兔骨质疏松模型的快速建立和硫酸钙复合bBMP在椎体强化中的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景
     骨质疏松症最常见的并发症是椎体压缩骨折,手术治疗包括脊柱内固定和椎体成形术或球囊扩张椎体成形术。椎体成形术是近年来发展起来一种新的脊柱微创手术,该技术已广泛应用于治疗椎体的多种良恶性病变及骨质疏松性骨折,取得了很好的临床疗效,可以快速缓解疼痛,纠正脊柱畸形,由于椎体成形术创伤小、效果好且疗效快,已成为脊柱微创介入治疗的又一重要方法。临床上现在最常用的椎体成形术的材料为聚甲基丙烯酸甲酯(PMMA)。但PMMA充填材料具有许多缺点:病变椎体术后与相邻椎体的力学强度不同,因应力集中易导致相邻椎体的骨折;组织相容性差,无成骨作用,无生物降解性,最终不被自体骨取代;单体有细胞毒性,放热反应,其体外聚合温度达40~122℃,术中可能会引起邻近组织和神经元的热损伤。而且临床越来越要求成形材料能够携带有特殊治疗作用的药物,而PMMA并不能满足这些临床治疗的需要。如何探索一种具有良好生物相容性的成形材料,其在作为固定材料的同时又能成为携带具有特殊治疗作用的药物的载体,是本研究的目的。
     二、研究目的
     1.探索采用去势法+甲强龙诱导法快速建立兔子骨质疏松模型的方法;评估去势+甲强龙诱导后松质骨及皮质骨的微观结构和宏观力学性能的改变;从而建立一种适用于骨科领域研究的兔骨质疏松模型的快速建模方法。
     2.在已经建立的骨质疏松模型体内,采用“二维组织形态—三维空间结构—生物力学特性”的综合手段,评估硫酸钙以及硫酸钙复合bBMP对提高骨质疏松椎体骨密度、骨小梁微观结构及力学强度的作用。
     三研究内容和方法
     第一部分建立并分析评价兔骨质疏松动物模型
     采用随机对照研究方案,将20只新西兰大白兔随机分为去势(OVX)A组(n=4)、B组(n=8)和假手术组(Sham,n=8)。A组为单纯OVX组,B组为OVX+甲强龙肌注(4周)组。所有动物术前和术后2月均采用双能X线吸收骨密度仪测定腰椎骨密度。于术后2个月:①采用组织病理学切片方法对骨小梁结构进行组织病理学观察;②采用DEXA测定所有动物股骨髁部及皮质骨的骨密度;③采用显微CT分析松质骨骨小梁三维结构改变;④采用生物力学实验,比较实验组和对照组的松质骨和皮质骨的力学强度。
     第二部分硫酸钙(calcium sulfate CSC)复合bBMP材料在椎体强化中的实验研究
     采用随机对照研究方案,将60只新西兰大白兔随机分为C1组、C2组、C3组、C4组(n=12)和假手术组(Sham,n=12)。C组按照实验一方法建立骨质疏松模型,实验分为假手术对照组(Sham),骨质疏松对照组(C1),注射PMMA组(C2),注射CSC组(C3),注射CSC/bBMP组(C4),通过模拟椎体成形术,分别在每只兔子L2、L4、L6椎体注射材料,每组均于术后24小时,6周、12周处死4只。①采用组织病理学对骨小梁结构进行组织病理学观察;②采用MicroCT对骨小梁微观三维结构进行分析;③采用生物力学实验评估椎体骨质的结构力学强度。通过“微观结构-宏观密度-功能强度”的方法,全面衡量硫酸钙和硫酸钙复合bBMP材料对脊柱骨质疏松的治疗作用。
     四研究结果
     第一部分:手术前,Sham组、OVX-A组和OVX-B组的腰椎BMD分别为(266.7±38.58)mg/cm2、(270.1±25.38)mg/cm2和(272.8±27.08)mg/cm2手术2个月后,Sham组、OVX-A组和OVX-B组的BMD分别为(281.8±39.22)mg/cm2、(248.9±26.14)mg/cm2和(199.9±30.76)mg/cm2。OVX-B组的BMD较术前平均下降为26.72%。组织学切片观察发现,去势2个月后,OVX-B组椎体及股骨松质骨骨小梁明显稀疏、变细,局部存在骨小梁骨折及骨缺损;而对Sham和OVX-A照组骨小梁结构完整,呈圆形或椭圆形拱形结构。MicroCT分析表明,OVX-B组的骨小梁三维构筑较Sham组及OVX-A组均有显著改变(骨小梁明显变细、连接率明显下降),而OVX-A组骨小梁结构与Sham组无显著性差别。生物力学研究显示,OVX-B组椎体抗压缩强度(6.8±2.02MPa)较Sham组(14.5±3.74MPa)和OVX-A组(12.8±3.12MPa)均有显著性降低,而OVX-A组与Sham组无显著性差异。
     第二部分:组织形态学观察发现,CSC组和CSC/bBMP组骨小梁连接性在术后6周和12周明显优于C1对照组,形态较为规则,小梁间连接程度优于对照组。骨小梁变粗,骨折、微骨缺损处出现连接和修复;12周时骨小梁结构已经接近Sham对照组。MicroCT三维重建显示,6周时, CSC组和CSC/bBMP组骨小梁组的骨小梁三维结构参数明显优于C1对照组(P<0.05),骨密度值也明显优于C1对照组(P<0.05);12周时,已与Sham对照组无显著性差别。生物力学实验结果表明,在6周时,CSC组椎体的最大抗压缩强度有增加,但与C1对照组相比无显著性差异,而CSC/bBMP组椎体抗压缩强度在6周时显著高于C1对照组;在12周时,CSC组和CSC/bBMP组椎体最大抗压缩强度均较C1对照组有显著性差异(P<0.05),与Sham组及PMMA组相比,未见显著性差异(P>0.05)。
     五结论
     1.通过去势+甲强龙肌注的方法,可以在2个月内快速建立兔的骨质疏松模型。
     2.兔骨质疏松模型建成后,二维及三维图像显示椎体松质骨内骨小梁稀疏、变细、断裂,微观三维构筑受到破坏,并且局部形成骨小梁微骨折及微骨缺损,最终导致其力学性能下降。是一种理想可用的骨质疏松动物模型。
     3.CSC以及CSC为载体复合bBMP的注射型成骨材料具有强大的骨诱导能力,可以迅速有效地改善骨质疏松椎体骨小梁的三维构筑,提高其椎体力学强度,是具有良好应用前景的椎体充填材料。
Background
     The compression fracture in spine is the most complication of osteoporosis. The medical therapies and braces are the primary measures. The surgical measures include internal fixation, vertebroplasty and kyphoplasty. Vertebroplasty is a minimally invasive surgery in spine developed in recent years. It has got good clinical effects in the therapy of benign or malignant lesions and osteoporosis compression fractures in spine. It has become prevalent in minimally invasive surgery of spine for rapidly relieving the back-pain and correcting the deformity. Now, the most commonly used cement is polymethylmethacrylate (PMMA) in vertebroplasty. Unfortunately, PMMA has several potential disadvantages. PMMA is not bioabsorbable and remains permanently in the body. Its unreacted monomer is toxic, and its high polymerization temperature has resulted in temperature readings as much as 1220C. The high compressive strength and stiffness of PMMA causes a biomechanical mismatch between treated and untreated vertebral levels which may increase the risk of adjacent-level fractures. It has been required that the injecting materials can carry medicine for special treatments in clinic. So PMMA can not satisfy these demands. How to explore a biological injecting material,which can not only support the vertebrae but also carry medicine for special treatments, is the object of this experiment.
