酿酒酵母应对镉胁迫的分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉离子(Cd~(2+))作为人体的非必需金属离子,具有致癌性,对人类健康造成严重威胁,但其作用靶点及毒性机理尚不完全明确。本文在实验室前期工作的基础上,对112个对Cd~(2+)敏感的酿酒酵母基因缺失株进行了初步的系统研究。发现其中81个基因缺失株对必需金属离子Mn~(2+), Zn~(2+)或Fe~(2+)的胁迫也敏感,而其它31个基因缺失株对Cd~(2+)胁迫具有专一性。这些基因的功能主要集中在蛋白修饰、转录、信号传导和细胞运输等方面。
     通过倍比稀释表型分析和蛋白印迹检测发现,两个MAP Kinase信号传导途径,细胞壁完整性途径(CWI)和高渗透压途径(HOG),参与Cd~(2+)胁迫的细胞应答。HOG途径中Sho1和Sln1分支都参与了Cd~(2+)胁迫下Hog1p的激活。在CWI途径中,Cd~(2+)激活Slt2p是通过膜感受器Mid2p将信号通过GEFs-Rom1p传递到Rho1,进而激活PKC途径中的MAP Kinase.此外,Slt2p的激活还依赖TOR途径中的Sit4,但与HOG途径无关。酵母细胞在Cd~(2+)胁迫下Hog1p和Slt2p的激活与细胞内钙离子浓度变化无关。但是,Cd~(2+)胁迫不导致Hog1和Slt2细胞内的移位。此外,培养基中加入Mn~(2+)或Fe~(2+)都可以抑制hog1Δ和slt2Δ对Cd~(2+)的敏感性,表明Mn~(2+)或Fe~(2+)的缺陷导致细胞对Cd~(2+)的敏感性。而Mn~(2+)通道蛋白Smf1&Smf2和Fe~(2+)通道蛋白Fet4缺失导致细胞对Cd~(2+)的耐受性,说明Cd~(2+)可能借助Mn~(2+)通道和Fe~(2+)通道进入细胞。Hog1和Slt2正向调控SMF1, SMF2和PCA1基因的转录。
     与细胞运输相关的VPS家族基因中有29个基因缺失后对Cd~(2+)表现出生长缺陷,其中包括9个与蛋白降解相关的VPS Class E家族基因。文献报道锌通道Zrt1介导Cd~(2+)进入细胞,但zrt1菌株在Cd~(2+)胁迫下的表型与野生型一致。ZRT1/2与VPS Class E的双基因缺失菌株对Cd~(2+)的表型与VPS Class E基因单独缺失时一致。蛋白印迹检测发现Cd~(2+)胁迫下Zrt1p的降解方式与Zn~(2+)胁迫一致,需要VPSClass E的参与。
Cadmium ions are not essential for eukarytic cells, but could induce cancers andare toxic to human health. Our lab previously identified112cadmium-sensitive genemutations. In this study, we find that81of these mutants are also sensitive tomanganese, zinc and iron divalent ions, but the rest31are not and only specificallysensitive to cadmium ions. Main functions of these genes are involved in protein fate,transcriptional regulation, cellular communication, signal transduction, and cellulartransport.
     Through serial dilution assay and Western blot analysis, we have identified twomitogen-activate protein (MAP) kinase signaling pathways, the cell wall integrity(CWI) pathway and high-osmolarity and glycerol (HOG) pathway, are involved in theresponse to cadmium stress. Cadmium stress activates Hog1through two independentupstream branches, Sho1and Sln1. Slt2phosphorylation dependes on the CWIpathway sensor Mid2, which activates the Rom1GEFs. The sensor stimulatednucleotide exchange on Rho1, which then activates the PKC pathway. In addition,phosphorylation of Slt2depends on Sit4, one of the elements in the target ofrapamycin (TOR) pathway, but does not require the HOG pathway. In response tocadmium stress, subcellular localization of Slt2and Hog1is not affected.
     Supplementation of1mM Mn~(2+)or10mM Fe~(2+)in media suppresses the cadmiumsensitivity of hog1Δ and slt2Δ cells, suggesting that manganese or iron deficiency isan important determinant of cadmium toxicity. In line with this, transporter smf1Δ,smf2Δ and fet4Δ mutants exhibit cadmium tolerance. Transcriptional expression ofSMF1, SMF2and PCA1are positively regulated by Hog1and Slt2. SMF1and SMF2promoter sequences have Swi6and Smp1transcription factor binding sites.
     VPS genes for nine cadmium-sensitive mutants participate in theubiquitin-dependent sorting of transmembrane proteins at the endosome. Zrt1is oneof the major pathways through which Cd~(2+)enters yeast, but the zrt1Δ mutant is notsensitive to cadmium stress. Deletion of ZRT1or ZRT2does not affect the cadmiumsensitivity of VPS Class E gene mutations. Western blot analysis suggested that Zrt1degradation requires the VPS Class E family in response to cadmium stress.
引文
[1]WHO, Environmental health criteria134-cadmium international programme onchemical safety (IPCS) monograph, Geneva: World Health Organization,1992
    [2]OECD, Risk reduction monograph No.5: cadmium OECD environmentdirectorate, France: Organisation for economic co-operation and development,1994
    [3]Ashraf M.W., Concentrations of cadmium and lead in different cigarette brands andhuman exposure to these metals via smoking, Journal of Arts, Science&Commerce,2011,2(2):140~147
    [4]WHO, Safety evaluation of certain food additive and contaminants in food, Geneva:World Health Organization,2009
    [5]FAO/WHO., JECFA/73/SC, Joint FAO/WHO expert committee on foodadditives, seventy-third meeting, Geneva: Food and agriculture organization of theUnited Nations, World Health Organization,2010
    [6]WHO, Cadmium in drinking water. Background document for development ofWHO guidelines for drinking-water quality, Geneva: World Health Organization,2004
    [7]WHO, Cadmium. In: Guidelines for drinking-water quality,3rd editionincorporating1st and2nd addenda, Geneva: World Health Organization,2008
    [8]WHO, Cadmium. In: Air quality guidelines for Europe,2nd ed., Copenhagen:World Health Organization Regional Office for Europe,2000
    [9]Amzal B., Julin B., Vahter M., et al., Population toxicokinetic modeling ofcadmium for health risk assessment, Environmental health perspectives,2009,117(8):1293
    [10]JECFA, Safety evaluation of certain food additives and contaminants, Geneva:WHO food additives series,2011
    [11]WHO, Evaluation of certain food additives and contaminants, in sixty-first reportof the joint FAO/WHO expert committee on food additives, Geneva: World HealthOrganization,2004
    [12]Ikediobi C.O., Badisa V.L., Ayuk-Takem L.T., et al., Response of antioxidantenzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439normal rat liver cells, International journal of molecular medicine,2004,14(1):87
    [13]Hansen J.M., H. Zhang, Jones D.P., Differential oxidation of thioredoxin-1,thioredoxin-2, and glutathione by metal ions, Free radical biology and medicine,2006,40(1):138~145
    [14]Leverrier P., Montigny C., Garrigos M., et al., Metal binding to ligands: cadmiumcomplexes with glutathione revisited, Analytical biochemistry,2007,371(2):215~228
    [15]Coyle P., Philcox J.C., Carey L.C., et al., Metallothionein: the multipurposeprotein, Cellular and molecular life sciences,2002,59(4):627~647
    [16]Dudley R.E., Gammal L.M., Klaassen C.D., Cadmium-induced hepatic and renalinjury in chronically exposed rats: likely role of hepatic cadmium-metallothioneinin nephrotoxicity, Toxicology and applied pharmacology,1985,77(3):414
    [17]Thijssen S., Cuypers A., Maringwa J., et al., Low cadmium exposure triggers abiphasic oxidative stress response in mice kidneys, Toxicology,2007,236(1):29~41
    [18] Kurachi M., Tonegawa H., Hata A., Mitsu captial and itai-itai disease,1979,50
    [19]Jin Y.H., Clark A.B., Slebos R.J.C., et al., Cadmium is a mutagen that acts byinhibiting mismatch repair, Nature genetics,2003,34(3):326~329
    [20]Giaginis C., Gatzidou E., Theocharis S, DNA repair systems as targets ofcadmium toxicity, Toxicology and applied pharmacology,2006,213(3):282~290
    [21]Howlett N.G., Avery S.V., Induction of lipid peroxidation during heavy metalstress in Saccharomyces cerevisiae and influence of plasma membrane fatty acidunsaturation, Applied and environmental microbiology,1997,63(8):2971~2976
    [22]Tamás M., Labarre J., Toledano M., et al., Mechanisms of toxic metal tolerance inyeast, Molecular biology of metal homeostasis and detoxification,2006,395~454
    [23]Li Z.S., Lu Y.P., Zhen R.G., et al., A new pathway for vacuolar cadmiumsequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato) cadmium, Proceedings of the national academy of sciences,1997,94(1):42~47
