pm6的RAPD标记[J],遗传学报,2000,27:1072-1079
    [22]张旭,减宇辉,刘朝晖等.小麦抗白粉病基因Pm17在亲本和F2代抗感集群中的RAPD分析[J].江苏农业学报,1998,19(2):67-70
    [23]Qi L., Cao M., Chen P. Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat[J].Genome,1996,39:191-197
    [24]Shi A.N, Leath S., Murphy J.P. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat[J]. Phyropathology,1998,88:144-147
    [25]Liu Z., Sun Q., Ni Z., et al. Development of SCAR markers linked to the Pm21 gene cantering resistance to powdery mildew in common wheat[J]. Plant breeding,1999,118:215-219
    [26]Wang X Y Study on the amplification of molecular marker technique in breeding wheat for powdery mildew resistance and constructing DNA fingerprinting of wheat[D].Doctor degree thesis of Nanjing Agricultural University,2001
    [27]Schweizer G, Hard L, Baurner M, et al. Development of a gene diagnosis test for resistance of barley and mildew resistance of wheat [C]. Report of the 1998 Association of Austrian Plant Breeders, Austria,1998,12,24-26.
    [28]Hartl L., Mohler F.J., Zeller F.J., et al. Identification of AFLP markers closely linked to the powdery mildew resistance genes Pmlc and Pm4a in common wheat(Triticum aestivam L.)[J].Genome,1999,42:322-329
    [29]Hsam S L K, Mohler V, Hard L, et al. Mapping of powdery mildew and leaf rust resistance genes on the wheat-rye translocated chromosome TIBLARS using molecular and biochemical markers[J]. Plant Breeding,2000,119:87-89
    [30]Roder, M.S. et al. Abundance, Variability and chromosomal location of microsatellites in wheat [J].Mol. Gen.Genet,1995,248:163-167
    [31]Bryan G J, Collins A J, Stephenson P, et al. Isolation and characterization of microsatellites from hexaploid bread wheat [J].Theor. Appl. Genet,1997,94:557-563
    [32]Roder,M.S.,Plaschke,J.,Konig,S.U. et al. Characterization of PCR-amplified microsatelliteloci in' wheat[J].Mol. Gen. Genet,1998,246:327-333
    [33]Huang X.Q, Hsam S.L.K, Zeller F.J, et al. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding [J]. Theor. Appl. Genet,2000, 101:407-414
    [34]Jarve K, Peusha H.O., Tsymbalova J., et al. Chromosomal location of a Triticum timopheevii derived powdery mildew resistance gene transferred to common wheat [J]. Genome,2000,43(2): 377-381
    [35]解超杰,杨作民,孙其信等.小麦抗白粉病基因[J].西北植物学报,2003,23(5):822-829
    [36]Bennett F G. Resistance to powdery mildew in wheat:a review of its use in agriculture and breeding programmes [J]. Plant Pathology,1984,33:279-300
    [37]Zeller,F.J., Lutz J., Reimlein E.,et al. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.) [J]. II.F reach cultivars. Agrinomie,1993,13:201-207
    [38]向齐君,盛宝钦,段霞瑜等.小麦白粉病抗源材料的有效抗病基因分析[J].华北农学报,1996,11(4):43-47
    [39]张海泉,符晓棠,郝晨阳等.小麦白粉病抗性基因的研究进展[J].沈阳农业大学学报,2003, 34(1):68-71
    [40]邱永春,张书绅.小麦抗白粉病基因及其分子标记研究进展[J].麦类作物学报,2004,24(2):127-132
    [41]罗瑛皓.小麦抗白粉病基因Pm16的SSR标记定位以及多基因累加体分子标记辅助选择[D].四川农业大学硕士学位论文,2003
    [42]刘金元,刘大钧,陈佩度等.分子标记辅助育种新尝试与Pm2及Pm4a基因紧密连锁RFLP标记在小麦抗白粉病育种中的应用[J].南京农业大学学报,1997,20(2):1-5
    [43]王立新,苏爱莲,贾继增等.麦品种复壮30抗白粉病基因RAPD标记的研究[J].农业生物技术学报,2000,8(4):373-376
    [44]刘志勇,孙其信,李洪杰等.小麦抗白粉病基因Pm21的分子标记鉴定和标记辅助选择[J].遗传学报,1999,26(6):673-682
    [45]罗瑛皓,陈新民,夏兰芹等.小麦抗白粉病基因聚合体DH材料的分子标记鉴定[J].作物学报,2005,5(5):265-270
    [46]郎淑平,王海燕,曹爱忠等.分子标记辅助选育小麦抗白粉病、优质高分子量麦谷蛋白亚基聚合体[J].分子植物育种,2007,5(3):353-357
    [47]王心宇,陈佩度,张守忠等.小麦白粉病抗性基因的聚合及其分子标记辅助选择[J].遗传学报,2001,28(7):640-646
    [48]李清铣,王彰明.麦类禾谷镰刀菌致病性鉴定[J].植物保护学报,1982,(3):163-168