     Objective
     1. To study the approach of rapid establishment of an osteoporosis rabbit model through ovariectomy(OVX) and injecting solu-medrol and to evaluate the micro-architectural and biomechanical changes of cancellous and cortical bone after OVX. To establish a rapid osteoporosis animal model which can meet the requirements of orthopaedic research.
     2. To evaluate the effects of calcium sulfate cement (CSC) and CSC combined with bovine bone morphogenetic protein (bBMP) on osteoporotic rabbits vertebral micro-architecture, bone mineral density and biomechanical properties in vivo.
     Material and methods
     Part 1 Establishment and evaluation of an osteoporosis rabbit model.
     20 adult rabbits were randomly divided into six groups: sham-operated group (n=8), OVX-A group (n=4) and OVX-B (n=8) groups. OVX-B group was started to inject solu-medrol for 4 consecutive weeks after 2 weeks late of OVX. Sham group and OVX-A group were control groups. Before and 2 months after the operation, all the rabbits of study underwent dual energy x-ray absorptiometry (DEXA) of the lumbar vertebrae twice. 2 months after the operation, the rabbits were killed. The femoral condyle and shaft underwent DEXA. The trabecular bone(spine and femoral condyle) and cortical bone (femoral shaft) were harvested and reconstructed by micro-CT. Compressive mechanical properties of cancellous bone were determined from biopsies of vertebral bodies. Three-point-bending tests were used to evaluate the mechanical properties of cortical bone (femur shaft).
     Part 2 the study on the vertebrae augmentaion in osteoporotic rabbit vertebrae with calcium sulfate (CSC) /bBMP composite.
     60 adult rabbits were randomly divided into five groups: sham-operated group (n=12), C1 group (n=12), C2 group (n=12), C3 group (n=12) and C4 group (n=12). C groups were estabilished osteoporotic rabbit models according to the methods of part 1 experiments. Sham group and C1 group were control groups. 0.1-0.2ml PMMA (Group C2), CSC (Group C3) and CSC/bBMP (Group C4) were injected into L2, L4 and L6 vertebra of every rabbits. 4 rabbits were killed respectively from every group in 24 hours, 6 weeks and 12 weeks after PVP. The trabecular architecture changes were observed histomorphologically. Micro-architecture of vertebrae was measured by micro-CT after the rabbits were killed. Axial compression tests were carried out on vertebral specimens to evaluate their strength.
     Result
     Part 1: The pre-OVX BMD for lumbar spine in Sham, OVX-A and OVX-B were (266.7±38.58)mg/cm2、(270.1±25.38)mg/cm2 and(272.8±27.08)mg/cm2 respectively. 2 months later, the post-OVX BMD in Sham, OVX-A and OVX-B were ( 281.8±39.22 ) mg/cm2、( 248.9±26.14 ) mg/cm2 and(199.9±30.76)mg/cm2 respectively. BMD in OVX-B decreased by 26.72% compared with the pre-OVX BMD. Histomorphologically, trabecular bone decreased significantly in OVX-B group compared with that in sham group and OVX-B group. Micro-fracture and micro-defect could be seen in OVX-B.The parameters of trabecular bone had significantly difference compared with control groups (p<0.05). In biomechanical testing, the maximum compression strength of vertebrae in OVX-B was lower than that in the other two groups. In 3-point bending test, there was no difference between three groups.
     Part 2: Histomorphologically, the connectivity in group C3 and C4 was higher than that in C1 group respectively at 6th week and 12th week. The shape of trabecular bone was also better.The architecture of trabecular bone was same as that in sham group. Micro-fractures and micro-defects were also less than that in the C1 groups. After injection of CSC or CSC/bBMP, the Micro-CT reconstruction analysis showed that the BMD in group C3 and C4 were significantly higher than that in group C1 respectively at 6th week and 12th week(P<0.05). The trabecular thickness, connectivity and bone fraction in group C3 and C4 were significantly higher than that in C1 group and were as good as the sham group in 12th week. The results of biomechanical test showed that the maximum compression strength in C4 was higher significantly than that in C1 group in 6th week (P<0.05). It was also higher significantly in both C3 and C4 than that in C1 and had no significantly difference compared with that in sham group and C2 group in 12th week.
     Conclusion
     1. Osteoporosis rabbit model can be rapidly establisher by ovariectomy and injecting solu-medrol in 2 months.
     2. After an osteoporosis rabbit model is induced, the trabecular bone in vertebrae becomes thinning and sparsely. Micro-fractures and micro-defects occur and result in the decrease of biomechanical properties. It is an ideal osteoporosis model for experiments.