    [24]Momose Y., Iwahashi H., Bioassay of cadmium using a DNA microarray:Genome-wide expression patterns of Saccharomyces cerevisiae response tocadmium, Environmental toxicology and chemistry,2001,20(10):2353~2360
    [25]Fauchon M., Lagniel G., Aude J.C., et al., Sulfur sparing in the yeast proteome inresponse to sulfur demand, Molecular cell,2002,9(4):713~723
    [26]Vido K., Spector D., Lagniel G., et al., A proteome analysis of the cadmiumresponse in Saccharomyces cerevisiae, Journal of biological chemistry,2001,276(11):8469~8474
    [27]Herskowitz I., MAP kinase pathways in yeast: for mating and more, Cell,1995,80(2):187
    [28]Seger R., Krebs E., The MAPK signaling cascade, The FASEB journal,1995,9(9):726~735
    [29]Kyriakis J.M., Avruch J., Protein kinase cascades activated by stress andinflammatory cytokines, Bioessays,2005,18(7):567~577
    [30]Schaeffer H.J., Weber M.J., Mitogen-activated protein kinases: specific messagesfrom ubiquitous messengers, Molecular and cellular biology,1999,19(4):2435~2444
    [31]Widmann C., Gibson S., Jarpe M.B., et al., Mitogen-activated protein kinase:conservation of a three-kinase module from yeast to human, Physiological reviews,1999,79(1):143~180
    [32]Krishna M., Narang H., The complexity of mitogen-activated protein kinases(MAPKs) made simple, Cellular and molecular life sciences,2008,65(22):3525~3544
    [33]Papadakis E.S., Finegan K.G., Wang X., et al., The regulation of bax by c-JunN-terminal protein kinase (JNK) is a prerequisite to the mitochondrial-inducedapoptotic pathway, FEBS letters,2006,580(5):1320~1326
    [34]Chen L., Liu L., Huang S., Cadmium activates the mitogen-activated proteinkinase (MAPK) pathway via induction of reactive oxygen species and inhibitionof protein phosphatases2A and5, Free radical biology&medicine,2008,45(7):1035
    [35]Qu W., Fuquay R., Sakurai T., et al., Acquisition of apoptotic resistance incadmium-induced malignant transformation: Specific perturbation of JNK signaltransduction pathway and associated metallothionein overexpression, Molecularcarcinogenesis,2006,45(8):561~571
    [36]Elbirt K.K., Whitmarsh A.J., Davis R.J., et al., Mechanism of sodiumarsenite-mediated induction of heme oxygenase-1in hepatoma cells role ofmitogen-activated protein kinases, Journal of biological chemistry,1998,273(15):8922~8931
    [37]Galán A., Garc a-Bermejo M.L., Troyano A., et al., Stimulation of p38mitogen-activated protein kinase is an early regulatory event for thecadmium-induced apoptosis in human promonocytic cells, Journal of biologicalchemistry,2000,275(15):11418~11424
    [38]Rigon A.P., Cordova F.M., Oliveira C.S., et al., Neurotoxicity of cadmium onimmature hippocampus and a neuroprotective role for p38MAPK,Neurotoxicology,2008,29(4):727~734
    [39]Chen L., Liu L., Luo Y., et al., MAPK and mTOR pathways are involved incadmium-induced neuronal apoptosis, Journal of neurochemistry,2007,105(1):251~261
    [40]L g M., Refsnes M., Lilleaas E.M., et al., Role of mitogen activated proteinkinases and protein kinase C in cadmium-induced apoptosis of primary epitheliallung cells, Toxicology,2005,211(3):253~264
    [41]Templeton D.M., Wang Z., Miralem T., Cadmium and calcium-dependent c-fosexpression in mesangial cells, Toxicology letters,1998,95(1):1~8
    [42]Liu Y., Templeton D.M., Initiation of caspase-independent death in mousemesangial cells by Cd2+: Involvement of p38kinase and CaMK-II, Journal ofcellular physiology,2008,217(2):307~318
    [43]Kim J., Kim S.H., Johnson V.J., et al., Extracellular signal-regulatedkinase-signaling-dependent G2/M arrest and cell death in murine macrophages bycadmium, Environmental toxicology and chemistry,2009,24(12):3069~3077
    [44]Iryo Y., Matsuoka M., Wispriyono B., et al., Involvement of the extracellularsignal-regulated protein kinase (ERK) pathway in the induction of apoptosis bycadmium chloride in CCRF-CEM cells, Biochemical pharmacology,2000,60(12):1875~1882
    [45]Martin P., Poggi M.C., Chambard J.C., et al., Low dose cadmium poisoningresults in sustained ERK phosphorylation and caspase activation, Biochemical andbiophysical research communications,2006,350(3):803~807
    [46]Jonak C., Nakagami H., Hirt H., Heavy metal stress, activation of distinctmitogen-activated protein kinase pathways by copper and cadmium, Plantphysiology,2004,136(2):3276~3283
    [47]Yeh C.M., Hsiao L.J., Huang H.J., Cadmium activates a mitogen-activated proteinkinase gene and MBP kinases in rice, Plant and cell physiology,2004,45(9):1306~1312
    [48]Agrawal G.K., Rakwal R., Iwahashi H., Isolation of novel rice multiple stressresponsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly inresponse to environmental cues, Biochemical and biophysical researchcommunications,2002,294(5):1009~1016
    [49]Liu X.M., Kim K.E., Kim K.C., et al., Cadmium activates arabidopsis MPK3andMPK6via accumulation of reactive oxygen species, Phytochemistry,2010,71(5):614~618
    [50]Gustin M.C., Albertyn J., Alexander M., et al., MAP kinase pathways in the yeastSaccharomyces cerevisiae, Microbiology and molecular biology reviews,1998,62(4):1264~1300
    [51]Posas F., Saito H., Activation of the yeast SSK2MAP kinase kinase kinase by theSSK1two-component response regulator, The EMBO journal,1998,17(5):1385~1394
    [52]Posas F., Wurgler-Murphy S.M., Maeda T., et al., Yeast HOG1MAP kinasecascade is regulated by a multistep phosphorelay mechanism in theSLN1-YPD1-SSK1" two-component" osmosensor, Cell,1996,86(6):865
    [53]阮海华,李西川,兰蓓,等,高渗透压甘油信号转导途径,细胞生物学杂志,2006,28(5):651~655
    [54]Hohmann S., Osmotic stress signaling and osmoadaptation in yeasts,Microbiology and molecular biology reviews,2002,66(2):300~372
    [55]Bermejo C., Rodríguez E., García R., et al., The sequential activation of the yeastHOG and SLT2pathways is required for cell survival to cell wall stress, Molecularbiology of the cell,2008,19(3):1113~1124
    [56]Davenport K.R., Sohaskey M., Kamada Y., et al., A second osmosensing signaltransduction pathway in yeast hypotonic shock activates the PKC1proteinkinase-regulated cell intergity pathway, Journal of biological chemistry,1995,270(50):30157~30161
    [57]Lee K.S., Irie K., Gotoh Y., et al., A yeast mitogen-activated protein kinasehomolog (Mpk1p) mediates signalling by protein kinase C, Molecular and cellularbiology,1993,13(5):3067~3075
    [58]Lim Y.M., Tsuda L., Inoue Y.H., et al., Dominant mutations of Drosophila MAPkinase kinase and their activities in Drosophila and yeast MAP kinase cascades,Genetics,1997,146(1):263
    [59]Ferrell J.E., Tripping the switch fantastic: how a protein kinase cascade canconvert graded inputs into switch-like outputs, Trends in biochemical sciences,1996,21(12):460~466
    [60]Huang C.Y., Ferrell J.E., Ultrasensitivity in the mitogen-activated protein kinasecascade, Proceedings of the national academy of sciences,1996,93(19):10078~10083
    [61]Levin D.E., Cell wall integrity signaling in Saccharomyces cerevisiae,Microbiology and molecular biology reviews,2005,69(2):262~291
    [62]Kuranda K., Leberre V., Sokol S., et al., Investigating the caffeine effects in theyeast Saccharomyces cerevisiae brings new insights into the connection betweenTOR, PKC and Ras/cAMP signalling pathways, Molecular microbiology,2006,61(5):1147~1166