    [49]王裕中.江苏省小麦赤霉病菌优势种一禾谷镰刀菌的致病力[J].江苏农业学报,1985,(1):11-16
    [50]Van Eeuwijk FA, Mesterhazy A, Kling CI, et al. Assessing non-specificity of resistance of wheat to head blight caused by inoculation with European strains of Fusarium culmorum, F. Graminearum and F. nivale, using a multiplicative model for interaction [J].Theor. Appl. Genet,1995,90: 221-228
    [51]Stack RW, Frohberg RC, Casper H. Reaction of spring wheats incorporating Sumai#3-derived resistance to inoculation with seven Fusarium species[J]. Cereal Res Commun,1997,25:667-671
    [52]高力,陈飞,周立人等.小麦品种望水白的抗赤霉病性遗传分析[J].麦类作物学报,2005,25(5):5-9
    [53]姚金保,葛永福,王文书等.小麦品种苏麦3号抗赤霉病基因的染色体定位研究[J].作物学报,1997,23(4):450-453
    [54]Nakagawa, Mo. Studies on the resistance of wheat varieties to gibberella saubine Ⅱ Genetic factors affecting resistance to G [J]. Saubinetii Lkushuguku zasshi (In Japanese, English Summary). Jap. J. Breed,1955,5:15-22
    [55]Roder MS, Korzun V, Wendehake K, et al. A microsatellite map of wheat[J]. Genetics,1998,86: 985-990
    [56]姚金保,陆维忠.中国小麦抗赤霉病育种研究进展[J].江苏农业学报,2000,16(4):242-248
    [57]裴自友,温辉芹,王晋等.小麦镰刀菌毒素DON积累抗性研究进展[J].作物杂志,2008,4:5-8
    [58]Thomas MR, Scott NS. Microsatellite repeats in gravenine reveal DNA polymorphisms when analyses as sequence-tagged sites (STS)[J]. Theor. Appl. Genet,1993,86:985-990
    [59]林凡云,陆琼娴,杨慧勇等.小麦与赤霉病菌互作的分子机理研究进展[J].麦类作物学报,2007,27(5):934-93
    [60]马骥超,常迺滔,姜俊龙等.SSR标记在小麦抗病QTL及抗病基因定位中的应用[J].中国植保导刊,2007,27(6):11-15
    [61]张勇,程顺和,马有志等.小麦抗赤霉病基因的SSR标记筛选[J].扬州大学学报(农业与生命科学版),2004,25(4):12-15
    [62]高力,任丽娟,周立人等.小麦赤霉病抗源望水白的QTL定位[J].农业生物技术学报,2005,13(6):792-797
    [63]张旭,任丽娟,周淼平等.三个小麦赤霉病抗源的抗性QTL定位[J].麦类作物学报,2006,26(3):28-33
    [64]余桂红,任丽娟,马鸿翔等.分子标记在小麦抗赤霉病辅助育种中的应用[J].江苏农业学报,2006,22(3):189-191
    [65]郎淑平,王海燕,胥红研等.小麦抗赤霉病、优质高分子量麦谷蛋白亚基聚合体的分子标记辅助选育[J].麦类作物学报,2008,28(3):415-418
    [66]任明见,朱文华,张庆勤.抗白粉病兼抗赤霉病小麦新品种(系)的抗病性鉴定和利用评价[J].种子,2003,130(4):7-9
    [67]刘正德,姚革,蒋滨等.四川省小麦条锈病、白粉病、赤霉病抗性鉴定及抗原筛选[J].西南农业学报,2005,18(3):291-294
    [68]黄辉跃,唐建,张长春等.高产优质小麦内麦9号的选育及栽培技术要点[J].农业科技通讯,粮食作物,2007,10:66-67
    [69]Roder M S, Plaschke J, Konig S U, et al. A microsatellite map of wheat [J]. Genetics,1998,149: 2007-2023
    [70]http://wheat.pw.usda.gov
    [71]喻大昭,段霞瑜,周益林等.小麦品种抗白粉病性评价技术规范[M].中华人民共和国农业行业标准,2008
    [72]任明见.小麦品种(系)的抗赤霉病性鉴定[J].西南农业学报,2001,14(4):49-54
    [73]刘宗镇、我国改良小麦品种抗赤霉病性的来源与抗赤霉病改良中的问题[J].中国农业科学,1992,25(4):47-52
    [74]方毅敏.小麦抗赤霉病性田间鉴定与抗赤霉病育种中的问题[J].植物保护学报,1999,(4):294-298
    [75]刘宗镇.小麦品种资源抗赤霉病研究[J].上海农业学报,1985,1(2):75-84
    [76]徐健容,叶华智.小麦近缘种属对赤霉病菌的抗性评价[J].四川农业大学学报,1998,16(3):322-327
    [77]翁益群,刘大钧.鹅观草属(Rogeneria C. Koch)与普通小麦(Triticicum aestivumL.)属间杂F1的形态、赤霉病抗性和细胞遗传学研究[J].中国农业科学,1989,22(5):1-7
    [78]高立贞.部分小麦近缘属植物及小偃麦杂种对小麦赤霉病的抗性鉴定[J].陕西农业科学,1980,2:19-22
    [79]王耀南.巨大冰麦草种质转移给普通小麦的研究[J].南京农业大学学报,1986,1:10-14
    [80]万永芳,颜济,杨俊良等.小麦近缘野生植物的赤霉病抗性研究[J].植物病理学报,1997,27(2):107-111
    [81]刘登才,郑有良等.影响小麦赤霉病抗性的Lophopyrum elongatum染色定位[J].四川农业大学学报,2001,19(3):200-204
    [82]Qi L L, Cao M Y, Chen P D, et al. Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat [J]. Genome,1996,39:191-197
    [83]曹乃倩,刘桂茹,杨学举.小麦抗白粉病基因定位及分子标记辅助育种综述[J].植物保护科学,2007,23(7):482-486
    [84]施万喜,刘志勇.小麦抗白粉病基因定位及分子标记研究进展[J].陇东学院学报(自然科学版),2006,16(2):62-67
    [85]方毅敏,肖碧玉,黄继平等.小麦抗赤霉病田问自然鉴定与抗赤霉病育种中的问题探讨[J].福建稻麦科技,2000,(1):11-14
    [86]张从宇,王敏,邵磊等.小麦品种抗赤霉病性评价、聚类及性状间相关分析[J].安徽科技学院 学报,2008,22(4):12-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700