     3. CSC and CSC/bBMP injecting in osteoporosis vertebrae can repair the micro-fractures and micro-defects in trabecular bone and can enhance the bone quality significantly. CSC and CSC/bBMP can be used as local treatment of vertebral osteoporosis.
引文
1.陈德玉,王良意,骨质疏松症。见:胥少汀主编。实用骨科学,第三版,北京:人民军医出版社,2005, 1198。
    2. Gilsanz V, Roe TF, Gibbens DT, Schulz EE, Carlson ME, Gonzalez O. Boechat MI. Effect of sex steroids on peak bone density of growing rabbits. Am J Physiol, 1988, 255:E416-E421.
    3.朱清华,祝庆蕃,主编。实验动物学,广州:广东高等教育出版社,1991,185。
    4. Cotten A, Boutry N, Cortet B, Assaker R, Demondion X, Leblond D, Chastanet P, Duquesnoy B, Deramond H. Percutaneous vertebroplasty: state of the art. Radiographics, 1998, 18:311–320.
    5. Heini PF, Walchli B, Berlemann U. Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. A prospective study for the treatment of osteoporotic compression fractures. European Spine Journal, 2000, 9: 445–450.
    6. Mathis JM, Barr JD, Barr MS, Jensen ME, Deramond H. Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. American Journal of Neuroradiology, 2001, 22: 373–381.
    7. Garfin SR, Yuan HA, ReiteyM A. New technique in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporostic compression fracture. Spine, 2001, 26 (14):1511 - 1515.
    8. Trout AT, Kallues DF, Kaufmann TJ. New fractures after verteroplasty. Am J Neuroradiol, 2006, 27 (1):217 - 223.
    9. U Berlemann, SJ Ferguson, L-P Nol. Adjacent vertebral failure after vertebroplasty: A biomechanical investigation.Journal of Bone and Joint Surgery, 2002, 84(B): 748-752.
    10. Teng MH, Cheng H, Hottch DM. Intraspinal leakage of bone cement after vertebroplasty: a report of cases. AJNR Am J Neuroradiol, 2006, 27(1): 224 -229.
    11. Ratliff AH, Clement JA. Pulmonary embollsm and bone cement. Br Med J, 1971, 2(760): 532-540.
    12. Deramond H, Depnester C, Gallbert P, Le Gars D. Percutaneousvertebroplasty with polmpethylmethacrylate: Techniques, Indications and results. Radilohacal Clinics of NA, 1998,36,533-546.
    13. Monticelli F, Meyer HJ, Tutsch - Baner E. Fatal pulmonary cement embolism following percutaneous vertebroplasty (PVP). Forensic Sci Int, 2005, 149 (1):35-38.
    14.陈珑,倪才方,丁乙。椎体成形术的成形材料应用与发展.介入放射学杂志,2004, 13(5):472-475.
    15.朱美忠。椎体成形术生物材料的应用与进展.中国微创外科杂志,2006,6(9):714-716
    16. Uebelhart D, Bernard J, Hartmann DJ, Moro L, Roth M, Uebelhart B, Rehailia M, Mauco G, Schmitt DA, Alexandre C, Vico L. Modifications of bone and connective tissue after orthostatic bed rest. Osteoporos Int, 2000, 11(1): 59-67.
    17. Nishimura Y, Fukuoka H, Kiriyama M, Suzuki Y, Oyama K, Ikawa S, Higurashi M, Gunji A. Bone turnover and calcium metabolism during 20 days bed rest in young healthy males and females. Acta Physiol Scand Suppl, 1994, 616:27-35.
    18. Wet IS, Jansen C. The use of plaster of Paris to fill large defects in bone. An experimental study to determine the ultimate fate of a measured amount of plaster of Paris inserted into the bone of a living animal.S Afr J Surg 1973, 11:1–8.
    19. Hadjipavlou AG, Simmons JW, Yang J. Plaster of Paris as an osteoconductive material for interbody vertebral fusion in mature sheep. Spine 2000, 25:10–5. discussion16.
    20. Turner TM, Urban RM, Gitelis S, Kuo KN, Andersson GB. Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution’s experience. J Bone Joint Surg Am 2001, 83(Suppl 2):8–18.
    21. Mark L. Wang, MD, Ph Da, Jennifer Massie. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements. The Spine Journal, 2007,7: 466–474
    22. Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and kyphoplasty: filler materials. The Spine Journal,2005,5: 305S–316S
    23. Wozney JM. Overview of bone morphogenetic proteins.Spine, 2002, 27(16 Suppl1):S2-8.
    24. Damien CJ, Grob D, Boden SD, Benedict JJ. Purified bovine BMP extract and collagen for spine arthrodesis: preclinical safety and efficacy.Spine, 2002, 27(suppl):50-58.
    25. Boden SD, Grob D, Damien CJ. Ne-osteo bone growth factor for posterolateral lumbar spine fusion: results from a nonhuman primate study and a prospective human clinical pilot study.Spine, 2004, 29:504-514.
    26. TumerTM,Urban RM,Hall DJ, Chye PC, Segreti J, Gitelis S. Local and systemic levels of tobramycin delivered from calcium sulfate bone graft substitute Pellets. Clin OrthoPRelatRes.2005:(437):97一104.
    27. Wilkins R, Kelly C. Use of biodegradable antibiotic beads in orthopaedic infections. Joumal of Bone & Joint Surgery一British Volume.2005: 87B (5111):304.
    28. KimS G,Chung CH,Kim YK. Use of Particulate dentin一Plaster of Paris combination with/Without Platelet一rich Plasma in the treatment of bone defects around Implants. Int J Oral Maxillofac ImPlants.2002:17(1): 86一94.
    29. Intini G,Andreana S,Margarone JE 3rd, Bush PJ, Dziak R.Engineering a bioactive matrix by modifications of calcium sulfate. Tissue Eng. 2002, 8(6): 997一1008.
    30. Grisso JA, Capezuti E, Schwartz A. Falls and risk factors for fractures. In: Osteoporosis Marcus R, Feldman D, Kelsey J (eds). Academic Press, San Diego. pp. 1997, 599-611.