    [63]Torres J., Di Como C.J., Herrero E., et al., Regulation of the cell integritypathway by rapamycin-sensitive TOR function in budding yeast, Journal ofbiological chemistry,2002,277(45):43495~43504
    [64]Fuchs B.B., Mylonakis E., Our paths might cross: the role of the fungal cell wallintegrity pathway in stress response and cross talk with other stress responsepathways, Eukaryotic cell,2009,8(11):1616~1625
    [65]Ruotolo R., Marchini G., Ottonello S., Membrane transporters and protein trafficnetworks differentially affecting metal tolerance: a genomic phenotyping study inyeast, Genome Biol.,2008,9(4): R67
    [66]Serero A., Lopes J., Nicolas A., et al., Yeast genes involved in cadmium tolerance:identification of DNA replication as a target of cadmium toxicity, DNA repair,2008,7(8):1262~1275
    [67]Jin Y.H., Dunlap P.E., McBride S.J., et al., Global transcriptome and deletomeprofiles of yeast exposed to transition metals, PLoS genetics,2008,4(4):e1000053
    [68]Chen D., Toone W.M., Mata J., et al., Global transcriptional responses of fissionyeast to environmental stress, Molecular biology of the cell,2003,14(1):214~229
    [69]Kennedy P.J., Vashisht A.A., Hoe K.L., et al., A genome-wide screen of genesinvolved in cadmium tolerance in Schizosaccharomyces pombe, Toxicologicalsciences,2008,106(1):124~139
    [70]Zhou X., Ma Y., Sugiura R., et al., MAP kinase kinase kinase(MAPKKK)-dependent and-independent activation of Sty1stress MAPK infission yeast, Journal of biological chemistry,2010,285(43):32818~32823
    [71]Boisnard S., Ruprich-Robert G., Florent M., et al., Insight into the role of HOGpathway components Ssk2p, Pbs2p, and Hog1p in the opportunistic yeast Candidalusitaniae, Eukaryotic cell,2008,7(12):2179~2183
    [72]Yin Z., Stead D., Walker J., et al., A proteomic analysis of the salt, cadmium andperoxide stress responses in Candida albicans and the role of the Hog1stress-activated MAPK in regulating the stress-induced proteome, Proteomics,2009,9(20):4686~4703
    [73]Thévenod F., Cadmium and cellular signaling cascades: to be or not to be?Toxicology and applied pharmacology,2009,238(3):221~239
    [74]Beyersmann D., Hartwig A., Carcinogenic metal compounds: recent insight intomolecular and cellular mechanisms, Archives of toxicology,2008,82(8):493~512
    [75]Valverde M., Trejo C., Rojas E., Is the capacity of lead acetate and cadmiumchloride to induce genotoxic damage due to direct DNA–metal interaction?Mutagenesis,2001,16(3):265~270
    [76]Smith J.B., Dwyer S., Smith L., Cadmium evokes inositol polyphosphateformation and calcium mobilization. Evidence for a cell surface receptor thatcadmium stimulates and zinc antagonizes, Journal of biological chemistry,1989,264(13):7115~7118
    [77]Biagioli M., Pifferi S., Ragghianti M., et al., Endoplasmic reticulum stress andalteration in calcium homeostasis are involved in cadmium-induced apoptosis,Cell calcium,2008,43(2):184~195
    [78]Biagioli M., Pinton P., Scudiero R., et al., Aequorin chimeras as valuable tool inthe measurement of Ca2+concentration during cadmium injury, Toxicology,2005,208(3):389~398
    [79]Thevenod F., Jones S.W., Cadmium block of calcium current in frog sympatheticneurons, Biophysical journal,1992,63(1):162~168
    [80]Elinder F., rhem P., Metal ion effects on ion channel gating, Quarterly reviewsof biophysics,2003,36(04):373~427
    [81]Leslie E.M., Liu J., Klaassen C.D., et al., Acquired cadmium resistance inmetallothionein-I/II knockout cells: role of the T-type calcium channel cacnα1G incadmium uptake, Molecular pharmacology,2006,69(2):629~639
    [82]Friedman P.A., Gesek F.A., Cadmium uptake by kidney distal convoluted tubulecells, Toxicology and applied pharmacology,1994,128(2):257~263
    [83]Baker T.K., VanVooren H.B., Smith W.C., et al., Involvement of calcium channelsin the sexual dimorphism of cadmium-induced hepatotoxicity, Toxicology letters,2003,137(3):185~192
    [84]Potier M., Trebak M., New developments in the signaling mechanisms of thestore-operated calcium entry pathway, Pflugers Arch.,2008,457(2):405~415
    [85]Dalton T.P., He L., Wang B., et al., Identification of mouse SLC39A8as thetransporter responsible for cadmium-induced toxicity in the testis, Proc Natl AcadSci U S A.,2005,102(9):3401~3406
    [86]Toledo-Maciel A., Gon alves-Gomes S., de Gouveia Castex M., et al.,Progressive inactivation of plasma membrane (Ca2++Mg2+) ATPase by Cd2+in theabsence of ATP and reversible inhibition during catalysis, Biochemistry,1998,37(44):15261~15265
    [87]Zhang G.H., Yamaguchi M., Kimura S., et al., Effects of heavy metal on rat livermicrosomal Ca2+-ATPase and Ca2+sequestering. Relation to SH groups, Journalof biological chemistry,1990,265(4):2184~2189
    [88]Hechtenberg S., Beyersmann D., Inhibition of sarcoplasmic reticulum Ca(2+)-ATPase activity by cadmium, lead and mercury, Enzyme,1991,45(3):109
    [89]Long G.J., The effect of cadmium on cytosolic free calcium, protein kinase C, andcollagen synthesis in rat osteosarcoma (ROS17/2.8) cells, Toxicology and appliedpharmacology,1997,143(1):189~195
    [90]Muldoon L.L., Rodland K., Magun B., Transforming growth factor beta andepidermal growth factor alter calcium influx and phosphatidylinositol turnover inrat-1fibroblasts, Journal of biological chemistry,1988,263(35):18834~18841
    [91]Cifone M.G., Alesse E., Procopio A., et al., Effects of cadmium on lymphocyteactivation, Biochimica et biophysica acta (BBA)-molecular cell research,1989,1011(1):25~32
    [92]Vignes M., Blanc E., Davos F., et al., Cadmium rapidly and irreversibly blockspresynaptic phospholipase C-linked metabotropic glutamate receptors,Neurochemistry international,1996,29(4):371~381
    [93]Skalhegg B., Tasken K., Specificity in the cAMP/PKA signaling pathway.Differential expression, regulation, and subcellular localization of subunits ofPKA, Front Biosci,2000,5: D678-D693
    [94]Sutherland D.J., Tsang B.K., Merali Z., et al., Testicular and prostatic cyclic ampmetabolism following chronic cadmium treatment and subsequent withdrawal,Environ. Physiol. Biochem.,1974,4(5):205~213
    [95]Merali Z., Kacew S., Singhal R., Response of hepatic carbohydrate and cyclicAMP metabolism to cadmium treatment in rats, Canadian journal of physiologyand pharmacology,1975,53(1):174~184
    [96]Forrest Jr J.N., Aller S.G., Wood S.J., et al., Cadmium disrupts the signaltransduction pathway of both inhibitory and stimulatory receptors regulatingchloride secretion in the shark rectal gland, Journal of experimental zoology,1997,279(5):530~536
    [97]Kumar S.V., Bhattacharya S., In vitro toxicity of mercury, cadmium, and arsenicto platelet aggregation: influence of adenylate cyclase and phosphodiesteraseactivity, In vitro&molecular toxicology: a journal of basic and applied research,2000,13(2):137~144
    [98]Sands W.A., Palmer T.M., Regulating gene transcription in response to cyclicAMP elevation, Cellular signalling,2008,20(3):460
    [99]Schwarz M.A., Lazo J.S., Yalowich J.C., et al., Metallothionein protects againstthe cytotoxic and DNA-damaging effects of nitric oxide, Proceedings of thenational academy of sciences,1995,92(10):4452~4456
    [100]Pearce L.L., Wasserloos K., Croix C.M.S., et al., Metallothionein, nitric oxideand zinc homeostasis in vascular endothelial cells, The journal of nutrition,2000,130(5):1467S~1470S