    31. A. Simon Turner. Animal models of osteoporosis - necessity and limitations. European cells and materials 2001,1:66-81
    32. Peng Z-Q, V??n?nen HK, Zhang HX, Tuukkanen J. Long-term effects of ovariectomy on the mechanical properties and chemical composition of rat bone. Bone, 1997, 20:207-212.
    33.陈守平,周正炎,陆卫青。去势法兔骨质疏松症模型的建立.口腔颌面外科杂志,2001, 11(3):221-224.
    34. Wronski TJ, Yen C-F. The ovariectomized rat as an animal model for postmenopausal bone loss. Cells and Materials 1991, Suppl 1: 69-74.
    35.李良,吴文起,陈槐卿。去势雌山羊骨组织形态学变化的动态观察。华西医大学报,1997,28(4):398-400。
    36.汪青,孙兰,龚海洋。骨质疏松动物模型建立与评价。中国药理学通报,1999, 15(5):391-395.
    37. Matsushita M, TsuboyamaT, Kasai R. Age-related changes in bone mass inthe senescence-accelerated mouse (SAM) SAMR/3 and SAMP/6 as newmurine models for senile osteoporosis. Am J Pathol, 1986, 215:276-283.
    38. Tsuboyama T, Takahashi K, Matsushita M. Decreased endosteal formation during cortical bone modelling in SAMP/6 mice with a low peak bone mass. Bone Miner, 1989, 7:1-12.
    39. Jilka R L, Weinstein R S, Takahashi K. Ling age of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest, 1996, 97: 1732-1470.
    40. 1999 World Health Organizationg-International Society of Hypertension Guidelines for the Management of Hypertension. Guidelines Subcommittee. Hypertens, 1999,17(2):151-183
    41.段学忠,孙西庆,蔡新吉。益脉降压流浸膏对老年原发性高血压患者肾上腺髓质素、内皮素及血管紧张素Ⅱ的影响。中国临床康复,2004, 8(30):6808-6810。
    42.田牛,李向红,刘育英。临床微循环检查手册。北京:中国医药科技出版社,1992:35-37
    43. Vanderschueren D, Van Herck E, Suiker AM, Visser WJ, Schot LP, Bouillon R. Bone and mineral metabolism in aged male rats: short and long term effects of androgen deficiency. Endocrinology, 1992, 130: 2906 -2916.
    44. Yao W, Jee WS, Chen J. Erect bipedal stance exercise partially prevents orchidectomy–induced bone loss in the lumbar vertebrae of rats.Bone, 2000, 27: 667 2675.
    45. Yao W, Jee WS, Chen J, Liu H, Tam CS, Cui L, Zhou H, Setterberg RB, Frost HM.Making rats rise to erect bipedal stance for feeding partially prevented orchidectomy -induced bone loss and added bone to intact rats. J Bone Miner Res, 2000, 15:1158 -1168.
    46. Vanderschueren D, Vandenput L, Boonen S. An aged rat model of partial androgen deficiency: prevention of both losses of bone and lean body mass by low–dose androgen replacement.Endocrinology, 2000, 141: 1642-1647.
    47. Erben RG, Eberle J, Stahr K, Goldberg M. Androgen deficiency induces high turnover osteopenia in aged male rats: a sequential histomorphometric study. J Bone Miner Res, 2000, 15:1085 -1098.
    48.裴育。睾丸切除大鼠骨质疏松动物模型的研究及应用.国外医学-内分泌学分册, 2002, 22(4):224-226.
    49. Botolin S, Faugere MC, Malluche H. Increased bone adiposity and peroxisomal proliferators-activated receptor-gamma 2 expression in type I diabetic mice. Endocrinology, 2005, 146(8):3622-3631.
    50.张立,赵丽娟,葛焕琦。糖尿病并发去卵巢骨质疏松症大鼠模型的建立。吉林大学学报(医学版),2003,29(4):405-407。
    51.乔伟伟,许兰文。营养性骨质疏松动物模型的实验研究。营养学报,1999,21(2):240-241。
    52. Liao JM, Li QN, Wu T, Hu B, Huang LF, Li ZH, Zhao WD, Zhang MC, Zhong SZ. Effects of prednisone on bone mineral density and biomechanical characteristics of the femora and lumbar vertebras in rats. J First Milit Med Univ, 2003, 23 (2): 97-100 (in Chinese).
    53. Schorlemmer S, Gohl C, Iwabu S. Glucocorticoid treatment of ovariectomized sheep affects mineral density, structure, and mechanical properties of cancellous bone. J Bone Miner Res, 2003, 18(11): 2010-2015.
    54. Goldhahn J, Jenet A, Schneider E, Lill CA. Slow rebound of cancellous bone after mainly steroid-induced osteoporosis in variectomized sheep. J Orthop Traum, 2005, 19 (1):23-28.
    55. Liu HD, Li XH, Tong XX. Comparison of osteoporosis model of rats induced by dexamethasone and retinoic acid. Chin J Pathophysiol, 2004, 20 (4): 697-699(in Chinese).
    56. Brighton CT. Treatment of sciatic denervation disuse osteoporosis in the rat with capacitively coupled electrical stimulation. J Bone Joint Surg (AM), 1985, 67:1022.
    57. Lewis DB, Liggitt HD, Effmann EL. Osteoporosis induced in mice by over opduction of inter leukin 4.Proc Natl Acad Sci USA, 1993, 90 (24): 11618-11622.
    58. Kalu D N, Hardin R H and Cockrham R, Yu BP. Aging and dieting modulation of rat skeleton and parathroid hormone. Endocrinology, 1984,115: 1239—1247
    59. Kalu D N, Liu C C, Hardin R. The aged rat model of ovarian hormone deficiency bone loss. Endocrinology, 1989,124:7—16.
    60.陈槐卿,李良,郑虎。绝经后骨质疏松的动物模型。中国骨质疏松杂志,1998,4(2):82—85。
    61.吴波。骨质疏松动物模型研究的现状与展望。药学学报,1996,31(4): 316—320。
    62.福田俊,饭田治三。加龄に伴ぅ雌雄テツトの骨代谢の变化と卵巢,精巢摘除年龄によゐ影响の差。日骨形态志,1991,1:89—94。
    63. Chen H, Shoumura S, Emura S. Ultrastructural changes in bones of the senescence accelerated mouse (SAMP6): a murine model for senile osteoporosis. Histol Histopathol, 2004, 19(6):677—685.
    64. Kalu DN, Chen C. Ovariectomized murine model of postmenopausal calcium malabsorption. J Bone Miner Res, 1999, 14(7):593—601.
    65. Shen V, Dempster DW, Birchman R, Mellish RWE, Church E, Kohn D, Lindsay R. Lack of changes in histomorphometric, bone mass, andbiochemical parameters in ovariohysterectomized dogs. Bone 1992, 13: 311-316.
    66. Russell T. Animal models for osteoporosis. Reviews in Endocrine Metabolic Disorders, 2001, 2:117-127.
    67. Southard TE, Southard KA, Krizam KE, Hillis SL, Haller JW, Keller J, Vannier MW. Mandibular bone density and fractal dimension in rabbits with induced osteoporosis. Oral Surg Med, 2000, 89(2):244-249.
    68.杨霞,蔡桂英,魏玲,候静,李炯,郑虎,翁玲玲。去势兔骨质疏松模型建立的初探。生物医学工程学杂志, 1997, 14(4):353-358.
    69.包丽华,林华,李建华.二磷酸盐治疗对骨质疏松性骨痛、骨密度、骨强度的疗效及安全性评价.中华老年医学杂志,2003,22(11):659—662.
    70.方忠,杨琴,李峰,段军,敦先礼。去势法兔骨质疏松模型建立的探讨.中国骨质疏松杂志, 2005, 11: 202-205.
    71. Mori H, Manabe M, Kurachi Y. Osseo integration of dental implants in rabbit bone with low mineral density. J Oral Maxillofac Surg, 1997, 55 (4): 357-362.
    72. Southard TE, Southard KA, Krizan KE, Hillis SL, Haller JW, Keller J, Vannier MW . Mandibular bone density and fractal dimension in rabbits with induced osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000, 89 (2):244 -249.
    73. Akkas N, Yeni YN, Turan B. Effect of medication on biomechanical properties of rabbit ones: Heparin induced osteoporisis. Clin-Rheumatol, 1997, 16 (6):585-595.
    74.杨豪,程少丹,郑福增。颈椎动物模型发病过程中颈椎骨密度的动态变化。中国临床康复,2005,9(10):70—71。
    75. Turner AS, Par RD, Aberman HM. Effects of age and ovariectomy on trabecular bone of the proximal femur and iliac crest in sheep.Orthopedic research society, 1993,17(3-4):805.
    76. Fini M, Pierini G, Giavaresi G. The ovariectomised sheep as a model for testing biomaterials and prosthetic devices in osteopenic bone: a preliminary study on iliac crest biopsies. Int J Artif Organs, 2000, 23(3):275—281.
    77.何成明,陈槐卿,李良,陈孟诗,陈云爽,吴文超。雌性山羊去卵巢后不同时间骨生物力学参数变化。生物医学工程杂志,1999,16:295—299。
    78. Kraeling RR, Barb CR, Rampacek GB. Luteinizing hormone response to controlled-release deslorelin in estradiol benzoate primed ovariectomized gilts. Theriogenology, 2000,53(9):1681-1689
    79. Reynolds LP, Kirsch JD, Kraft KC, Redmer DA. Time-course of the uterine response to estradiol - 17beta in ovariectomized ewes: expression ofangiogenic factors. Biol Reprod. 1998, 59(3):613-620.
    80. Colman RJ, Lane MA, Binkley N. Skeletal effects of aging in male rhesus monkeys. Bone, 1999, 24:17-23.
    81. Champ JE, Binkley N, Havighurst T, Colman RJ, Kemnitz JW, Roecker EB. The effect of advancing age on bone mineral content of female rhesus monkeys.Bone, 1996, 19:485-492.
    82. Jerome CP, Turner CH, Lees CJ. Decreased bone mass and strength in ovariectomized cynomolgus monkeys (Macacafascicularis).CalcifTissueInt, 1997, 60:265-270.
    83. Stroup GB, Hoffman SJ, Vasko-Moser JA. Changes in bone turn over following gonadotropin-releasinghormone ( GnRH) agonist administration and estrogen treatment in cynomolgus monkeys: a short-term model for evaluation of antiresorp-tivetherapy. Bone, 2001, 28:532-537.
    84.黄公怡。骨质疏松症骨的组织结构和力学特性。中华骨科杂志,2004, 24(11):687-690。
    85. Nuzzo S,Lafage MH,Martin E.Synchrotron radiation miemtomogaphy allows the analysis of three-dimensional mieroarchitecture and degree of mineralization of human iliac crest biopsy specimens effects of etidronate treatment.J Bone Miner Res, 2002, 17: 1372-1382.
    86. Lang TF, Keya KJH, Heitz MW. Volumetric quantitative computed tomography of the proximal femur: precison and relation to bone strength. Bone, 1997, 21:101-108.
    87. Mailer R, Van Campenhout H, Van Damme B. Morphometric analysis of human bone biopsies:a quantitative structural comparison of histological sections andmicro-computed tomography.Bone,1998,23:59-66.
    88. Searda A, Rho YH, Choi SJ.A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc, 1997, 185: 67-75.
    89. Parfitt AM. The Physiologic and clinical significance of bone histomorphometry: Techmniques and Interpretation. Boca Raton, FL: CRC Press, 1983, 143-224.
    90.张红,罗湘杭,谢辉。基质金属蛋白酶21, 22与女性年龄、骨转换指标及骨密度的关系。中华内科杂志,2006,45:306-309。
    91. Lofman O, Magnusson P, Toss G. Common biochemical markers of bone turnover predicts future bone loss: A 5-year follow-up study. Clinicachimica Acta, 2005,356 (1-2): 67 -75.