    [101]Katakai K., Liu J., Nakajima K., et al., Nitric oxide induces metallothionein (MT)gene expression apparently by displacing zinc bound to MT, Toxicology letters,2001,119(2):103~108
    [102]Wang H., Li H., Cai B., et al., The effect of nitric oxide on metal release frommetallothionein-3: gradual unfolding of the protein, Journal of biologicalinorganic chemistry,2008,13(3):411~419
    [103]Majumder S.M.S., Muley A.M.A., Kolluru G.K.K.G.K., et al., Cadmium reducesnitric oxide production by impairing phosphorylation of endothelial nitric oxidesynthase, Biochemistry and cell biology,2008,86(1):1~10
    [104]Tian L., Lawrence D., Metal-induced modulation of nitric oxide production invitro by murine macrophages: lead, nickel, and cobalt utilize differentmechanisms, Toxicology and applied pharmacology,1996,141(2):540~547
    [105]Kim H., Lee E.H., Shin T.Y., et al., Taraxacum officinale restores inhibition ofnitric oxide production by cadmium in mouse peritoneal macrophages,Immunopharmacology and immunotoxicology,1998,20(2):283~297
    [106]Goering P.L., Kuester R.K., Neale A.R., et al., Effects of particulate and solublecadmium species on biochemical and functional parameters in cultured murinemacrophages, In vitro&molecular toxicology: a journal of basic and appliedresearch,2000,13(2):125~136
    [107]Prozialeck W.C., Wellington D.R., Mosher T.L., et al., The cadmium-induceddisruption of tight junctions in LLC-PK1cells does not result from apoptosis,Life sciences,1995,57(15): PL199~PL204
    [108]Zalups R.K., Koropatnick J., Temporal changes in metallothionein genetranscription in rat kidney and liver: relationship to content of mercury andmetallothionein protein, Journal of pharmacology and experimental therapeutics,2000,295(1):74~82
    [109]Thévenod F., Nephrotoxicity and the proximal tubule, Nephron physiology,2003,93(4):87~93
    [110]Perkins N.D., Integrating cell-signalling pathways with NF-κB and IKK function,Nature reviews molecular cell biology,2007,8(1):49~62
    [111] Hayden M.S., Ghosh S., Signaling to NF-kappaB, Genes Dev.,2004,18(18):2195~2224
    [112]Chen G.G., Liu Z.M., Vlantis A.C., et al., Heme oxygenase-1protects againstapoptosis induced by tumor necrosis factor-α and cycloheximide in papillarythyroid carcinoma cells, Journal of cellular biochemistry,2004,92(6):1246~1256
    [113]Yang Z., Yang S., Qian S.Y., et al., Cadmium-induced toxicity in rat primarymid-brain neuroglia cultures: role of oxidative stress from microglia,Toxicological sciences,2007,98(2):488~494
    [114]Thévenod F., Friedmann J.M., Katsen A.D., et al., Up-regulation of multidrugresistance P-glycoprotein via nuclear factor-κB activation protects kidneyproximal tubule cells from cadmium-and reactive oxygen species-inducedapoptosis, Journal of biological chemistry,2000,275(3):1887~1896
    [115]Liu Z.M., Chen G.G., Ng E.K.W., et al., Upregulation of heme oxygenase-1andp21confers resistance to apoptosis in human gastric cancer cells, Oncogene,2004,23(2):503~513
    [116]Jeong E.M., Moon C.H., Kim C.S., et al., Cadmium stimulates the expression ofICAM-1via NF-κB activation in cerebrovascular endothelial cells, Biochemicaland biophysical research communications,2004,320(3):887~892
    [117]Hyun J.S., Satsu H., Shimizu M., Cadmium induces Interleukin-8productionvia NF-κB activation in the human intestinal epithelial cell, Caco-2, Cytokine,2007,37(1):26~34
    [118]Varjosalo M., Taipale J., Hedgehog: functions and mechanisms, Genes&development,2008,22(18):2454~2472
    [119]Elsaid A.F., Délot E.C., Collins M.D., Differential perturbation of the Fgf/Erk1/2and Shh pathways in the C57BL/6N and SWV embryonic limb buds aftermid-gestational cadmium chloride administration, Molecular genetics andmetabolism,2007,92(3):258~270
    [120]Richard M., Lin C.C., Chan P.K., et al., Four-dimensional imaging andquantification of gene expression in early developing zebrafish (Danio rerio)embryos, Toxicological sciences,2006,90(2):529~538
    [121]Doi T., Puri P., Bannigan J., et al., Downregulation of ROCK-I and ROCK-IIgene expression in the cadmium-induced ventral body wall defect chick model,Pediatric surgery international,2008,24(12):1297~1301
    [122]Prozialeck W.C., Grunwald G.B., Dey P.M., et al., Cadherins and NCAM aspotential targets in metal toxicity, Toxicology and applied pharmacology,2002,182(3):255~265
    [123]Wong C., Mruk D.D., Lui W., et al., Regulation of blood-testis barrier dynamics:an in vivo study, Journal of cell science,2004,117(5):783~798
    [124]Thévenod F., Wolff N.A., Bork U., et al., Cadmium induces nucleartranslocation of β-catenin and increases expression of c-myc and Abcb1a inkidney proximal tubule cells, Biometals,2007,20(5):807~820
    [125]Thompson J., Wong L., Lau P.S., et al., Adherens junction breakdown in theperiderm following cadmium administration in the chick embryo: distribution ofcadherins and associated molecules, Reproductive toxicology,2008,25(1):39~46
    [126]Wysocki R., Tamás M.J., How Saccharomyces cerevisiae copes with toxicmetals and metalloids, FEMS microbiology reviews,2010,34(6):925~951
    [127]Zhao H., Eide D., The yeast ZRT1gene encodes the zinc transporter protein of ahigh-affinity uptake system induced by zinc limitation, Proceedings of thenational academy of sciences,1996,93(6):2454~2458
    [128]Eng B., Guerinot M.L., Eide D., et al., Sequence analyses and phylogeneticcharacterization of the ZIP family of metal ion transport proteins, Journal ofmembrane biology,1998,166(1):1~7
    [129]Gomes D., Fragoso L.C., Riger C.J., et al., Regulation of cadmium uptake bySaccharomyces cerevisiae, Biochimica et biophysica acta (BBA)-Generalsubjects,2002,1573(1):21~25
    [130]Gitan R.S., Shababi M., Kramer M., et al., A cytosolic domain of the yeast Zrt1zinc transporter is required for its post-translational inactivation in response tozinc and cadmium, Journal of biological chemistry,2003,278(41):39558~39564
    [131]Gitan R.S., Luo H., Rodgers J., et al., Zinc-induced inactivation of the yeastZRT1zinc transporter occurs through endocytosis and vacuolar degradation,Journal of biological chemistry,1998,273(44):28617~28624
    [132]Zhao H., Eide D.J., Zap1p, a metalloregulatory protein involved inzinc-responsive transcriptional regulation in Saccharomyces cerevisiae,Molecular and cellular biology,1997,17(9):5044~5052
    [133]MacDiarmid C.W., Milanick M.A., Eide D.J., Induction of the ZRC1metaltolerance gene in zinc-limited yeast confers resistance to zinc shock, Journal ofbiological chemistry,2003,278(17):15065~15072
    [134]Simm C., Lahner B., Salt D., et al., Saccharomyces cerevisiae vacuole in zincstorage and intracellular zinc distribution, Eukaryotic cell,2007,6(7):1166~1177
    [135]Nies D.H., Silver S., Ion efflux systems involved in bacterial metal resistances,Journal of industrial microbiology&biotechnology,1995,14(2):186~199
    [136]Lin H., Caffrey J.J., Warner D.E., et al., A single amino acid change in the yeastvacuolar metal transporters ZRC1and COT1alters their substrate specificity,Journal of biological chemistry,2008,283(49):33865~33873