    92. Hernandez MV, Guanabens N, Alvarez L, Monegal A, Peris P, Riba J, Ercilla G, Martínez de Osaba MJ, Mu?oz-Gómez J. Immunocytochemical evidence on the effects of glucocorticoids on type I collagen synthesis inhuman osteoblastic cells. Calcif Tissue Int, 2004, 74: 284-293.
    93. Gamero P, Somay–Rendu E, Duboeuf F.Markers of bone turnover predict postmenopausal fore arm bone loss over 4 years. J Bone Miner Res, 1999, 14: 1614-1621.
    94. Reginster JY, Sarkar S, zegels B, Henrotin Y, Bruyere O, Agnusdei D, Collette J. Reduction in PINP, a marker of bone metabolism, with raloxifene treatment and its relationship with vertebral fracture risk.Bone, 2004,34: 344 -351.
    95. Russell RG, Espina B, Hulley P. Bone biology and the pathogenesis of osteoporosis. Curr–Opin-Rheumatol, 2006, 18 (Suppl1):3-10.
    96. Simonet WS, Lacey DL and Dunstan CR. Ostoprotegerin: an ovel secreted protein involved in the regulation of bone density. Cell, 1997, 89: 309 -319.
    97.薛延,张海文,杨立红。血清骨特异性酸性磷酸酶的临床意义。中华内分泌代谢杂志,2003,19:466-467。
    98. Onodera S, Sasaki S, Ohshima S, Amizuka N, Li M, Udagawa N, Irie K, Nishihira J.Transgenic mice overexpressing macrophage migration inhibitory factor (MIF) exhibit high-turnover osteoporosis. J Bone Miner Res, 2006, 21: 876 -885.
    99. Garcia-Perez MA, Moreno-Mercer J, Tarin JJ. Similar efficacy of low and standard doses of transdermal estradiol in zcontrolling bone turnover in postmenopausal women. Gynecol Endocrinol, 2006, 22(4):179 -184.
    100. Iki M, Akiba T, Matsumoto T. Reference data base of biochemical markers of bone turnover for the Japanese female population. Osteoporos Int, 2004, 15 (12):981-991.
    101.李良,陈槐卿,陈孟诗,谭建三,吴文超,翁玲玲,郑虎。建立骨质疏松山羊模型初探.中国骨质疏松杂志,1998,4 (2):12。
    102.李良,陈槐卿,陈孟诗,谭建三,吴文超,翁玲玲,郑虎。去卵巢山羊长骨生物力学性能的变化.生物医学工程学杂志,1998,15(2):101。
    103. Maurits H J, Paul N, Leo E. Prospective clinical follow-up after percutaneousvertebroplasty in patients with painful osteoporotic vertebral comp ression fractures. J Vasc Interv Radiol, 2006,17 ( 8) :1313– 1320
    104. Kaufmann TJ, Jensen ME, Schweickert PA, Marx WF, Kallmes DF. Age of fracture and clinical outcomes of percutaneous vertebroplasty. AJNR Am J Neuroradiol, 2001, 22(10):1860-1863.
    105. Tohmeh AG, M athis JM, Fenton DC. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures. Spine, l999, 24(17):l772-l776.
    106. Berlkoff SM, Maroney M, Fenton DC, Mathis JM. An in vitro biomechanical evaluation of bone cements used in percutaneousvertebroplasty. Bone, 1999, 25(suppl 2):23-26.
    107. Lim TH, Brebach GT, Renner SM. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine, 2002, 27(12): 1297-1302.
    108. Takemasa R. Yamamoto H. Tani T. Kyphoplasty using bioactive calcium phosphate cement for ostcoporoticvertebral fractures. In: 71th Annual Meeting of American Academy of Orthopedic, Surgeons. California: San Francisco.2004.
    109. Young SW. Holde M. Gunasekaran S. The correlation of radiographic, MRI and histologcal evaluations over two years of a carbonated apatite cement in a rabbit model. In: Andersson GBJ Transaction of the 44th Annual Meeting of the Orthopedic Research Society, Chicago: Dickerson, 2000.
    110. Cunin G, Boissonnet H, Petite H, Blanchat C, Guillemin G. Experimental vertebrplasty using osteoconductive granular materia1. Spine, 2000, 25(9): 1070-1076.
    111. Belkoff SM, Mathis JM, Erbe EM, Fenton DC. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine. 2000, 25(9):1061-4.
    112. Senaha Y, Nakamura T, Tamura J. Intercalary replacement of canine femora using a new bioactive bone cement. J Bone Joint Surg Br, 1996, 78(1):26-31.
    113.郭家伟,郑召民。椎体成形术填充物的研究进展。中国脊柱脊髓杂志,2004, 14: 126-128.
    114. Kim SB, Kim YJ, Yoon TL, The characteristics of a hydroxyapatite-chitosan PMMA bone cement. Biomaterials. 2004, 25(26):5715-5723.
    115. Hauptli O. Plaster filling in replacing missing bone tissue. Schweiz Med Wochenschr, 1952, 82(7):161-168.
    116. Cho BC, Kim TG, Yang JD, Effect of calcium sulfate-chitosan composite: pellet on bone formation in bone defect. J Craniofac Surg. 2005, 16(2): 213-24, discussion 225-227.
    117. Peltier LF. The use of plaster of Paris to fill defects in bone. Clin Orthop. 1961, 21:1-31.
    118. Simic P, Buljan-Culej J, Orlic I, Grgurevic L, Draca N, Spaventi R, Vukicevic S. Systemically administered bone morphogenetic protein-6 restores bone in aged OVX rats by increasing bone formation and suppressing bone resorption. Biol Chem, 2006, 281(35): 25509-25521.
    119. Phillips FM, Turner AS, Seim HB. In vivo BMP-7(OP-1) enhancement of osteoporotic vertebral bodies in an ovine model. The Spine Journal, 2006, 6:500-506.
    120. Retorna z, Paris F. Association between androgen receptor genepolymorphism and bone density in older women using hormone replacement therapy. Maturitas. 2006, 55(4):325-33.
    121. Devlin H, Ferguson MW. Compositional changes in the rat femur following ovariectomy. Acta Anat (Basel). 1989, 136(1):38-41.
    122. Tabuchi C, Simmons DJ, Fausto A. Bone deficit in ovariectomized rats. Functional contribution of the marrow stromal cell population and the effect of oral dihydrotachysterol treatment. J Clin Invest. 1986 Sep,78(3):637-42.
    123.廖慧娟,廖二元。骨质疏松动物模型。国外医学内分泌分册,2004,24: 60-62。
    124. Borah B, Gross GJ, Dufresne TEl. Three-dimensional microimaging (MR microI and micro CT), finite element modeling , and rapid prototypingprovide unique insights into bone architecture in osteoporosis. Anat Rec, 2001, 265:101-110.
    125. Schorlemmer S, Ignatius A, Claes L, Augat P. Inhibition of cortical and cancellous bone formation in glucocorticoid-treated OVX sheep. Bone, 2005, 37: 491–496.
    126. Newman E, Tyrner AS, Wark JD. The potential of sheep for the study of osteopenia: Current status and comparison with other animal.Bone, 1995, 16(4):277s-284s.
    127. Bellino FL.Nonprimate animal models of menopause: workshop report. Menopause, 2000, 7:14-24.
    128. Simon Turner. Animal models of osteoporosis-necessity and limitations. European Cells and Maerials. Sroimpeoann. 2001, 1:66-81
    129. Turner AS. The sheep as a model for osteoporosis in humans. Vet J, 2002, 163 (3): 232-239.
    130. Leuker BP. Glucocorticoid - induced osteoporosis. In: Marcus R, eds. Osteoporosis. SanDiego: Academic Press, 1996. 801 - 820.
    131. Canalis E. Mechanism of glucocorticoid - induced osteoporosis. CurrOp in Rheumatol, 2003, 15: 454 - 459.
    132. Waters R V, Bergstrom K, Briones W, Vickery B H, Kimmel,D B. Prednisone causes bone loss in rabbits. The Endocrine Society Program and Abstracts, 77th Annual Meeting, June 14-17, 1995. Washington DC. Abstract P3-510, p 596.
    133. Fujimoto T, Niimi A, Sawai T, Sawai T, Ueda M. Effects of steroid-induced osteoporosis on osteointegration of titanium implants. Int J Oral Maxillofac Imp l, 1998, 13: 183.
    134. Grardel B, Sutter B, Flautre B, Viguier E, Lavaste F, Hardouin P. Effects of glucocorticoids on skeletal growth in rabbits evaluated by dual-photonabsorptiometry, microscopic connectivity and vertebral compressive strength. Osteoporosis Int 1994,4: 204-210
    135. Ortoft G,Oxlund H.Qualitative alterations of cortical bone in female rats after long-term administration of growth hormone and glucocorticoid.Bone 1996, 18:581–590.
    136. Kimmel DB. (1996) Animal models for in vivo experimentation in osteoporosis research. In: Osteoporosis. Marcus R, Feldman D, Kelsey J (eds). Academic Press, San Diego. pp. 671-690.
    137. Laskey MA, Flaxman ME, Barber RW. Comparative performance in vitro and in vivo of Lunar DPX and Hologic QDR-1000 dual energy X-ray absorptiometers.Br J Radiol.1991, 64(767):1023-1029.
    138. Bolotin HH,Sievanen H.Inaccuracies inherent in dual energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility.J Bone Miner Res,2001,16:799-805.
    139. Hahn M, Vogel M, Pompesivs-Kempa M. Trabecular bone pattern factor: a new parameter for simple quantification of bone micro architecture. Bone, 1992, 13:327-340.
    140. Iegrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, Basle MF, Audran M. Trabecular bone microarchitecture, bone mineral density and vertebral fractures in male osteoporosis. J Bone Miner Res, 2000, 15:13-19.
    141. Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res, 2000, 15: 60-67.
    142. Nuzzo S, Lafage-proast MH, Martin-badosa E. Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens effects of etidronate treatment . J Bone Miner Res, 2002, 17:1372-1382.
    143. Keaveny TM, Morgan EF, Niebur GL. Biomechanics of trabecular bone.Annu Rev Biomed Eng,2001,3:307–333.
    144. Sato M, Westmore M, Ma YL, Schmidt A, Zeng QQ, Glass EV, Vahle J, Brommage R, Jerome CP, Turner CH. Teriparatide [PTH (1-34)] strengthens the proximal 102femur of ovariectomized nonhuman primates despite increasing porosity. J Bone Miner Res, 2004, 19(4):623-629.
    145. Hasegawa - K, Takabashi - HF, Uchiyama– S. An experimental study of a combination method using a pedicle screw and laminar hook for theosteoporotic spine. Spine, 1997, 22 (9):958-962.
    146. Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability of transpedicle screwing for the osteoporoticspine, An in vitro study of the mechanical stabiligy. Spine, 1993, 19:2240-2245.
    147. Chbia M, Mclain PE, Yerby SA. Short - segment pedicle screw fixation: Biomechanical analysis of supplemental hook fixation. Spine, 1996, 21: 288-294.
    148.王德琪,赵忠岳,崔京浩。骨骼生物力学的一些概念。中华骨科杂志, 1985, 5 (2):120-122。
    149. Julio Urrutia, MD, Christopher M. Bono, Rojas C. Early Histologic Changes Following Polymethylmethacrylate Injection (Vertebroplasty) in Rabbit Lumbar Vertebrae. Spine, 2008, 33(8): 877–882.
    150. Mitton D, Rumelhart C, Hans D. The effect of density and test conditions on measured compression and shear strength of cancellous bone from the lumbar vertebrae of ewes. Med Eng Phys, 1997, 19(5):464-474.
    151.陈孟诗,赖胜祥,李良。大鼠的骨生物力学指标选取及测试。生物医学工程学杂志。J Biomed Eng 2001,18 (4):547~551.
    152. Belkoff SM, Mathis JM, Jasper LE, Deramond H. The biomechanics of vertebroplasty --the effect of cement volume on mechanical behavior.Spine, 2001, 26(14):1537–1541.