    [137]MacDiarmid C.W., Gaither L.A., Eide D., Zinc transporters that regulatevacuolar zinc storage in Saccharomyces cerevisiae, The EMBO journal,2000,19(12):2845~2855
    [138]Gitan R.S., Eide D.J., Zinc-regulated ubiquitin conjugation signals endocytosisof the yeast ZRT1zinc transporter, Biochemical journal,2000,346(2):329
    [139]Eide D.J., Zinc transporters and the cellular trafficking of zinc, Biochimica etbiophysica acta (BBA)-molecular cell research,2006,1763(7):711~722
    [140]West A.H., Clark D.J., Martin J., et al., Two related genes encoding extremelyhydrophobic proteins suppress a lethal mutation in the yeast mitochondrialprocessing enhancing protein, Journal of biological chemistry,1992,267(34):24625~24633
    [141]Vidal S.M., Malo D., Vogan K., et al., Natural resistance to infection withintracellular parasites: Isolation of a candidate for Bcg, Cell,1993,73(3):469~485
    [142]Bairoch A., The Prosite dictionary of sites and patterns in proteins, its currentstatus, Nucleic acids research,1993,21(13):3097~3103
    [143]Gruenheid S., Cellier M., Vidal S., et al., Identification and characterization of asecond mouse Nramp gene, Genomics,1995,25(2):514~525
    [144]Gunshin H., Mackenzie B., Berger U.V., et al., Cloning and characterization of amammalian proton-coupled metal-ion transporter, Nature,1997,388(6641):482~488
    [145]Pinner E., Gruenheid S., Raymond M., et al., Functional complementation of theyeast divalent cation transporter family SMF by NRAMP2, a member of themammalian natural resistance-associated macrophage protein family, Journal ofbiological chemistry,1997,272(46):28933~28938
    [146]Supek F., Supekova L., Nelson H., et al., A yeast manganese transporter relatedto the macrophage protein involved in conferring resistance to mycobacteria,Proceedings of the national academy of sciences,1996,93(10):5105~5110
    [147]Stimpson H.E.M., Lewis M.J., Pelham H.R.B., Transferrin receptor-like proteinscontrol the degradation of a yeast metal transporter, The EMBO journal,2006,25(4):662~672
    [148]Sullivan J.A., Lewis M.J., Nikko E., et al., Multiple interactions driveadaptor-mediated recruitment of the ubiquitin ligase rsp5to membrane proteinsin vivo and in vitro, Molecular biology of the cell,2007,18(7):2429~2440
    [149]Chen X.Z., Peng J.B., Cohen A., et al., Yeast SMF1mediates H+-coupled ironuptake with concomitant uncoupled cation currents, Journal of biologicalchemistry,1999,274(49):35089~35094
    [150]Liu X.F., Supek F., Nelson N., et al., Negative control of heavy metal uptake bythe Saccharomyces cerevisiae BSD2gene, Journal of biological chemistry,1997,272(18):11763~11769
    [151]Reddi A.R., Jensen L.T., Culotta V.C., Manganese homeostasis inSaccharomyces cerevisiae, Chemical reviews,2009,109(10):4722
    [152]Edward E., Luk C., Culotta V.C., Manganese superoxide dismutase inSaccharomyces cerevisiae acquires its metal co-factor through a pathwayinvolving the Nramp metal transporter, Smf2p, Journal of biological chemistry,2001,276(50):47556~47562
    [153]Luk E., Yang M., Jensen L.T., et al., Manganese activation of superoxidedismutase2in the mitochondria of Saccharomyces cerevisiae, Journal ofbiological chemistry,2005,280(24):22715~22720
    [154]Portnoy M.E., Liu X.F., Culotta V.C., Saccharomyces cerevisiae expresses threefunctionally distinct homologues of the nramp family of metal transporters,Molecular and cellular biology,2000,20(21):7893~7902
    [155]Nelson N., Metal ion transporters and homeostasis, The EMBO journal,1999,18(16):4361~4371
    [156]Dix D., Bridgham J., Broderius M., et al., Characterization of the FET4Proteinof Yeast evidence for a direct role in the transport of iron, Journal of biologicalchemistry,1997,272(18):11770~11777
    [157]Dix D.R., Bridgham J.T., Broderius M.A., et al., The FET4gene encodes thelow affinity Fe (II) transport protein of Saccharomyces cerevisiae, Journal ofbiological chemistry,1994,269(42):26092~26099
    [158]Hassett R., Dix D.R., Eide D.J., et al., The Fe (II) permease Fet4p functions as alow affinity copper transporter and supports normal copper trafficking inSaccharomyces cerevisiae, Biochemical journal,2000,351(2):477
    [159]Waters B.M., Eide D.J., Combinatorial control of yeast FET4gene expression byiron, zinc, and oxygen, Journal of biological chemistry,2002,277(37):33749~33757
    [160]Jensen L.T., Culotta V.C., Regulation of Saccharomyces cerevisiae FET4byoxygen and iron, Journal of molecular biology,2002,318(2):251~260
    [161]Clemens S., Antosiewicz D.M., Ward J.M., et al., The plant cDNA LCT1mediates the uptake of calcium and cadmium in yeast, Proceedings of thenational academy of sciences,1998,95(20):12043~12048
    [162]Gardarin A., Chédin S., Lagniel G., et al., Endoplasmic reticulum is a majortarget of cadmium toxicity in yeast, Molecular microbiology,2010,76(4):1034~1048
    [163]Adle D.J., Sinani D., Kim H., et al., A cadmium-transporting P1B-type ATPasein yeast Saccharomyces cerevisiae, Journal of biological chemistry,2007,282(2):947~955
    [164]Tohoyama H., Inouhe M., Joho M., et al., Resistance to cadmium is under thecontrol of the CAD2gene in the yeast Saccharomyces cerevisiae, Currentgenetics,1990,18(3):181~185
    [165]Shiraishi E., Inouhe M., Joho M., et al., The cadmium-resistant gene, CAD2,which is a mutated putative copper-transporter gene (PCA1), controls theintracellular cadmium-level in the yeast S. cerevisiae, Current genetics,2000,37(2):79~86
    [166]Kühlbrandt W., Biology, structure and mechanism of P-type ATPases, Naturereviews molecular cell biology,2004,5(4):282~295
    [167]Adle D.J., Lee J., Expressional control of a cadmium-transporting P1B-typeATPase by a metal sensing degradation signal, Journal of biological chemistry,2008,283(46):31460~31468
    [168]Adle D.J., Wei W., Smith N., et al., Cadmium-mediated rescue fromER-associated degradation induces expression of its exporter, Science signalling,2009,106(25):10189
    [169]Léon S., Haguenauer-Tsapis R., Ubiquitin ligase adaptors: regulators ofubiquitylation and endocytosis of plasma membrane proteins, Experimental cellresearch,2009,315(9):1574~1583
    [170]Meusser B., Hirsch C., Jarosch E., et al., ERAD: the long road to destruction,Nature cell biology,2005,7(8):766~772
    [171]Paumi C.M., Chuk M., Snider J., et al., ABC transporters in Saccharomycescerevisiae and their interactors: new technology advances the biology of theABCC (MRP) subfamily, Microbiology and molecular biology reviews,2009,73(4):577~593
    [172]Szczypka M.S., Wemmie J.A., Moye-Rowley W.S., et al., A yeast metalresistance protein similar to human cystic fibrosis transmembrane conductanceregulator (CFTR) and multidrug resistance-associated protein, Journal ofbiological chemistry,1994,269(36):22853~22857
    [173]Ghosh M., Shen J., Rosen B.P., Pathways of As (III) detoxification inSaccharomyces cerevisiae, Proceedings of the national academy of sciences,1999,96(9):5001~5006
    [174]Wysocki R., Chery C.C., Wawrzycka D., et al., The glycerol channel Fps1pmediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae,Molecular microbiology,2001,40(6):1391~1401
    [175]Gueldry O., Lazard M., Delort F., et al., Ycf1p-dependent Hg (II) detoxificationin Saccharomyces cerevisiae, European journal of biochemistry,2003,270(11):2486~2496