    153. Sean Molloy, MRCS, John M Mathis. The effect of vertebral body percentage fills on mechanical behavior during percutaneous vertebroplasty. Spine, 28(14):1549–1554.
    154. Krebs J, Ferguson SJ, Hoerstrup SP, Goss BG, Haeberli A, Aebli N. Influence of bone marrow fat embolism on coagulation activation in an ovine model of vertebroplasty. Bone Joint Surg Am, 2008, 90(2):349-56.
    155. Aebli N, Goss BG, Thorpe P. In vivo temperature profile of intervertebral discs and vertebral endplates during vertebroplasty: an experimental study in sheep. Spine, 2006, 31(15):1674-1678
    156. Aebli N, Krebs J, Davis G. Fat embolism and acute hypotension during vertebroplasty: an experimental study in sheep.Spine,2002,27(5):460-6.
    157.刘宏建,杜靖远,王义生,刘辉,韩松辉,郭建刚。不同充填材料应用于山羊椎体成形术的组织学研究。中国骨伤,2007, 20(4):230-232。
    158. Wang ML, Massie J, Perry A, Garfin SR, Kim CW.A rat osteoporotic spine model for the evaluation of bioresorbable bone cements. The Spine Journal, 2007, 7:466–474.
    159. Aerssens, J, Boonen S, Lowet G, Dequeker J. Interspecies difference in bone composition density and quality, potential implications for in vivo boneresearch. Endocrinology, 1998, 139: 663-670.
    160.刘忠厚,潘子昂,唐海。骨质疏松学。北京:科学出版社, 1998:160-162, 386-387。
    161.刘崇静,关立,孙积慧。腰椎各椎体骨密度的分析。中国骨质疏松杂志, 1999,5(1):32-34。
    162. Deramond H, NT Wright, and SM Belkoff. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone. 1999, 25:17S–21S.
    163. San Millan Ruiz, DK, Burkhardt B, et al. Pathology findings with acrylic implants. Bone, 1999, 25:85S–90S.
    164. Baroud G, J Nemes, Heini P, Steffen T. Load shift of the intervertebral disc after a vertebroplasty: A finite-element study. Eur. Spine. J. 2003.
    165. Grados F, C Depriester, G Cayrolle. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology (Oxford), 2000, 39: 1410–1414.
    166. Polikeit A, LP Nolte, and SJ Ferguson. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: Finite-element analysis. Spine, 2003, 28:991–996.
    167. Uppin AA, JA Hirsch, LV Centenera. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. 2003, Radiology 226:119–124.
    168. Hitchon PW, Goel V, Drake J, Taggard D, Brenton M, Rogge T, Torner JC. Comparison of the biomechanics of hydroxyapatite and polymethylmethacrylate vertebroplasty in a cadaveric spinal compression fracture model. J Neurosurg, 2001, 95 (2 Sup2pl): 215-220.
    169. Belkoff SM, Mathis JM, Jasper LE. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine, 2001, 26:154221546.
    170. Watson JT. The use of an injectable bone graft substitute in tibial metaphyseal fractures. Orthopedics 2004, 27:s103–107.
    171. Kelly CM, Wilkins RM. Treatment of benign bone lesions with an injectable calcium sulfate-based bone graft substitute. Orthopedics 2004, 27:s131–135.
    172. Peltier LF. The use of plaster of Paris to fill defects in bone. Clin Orthop 1961, 21:1–31.
    173. Turner TM, Urban RM, Gitelis S, Haggard WO, Richelsoph K. Resorption evaluation of a large bolus of calcium sulfate in a canine medullary defect. Orthopedics 2003, 26(5, Suppl.): 577–579.
    174. Rohmiller MT, Schwalm D, Glattes RC. Evaluation of calcium sulfate paste for augmentation of lumbar pedicle screw pullout strength. Spine J 2002, 2:255–260.
    175. Yi X, Wang Y, Lu H, Li C, Zhu T. Augmentation of pedicle screw fixation strength using an injectable calcium sulfate cement: an in vivo study. Spine. 2008, 33(23):2503-2509.
    176. Andrew Perry, MDa, Andrew Mahar Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model. The Spine Journal 2005, (5):489–493.
    177. Dalle CL, Giannini S. Bone microarchitecture as an important determinant of bone strength. J Endocrinol Invest, 2004, 27:99-105.
    178. Nuzzo S, Lafage-proast MH, Martin-badosa E. Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens effects of etidronate treatment . J Bone Miner Res, 2002, 17, 1372-1382.
    179.戴如春,姚学锋,刘沐荣。骨小梁微破裂及微骨痂的扫描电镜观察。中国骨质疏松杂志,2005,11(4):434-436。
    180. Rajapaksea CS, Thomsenb JS, Julio S. An expression relating breaking stress and density of trabecular bone.Journal of Biomechanics, 2004, 37: 1241–1249.
    181. Kosmopoulos V, Keller TS. Finite element modeling of trabecular bone damage. Comput Methods Biomech Biomed Engin, 2003, 6:209-216.
    182. Martin-Badosa E, Amblard D, Nuzzo S, Elmoutaouakkil A, Vico L, Peyrin F. Excised bone structures in mice: imaging at three-dimensional synchrotron radiation micro-CT. Radiology, 2003, 22(9):921-928.
    183. David V, Laroche N, Boudignon B, Lafage-Proust MH, Alexandre C, Ruegsegger P, Vico L. Noninvasive in vivo monitoring of bone architecture alterations in hindlimb-unloaded female rats using novel three-dimensional microcomputed tomography. J Bone Miner Res, 2003, 18: 16221-1631.
    184. Jiang Y, Zhao J, Dai RC, Wu XP, Genant HK. Application of micro- CT assessment of 3 - D bone microstructure in preclinical and clinical studies. J Bone Miner Metab, 2005, 23 Suppl: 122- 131.
    185. Stauber M, Müller R.Volumetric spatial decomposition of trabecular bone into rods and plates:a new method for local bone morphometry. Bone, 2006, 38:475-484.
    186. Ding M, Havid I. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone.Bone, 2000, 26: 291-295.
    187. Lanyon L, Skerry T. Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J Bone Miner Res, 2001, 16: 1937 - 1947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700