    [176]Song W.Y., Sohn E.J., Martinoia E., et al., Engineering tolerance andaccumulation of lead and cadmium in transgenic plants, Nature biotechnology,2003,21(8):914~919
    [177]Prévéral S., Ansoborlo E., Mari S., et al., Metalloids and radionuclidescytotoxicity in Saccharomyces cerevisiae. Role of YCF1, glutathione and effectof buthionine sulfoximine, Biochimie,2006,88(11):1651~1663
    [178]Eraso P., Mart nez-Burgos M., Falcón-Pérez J.M., et al., Ycf1-dependentcadmium detoxification by yeast requires phosphorylation of residues Ser908andThr911, FEBS letters,2004,577(3):322~326
    [179]Paumi C.M., Menendez J., Arnoldo A., et al., Mapping protein-proteininteractions for the yeast ABC transporter Ycf1p by integrated split-ubiquitinmembrane yeast two-hybrid analysis, Molecular cell,2007,26(1):15~25
    [180]Paumi C.M., Chuk M., Chevelev I., et al., Negative regulation of the yeast ABCtransporter Ycf1p by phosphorylation within its N-terminal extension, Journal ofbiological chemistry,2008,283(40):27079~27088
    [181]MacDiarmid C.W., Milanick M.A., Eide D.J., Biochemical properties ofvacuolar zinc transport systems of Saccharomyces cerevisiae, Journal ofbiological chemistry,2002,277(42):39187~39194
    [182]Katzmann D.J., Hallstrom T.C., Voet M., et al., Expression of an ATP-bindingcassette transporter-encoding gene (YOR1) is required for oligomycin resistancein Saccharomyces cerevisiae, Molecular and cellular biology,1995,15(12):6875~6883
    [183]Cui Z., Hirata D., Tsuchiya E., et al., The multidrug resistance-associated protein(MRP) subfamily (Yrs1/Yor1) of Saccharomyces cerevisiae is important for thetolerance to a broad range of organic anions, Journal of biological chemistry,1996,271(25):14712~14716
    [184]Decottignies A., Grant A.M., Nichols J.W., et al., ATPase and multidrugtransport activities of the overexpressed yeast ABC protein Yor1p, Journal ofbiological chemistry,1998,273(20):12612~12622.
    [185]Nagy Z., Montigny C., Leverrier P., et al., Role of the yeast ABC transporterYor1p in cadmium detoxification, Biochimie,2006,88(11):1665~1671
    [186]Kern A.L., Bonatto D., Dias J.F., et al., The function of Alr1p of Saccharomycescerevisiae in cadmium detoxification: insights from phylogenetic studies andparticle-induced X-ray emission, Biometals,2005,18(1):31~41
    [187]Ecker D.J., Butt T.R., Sternberg E.J., et al., Yeast metallothionein function inmetal ion detoxification, Journal of biological chemistry,1986,261(36):16895~16900
    [188]Pagani A., Villarreal L., Capdevila M., et al., The Saccharomyces cerevisiaeCrs5Metallothionein metal-binding abilities and its role in the response to zincoverload, Molecular microbiology,2006,63(1):256~269
    [189]Kneer R., Kutchan T.M., Hochberger A., et al., Saccharomyces cerevisiae andNeurospora crassa contain heavy metal sequestering phytochelatin, Archives ofmicrobiology,1992,157(4):305~310
    [190]Wünschmann J., Beck A., Meyer L., et al., Phytochelatins are synthesized bytwo vacuolar serine carboxypeptidases in Saccharomyces cerevisiae, FEBSletters,2007,581(8):1681~1687
    [191]Coonrod E.M., Stevens T.H., The yeast vps class E mutants: the beginning of themolecular genetic analysis of multivesicular body biogenesis, Molecular biologyof the cell,2010,21(23):4057~4060
    [192]Bowers K., Stevens T.H., Protein transport from the late Golgi to the vacuole inthe yeast Saccharomyces cerevisiae, Biochimica et biophysica acta(BBA)-Molecular cell research,2005,1744(3):438~454
    [193]Babst M., A protein's final ESCRT, Traffic,2004,6(1):2~9
    [194]Bilodeau P.S., Winistorfer S.C., Kearney W.R., et al., Vps27-Hse1and ESCRT-Icomplexes cooperate to increase efficiency of sorting ubiquitinated proteins atthe endosome, The Journal of cell biology,2003,163(2):237~243
    [195]Katzmann D.J., Winistorfer S.C., Kearney W.R., et al., Vps27recruits ESCRTmachinery to endosomes during MVB sorting, The journal of cell biology,2003,162(3):413~423
    [196]Burd C.G., Emr S.D., Phosphatidylinositol (3)-phosphate signaling mediated byspecific binding to RING FYVE domains, Molecular cell,1998,2(1):157~162
    [197]Babst M., Katzmann D.J., Snyder W.B., et al., Endosome-associated complex,ESCRT-II, recruits transport machinery for protein sorting at the multivesicularbody, Dev. Cell,2002,3(2):283~289
    [198]Luo W., Chang A., An endosome-to-plasma membrane pathway involved intrafficking of a mutant plasma membrane ATPase in yeast, Molecular biology ofthe cell,2000,11(2):579~592
    [199]Amerik A.Y., Nowak J., Swaminathan S., et al., The Doa4deubiquitinatingenzyme is functionally linked to the vacuolar protein-sorting and endocyticpathways, Molecular biology of the cell,2000,11(10):3365~3380
    [200]Babst M., Katzmann D.J., Estepa-Sabal E.J., et al., Escrt-III: anendosome-associated heterooligomeric protein complex required for mvb sorting,Dev. Cell,2002,3(2):271~282
    [201]Hayashi M., Fukuzawa T., Sorimachi H., et al., Constitutive activation of thepH-responsive Rim101pathway in yeast mutants defective in late steps of theMVB/ESCRT pathway, Molecular and cellular biology,2005,25(21):9478~9490
    [202]Su S., Mitchell A.P., Identification of functionally related genes that stimulateearly meiotic gene expression in yeast, Genetics,1993,133(1):67~77
    [203]Su S.S.Y., Mitchell A.P., Molecular characterization of the yeast meioticregulatory gene RIM1, Nucleic acids research,1993,21(16):3789~3797
    [204]Futai E., Maeda T., Sorimachi H., et al., The protease activity of a calpain-likecysteine protease in Saccharomyces cerevisiae is required for alkaline adaptationand sporulation, Molecular and general genetics MGG,1999,260(6):559~568
    [205]Lamb T.M., Mitchell A.P., The transcription factor Rim101p governs iontolerance and cell differentiation by direct repression of the regulatory genesNRG1and SMP1in Saccharomyces cerevisiae, Molecular and cellular biology,2003,23(2):677~686
    [206]Lamb T.M., Xu W., Diamond A., et al., Alkaline response genes ofSaccharomyces cerevisiae and their relationship to the RIM101pathway, Journalof biological chemistry,2001,276(3):1850~1856
    [207]Serrano R., Ruiz A., Bernal D., et al., The transcriptional response to alkalinepH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling,Molecular microbiology,2002,46(5):1319~1333
    [208]Treton B., Blanchin-Roland S., Lambert M., et al., Ambient pH signalling inascomycetous yeasts involves homologues of the Aspergillus nidulans genespalF and palH, Molecular and general genetics MGG,2000,263(3):505~513
    [209]Xu W., Mitchell A.P., Yeast PalA/AIP1/Alix homolog Rim20p associates with aPEST-like region and is required for its proteolytic cleavage, Journal ofbacteriology,2001,183(23):6917~6923
    [210]Takahata S., Yu Y., Stillman D.J., The E2F functional analogue SBF recruits theRpd3(L) HDAC, via Whi5and Stb1, and the FACT chromatin reorganizer, toyeast G1cyclin promoters, The EMBO journal,2009,28(21):3378~3389
    [211]Reiser V., Ruis H., Ammerer G., Kinase activity-dependent nuclear exportopposes stress-induced nuclear accumulation and retention of Hog1mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae,Molecular biology of the cell,1999,10(4):1147~1161
    [212]冯金荣,白念珠菌CaPTC2, CaPPH3和CaPTC5基因的鉴定和功能研究,博士学位论文,天津大学,2010
    [213]亚当斯and刘子铎,酵母遗传学方法实验指南,北京:科学出版社,2000,94~96
    [214]Alonso-Monge R., Navarro-García F., Román E., et al., The Hog1mitogen-activated protein kinase is essential in the oxidative stress response andchlamydospore formation in Candida albicans, Eukaryotic cell,2003,2(2):351~361
    [215]Bilsland E., Molin C., Swaminathan S., et al., Rck1and Rck2MAPKAP kinasesand the HOG pathway are required for oxidative stress resistance, Molecularmicrobiology,2004,53(6):1743~1756
    [216]Alic N., Higgins V.J., Pichova A., et al., Lipid hydroperoxides activate themitogen-activated protein kinase Mpk1p in Saccharomyces cerevisiae, Journal ofbiological chemistry,2003,278(43):41849~41855
    [217]Cohen T.J., Lee K., Rutkowski L.H., et al., Ask10p mediates the oxidativestress-induced destruction of the Saccharomyces cerevisiae C-type cyclinUme3p/Srb11p, Eukaryotic cell,2003,2(5):962~970
    [218]林玮,酿酒酵母MAPK途径及VPS家族基因对镉离子耐受调节的鉴定,硕士学位论文,天津大学,2010
    [219]Mazur P., Baginsky W., In vitro activity of1,3-beta-D-glucan synthase requiresthe GTP-binding protein Rho1, J Biol. Chem.,1996,271(24):14604~14609
    [220]Posas F., Takekawa M., Saito H., Signal transduction by MAP kinase cascades inbudding yeast, Current opinion in microbiology,1998,1(2):175~182
    [221]Ketela T., Green R., Bussey H., Saccharomyces cerevisiae Mid2p is a potentialcell wall stress sensor and upstream activator of the PKC1-MPK1cell integritypathway, Journal of bacteriology,1999,181(11):3330~3340
    [222]Rajavel M., Philip B., Buehrer B.M., et al., Mid2is a putative sensor for cellintegrity signaling in Saccharomyces cerevisiae, Molecular and cellular biology,1999,19(6):3969~3976
    [223]Huh W.K., Falvo J.V., Gerke L.C., et al., Global analysis of protein localizationin budding yeast, Nature,2003,425(6959):686~691
    [224]Schmelzle T., Helliwell S.B., Hall M.N., Yeast protein kinases and the RHO1exchange factor TUS1are novel components of the cell integrity pathway inyeast, Molecular and cellular biology,2002,22(5):1329~1339
    [225]Han G.S., Audhya A., Markley D.J., et al., The Saccharomyces cerevisiae LSB6gene encodes phosphatidylinositol4-kinase activity, Journal of biologicalchemistry,2002,277(49):47709~47718
    [226]Audhya A., Emr S.D., Regulation of PI4,5P2synthesis by nuclear-cytoplasmicshuttling of the Mss4lipid kinase, The EMBO journal,2003,22(16):4223~4236
    [227]Wild A.C., Jong W.Y., Lemmon M.A., et al., The p21-activated proteinkinase-related kinase Cla4is a coincidence detector of signaling by Cdc42andphosphatidylinositol4-phosphate, Journal of biological chemistry,2004,279(17):17101~17110
    [228]Lorenz M.C., Heitman J., TOR mutations confer rapamycin resistance bypreventing interaction with FKBP12-rapamycin, Journal of biological chemistry,1995,270(46):27531~27537
    [229]Di Como C.J., Arndt K.T., Nutrients, via the Tor proteins, stimulate theassociation of Tap42with type2A phosphatases, Genes&development,1996,10(15):1904~1916
    [230]Powers T., Walter P., Regulation of ribosome biogenesis by therapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae,Molecular biology of the cell,1999,10(4):987~1000
    [231]Barbet N., Schneider U., Helliwell S.B., et al., TOR controls translationinitiation and early G1progression in yeast, Molecular biology of the cell,1996,7(1):25
    [232]Noda T., Ohsumi Y., Tor, a phosphatidylinositol kinase homologue, controlsautophagy in yeast, Journal of biological chemistry,1998,273(7):3963~3966
    [233]Schmidt A., Kunz J., Hall M.N., TOR2is required for organization of the actincytoskeleton in yeast, Proceedings of the national academy of sciences,1996,93(24):13780~13785
    [234]Schmidt A., Bickle M., Beck T., et al., The yeast phosphatidylinositol kinasehomolog TOR2activates RHO1and RHO2via the exchange factor ROM2, Cell,1997,88(4):531
    [235]Helliwell S.B., Schmidt A., Ohya Y., et al., The Rho1effector Pkc1, but notBni1, mediates signalling from Tor2to the actin cytoskeleton, Curr Biol,1998,8(22):1211~1214
    [236]Stark J.R. M., Yeast protein serine/threonine phosphatases: multiple roles anddiverse regulation, Yeast,1998,12(16):1647~1675
    [237]Masuda C.A., Ram rez J., Pe a A., et al., Regulation of monovalent ionhomeostasis and pH by the Ser-Thr protein phosphatase SIT4in Saccharomycescerevisiae, Journal of biological chemistry,2000,275(40):30957~30961
    [238]Sutton A., Immanuel D., Arndt K., The SIT4protein phosphatase functions inlate G1for progression into S phase, Molecular and cellular biology,1991,11(4):2133~2148
    [239]López-Mirabal H.R., Winther J.R., Kielland-Brandt M.C., Oxidant resistance ina yeast mutant deficient in the Sit4phosphatase, Current genetics,2008,53(5):275~286
    [240]Beck T., Hall M.N., The TOR signalling pathway controls nuclear localization ofnutrient-regulated transcription factors, Nature,1999,402(6762):689~692
    [241]Stathopoulos A.M., Cyert M.S., Calcineurin acts through theCRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast,Genes Dev.,1997,11(24):3432~3444
    [242]Tabuchi M., Audhya A., Parsons A.B., et al., The phosphatidylinositol4,5-biphosphate and TORC2binding proteins Slm1and Slm2function insphingolipid regulation, Molecular and cellular biology,2006,26(15):5861~5875
    [243]Kyriakis J.M., Avruch J., Mammalian mitogen-activated protein kinase signaltransduction pathways activated by stress and inflammation, Physiologicalreviews,2001,81(2):807~869
    [244]Winkler A., Arkind C., Mattison C.P., et al., Heat stress activates the yeasthigh-osmolarity glycerol mitogen-activated protein kinase pathway, and proteintyrosine phosphatases are essential under heat stress, Eukaryotic cell,2002,1(2):163~173
    [245]Singh K.K., The Saccharomyces cerevisiae sln1p-ssk1p two-component systemmediates response to oxidative stress and in an oxidant-specific fashion, Freeradical biology and medicine,2000,29(10):1043~1050
    [246]Rep M., Proft M., Remize F., et al., The Saccharomyces cerevisiae Sko1ptranscription factor mediates HOG pathway-dependent osmotic regulation of aset of genes encoding enzymes implicated in protection from oxidative damage,Molecular microbiology,2001,40(5):1067~1083
    [247]Haghnazari E., Heyer W.D., The Hog1MAP kinase pathway and the Mec1DNAdamage checkpoint pathway independently control the cellular responses tohydrogen peroxide, DNA repair,2004,3(7):769~776
    [248]Lawrence C.L., Botting C.H., Antrobus R., et al., Evidence of a new role for thehigh-osmolarity glycerol mitogen-activated protein kinase pathway in yeast:regulating adaptation to citric acid stress, Molecular and cellular biology,2004,24(8):3307~3323
    [249]Thorsen M., Di Y., T ngemo C., et al., The MAPK Hog1p modulatesFps1p-dependent arsenite uptake and tolerance in yeast, Molecular biology of thecell,2006,17(10):4400~4410
    [250]Petkova M.I., Pujol-Carrion N., Arroyo J., et al., Mtl1is required to activategeneral stress response through Tor1and Ras2inhibition under conditions ofglucose starvation and oxidative stress, Journal of biological chemistry,2010,285(25):19521~19531
    [251]Roelants F.M., Torrance P.D., Bezman N., et al., Pkh1and pkh2differentiallyphosphorylate and activate ypk1and ykr2and define protein kinase modulesrequired for maintenance of cell wall integrity, Molecular biology of the cell,2002,13(9):3005~3028
    [252]Cutler N.S., Heitman J., Cardenas M.E., STT4is an essentialphosphatidylinositol4-kinase that is a target of wortmannin in Saccharomycescerevisiae, Journal of biological chemistry,1997,272(44):27671~27677
    [253]Giaever G., Chu A.M., Ni L., et al., Functional profiling of the Saccharomycescerevisiae genome, Nature,2002,418(6896):387~391
    [254]Bicknell A.A., Babour A., Federovitch C.M., et al., A novel role in cytokinesisreveals a housekeeping function for the unfolded protein response, The journal ofcell biology,2007,177(6):1017~1027
    [255]Bonilla M., Cunningham K.W., Mitogen-activated protein kinase stimulation ofCa2+signaling is required for survival of endoplasmic reticulum stress in yeast,Molecular biology of the cell,2003,14(10):4296~4305
    [256]Chen Y., Feldman D.E., Deng C., et al., Identification of mitogen-activatedprotein kinase signaling pathways that confer resistance to endoplasmicreticulum stress in Saccharomyces cerevisiae, Molecular cancer research,2005,3(12):669~677
    [257]Babour A., Bicknell A.A., Tourtellotte J., et al., A surveillance pathway monitorsthe fitness of the endoplasmic reticulum to control its inheritance, Cell,2010,142(2):256~269
    [258]Scrimale T., Didone L., de Mesy Bentley K.L., et al., The unfolded proteinresponse is induced by the cell wall integrity mitogen-activated protein kinasesignaling cascade and is required for cell wall integrity in Saccharomycescerevisiae, Molecular biology of the cell,2009,20(1):164~175
    [259]Xu B., Chen S., Luo Y., et al., Calcium signaling is involved incadmium-induced neuronal apoptosis via induction of reactive oxygen speciesand activation of MAPK/mTOR network, PloS one,2011,6(4): e19052
    [260]Quig D., Cysteine metabolism and metal toxicity, Alternative medicine review,1998,3:262~270
    [261]Ke Q., Li Q., Ellen T.P., et al., Nickel compounds induce phosphorylation ofhistone H3at serine10by activating JNK–MAPK pathway, Carcinogenesis,2008,29(6):1276~1281
    [262]Posas F., Chambers J.R., Heyman J.A., et al., The transcriptional response ofyeast to saline stress, Journal of biological chemistry,2000,275(23):17249~17255
    [263]Rep M., Krantz M., Thevelein J.M., et al., The transcriptional response ofSaccharomyces cerevisiae to osmotic shock, Journal of biological chemistry,2000,275(12):8290~8300
    [264]O'Rourke S.M., Herskowitz I., Unique and redundant roles for HOG MAPKpathway components as revealed by whole-genome expression analysis,Molecular biology of the cell,2004,15(2):532~542
    [265]Kamada Y., Jung U.S., Piotrowski J., et al., The protein kinase C-activated MAPkinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heatshock response, Genes&development,1995,9(13):1559~1571
    [266]van Drogen F., Peter M., Spa2p functions as a scaffold-like protein to recruit theMpk1p MAP kinase module to sites of polarized growth, Current biology,2002,12(19):1698~1703
    [267]Jung U.S., Sobering A.K., Romeo M.J., et al., Regulation of the yeast Rlm1transcription factor by the Mpk1cell wall integrity MAP kinase, Molecularmicrobiology,2002,46(3):781~789
    [268]Watanabe Y., Takaesu G., Hagiwara M., et al., Characterization of a serumresponse factor-like protein in Saccharomyces cerevisiae, Rlm1, which hastranscriptional activity regulated by the Mpk1(Slt2) mitogen-activated proteinkinase pathway, Molecular and cellular biology,1997,17(5):2615~2623
    [269]Igual J., Johnson A., Johnston L., Coordinated regulation of gene expression bythe cell cycle transcription factor Swi4and the protein kinase C MAP kinasepathway for yeast cell integrity, The EMBO journal,1996,15(18):5001
    [270]Madden K., Sheu Y.J., Baetz K., et al., SBF cell cycle regulator as a target of theyeast PKC-MAP kinase pathway, Science,1997,275(5307):1781~1784
    [271]Truman A.W., Kim K.Y., Levin D.E., Mechanism of Mpk1mitogen-activatedprotein kinase binding to the Swi4transcription factor and its regulation by anovel caffeine-induced phosphorylation, Molecular and cellular biology,2009,29(24):6449~6461
    [272]Zarzov P., Mazzoni C., Mann C., The SLT2(MPK1) MAP kinase is activatedduring periods of polarized cell growth in yeast, The EMBO journal,1996,15(1):83
    [273]Kannicht C., Posttranslational modification of proteins: Tools for functionalproteomics, Germany: Humana Press,2002,194
    [274]Wang M., Zou J., Duan X., et al., Cadmium accumulation and its effects onmetal uptake in maize (Zea mays L.), Bioresource technology,2007,98(1):82~88
    [275]García R., Rodríguez-Pe a J.M., Bermejo C., et al., The high osmotic responseand cell wall integrity pathways cooperate to regulate transcriptional responses tozymolyase-induced cell wall stress in Saccharomyces cerevisiae, Journal ofbiological chemistry,2009,284(16):10901~10911
    [276]Haro R., Garciadeblas B., Rodriguez-Navarro A., A novel P-type ATPase fromyeast involved in sodium transport, FEBS letters,1991,291(2):189~191
    [277]Castrejon F., Gomez A., Sanz M., et al., The RIM101pathway contributes toyeast cell wall assembly and its function becomes essential in the absence ofmitogen-activated protein kinase Slt2p, Eukaryotic cell,2006,5(3):507~517
    [278]Eide D., Davis-Kaplan S., Jordan I., et al., Regulation of iron uptake inSaccharomyces cerevisiae. The ferrireductase and Fe (II) transporter areregulated independently, Journal of biological chemistry,1992,267(29):20774~20781
    [279]Zhao H., Eide D., The ZRT2gene encodes the low affinity zinc transporter inSaccharomyces cerevisiae, Journal of biological chemistry,1996,271(38):23203~23210
    [280]Dodou E., Treisman R., The Saccharomyces cerevisiae MADS-box transcriptionfactor Rlm1is a target for the Mpk1mitogen-activated protein kinase pathway,Molecular and cellular biology,1997,17(4):1848~1859
    [281]Chattopadhyay N., Brown E.M., Cellular "sensing" of extracellular calcium (Ca(2+)(o)): emerging roles in regulating diverse physiological functions, Cellularsignalling,2000,12(6):361
    [282]Schaub M.C., Heizmann C.W., Calcium, troponin, calmodulin, S100proteins:from myocardial basics to new therapeutic strategies, Biochemical andbiophysical research communications,2008,369(1):247~264
    [283]Chao S.H., Bu C.H., Cheung W.Y., Activation of troponin C by Cd2+and Pb2+,Archives of toxicology,1990,64(6):490~496
    [284]Akiyama K., Sutoo D., Reid D.G., A1H-NMR comparison of calmodulinactivation by calcium and by cadmium, Japanese journal of pharmacology,1990,53(3):393
    [285]Liu Y., Templeton D.M., Cadmium activates CaMK-II and initiatesCaMK-II-dependent apoptosis in mesangial cells, FEBS letters,2007,581(7):1481~1486
    [286]Mielniczki-Pereira A.A., Hahn A.B., Bonatto D., et al., New insights into theCa2+-ATPases that contribute to cadmium tolerance in yeast, Toxicol Lett.,2011,207(2):104~111
    [287]Lauer Júnior C.M., Bonatto D., Mielniczki-Pereira A.A., et al., The Pmr1protein,the major yeast Ca2+-ATPase in the Golgi, regulates intracellular levels of thecadmium ion, FEMS microbiology letters,2008,285(1):79~88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700