糖蛋白pIgR两种新功能的发现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多聚免疫球蛋白受体(pIgR)属于I型跨膜糖蛋白,可以与多聚免疫球蛋白A和多聚免疫球蛋白M特异性结合,通过穿胞转运,将它们从上皮细胞基底侧膜转运到顶膜,并最终分泌到外分泌液中去。pIgR通过介导细胞内多聚免疫球蛋白的转运,可以在粘膜的腔面阻止病原体粘附,在上皮细胞内中和病毒,也可以将固有层内的抗原分泌出去。因此,pIgR的有效分泌是多聚免疫球蛋白发挥粘膜防御功能的必要条件,在粘膜免疫中起着举足轻重的作用。
     最初对人小肠粘膜的免疫组织化学研究发现:人小肠pIgR分布于柱状吸收细胞,尤其是那些分布在肠隐窝内的吸收细胞,而潘氏细胞、杯状细胞、内分泌细胞均未发现有pIgR的存在。几十年来人们普遍认为在小肠,只有柱状吸收细胞可以合成pIgR、介导IgA转运并分泌sIgA。然而,有研究表明:在大鼠小肠组织中,pIgR的免疫组织化学阳性染色特异性地位于潘氏细胞内,提示潘氏细胞与pIgR有一定的关联。潘氏细胞是存在于肠隐窝底部的锥形细胞,已经证实潘氏细胞有许多功能,如分泌磷脂酶A2、溶菌酶、防御素(defensins)、抗菌肽等,这些物质是肠道先天性免疫的重要基础。近年来的研究表明,潘氏细胞在炎症性肠道疾病(IBD)的发生、发展中也起重要作用。潘氏细胞是否合成pIgR并参与IgA的转运,对于IBD的发生机制研究及临床治疗手段的改进而言,具有重要的科学意义。
     本论文首先采用分子生物学的方法,转录合成了特异性针对大鼠与人pIgR的分子探针;然后采用荧光双标记原位杂交和荧光双标记免疫组织化学的方法,结合潘氏细胞的特异性蛋白标志物-溶菌酶,检测了大鼠和人小肠组织中pIgR的mRNA和蛋白的表达情况。实验结果显示:大鼠与人潘氏细胞内均可以检测到pIgR的mRNA和蛋白质,提示潘氏细胞可以合成pIgR。本论文又采用荧光双标记免疫组织化学和免疫胶体金电镜的方法,检测了潘氏细胞与小肠IgA分布之间的关系。结果发现:潘氏细胞的分泌颗粒和细胞基底膜上均含有大量的IgA,提示潘氏细胞所合成的pIgR可能参与IgA的转运。在大鼠小肠中,只有潘氏细胞内能够合成pIgR,而在人小肠中潘氏细胞和肠腺吸收细胞均可以合成pIgR,这表明大鼠与人小肠IgA的转运途径可能不一致。
     虽然多聚免疫球蛋白受体(pIgR)在粘膜免疫中起着至关重要的作用,但有报道指出该蛋白在体内的功能具有多面性。研究表明某些上皮肿瘤组织和细胞中pIgR的表达量高于正常组织或细胞,提示pIgR过表达可能与上皮来源肿瘤的发生、发展有一定的相关性。但是迄今为止,pIgR能否成为肿瘤的Marker或者成为肿瘤治疗的分子靶点目前尚未见报道。发现及阐明pIgR在肿瘤发生及发展中的重要作用,将对肿瘤这一人类尚未克服的疑难病症的诊断及治疗具有深远的意义。
     本论文首先利用真核转染技术,成功构建了人pIgR稳定高表达的MDCK细胞株,然后对细胞的特性进行观察与比较。结果发现:与对照组相比,pIgR过表达的MDCK细胞生长速度明显加快,细胞形态发生显著改变,细胞容易被胰酶消化提示粘附力降低。本论文利用SRB法、PI染色法、western blotting方法以及平皿克隆生长实验方法对有关细胞增殖的特征性指标进行了检测。结果显示:人pIgR过表达可以使MDCK细胞的增殖能力显著增强,细胞周期进程加快,细胞增殖指数明显升高,PCNA表达量增高,ERK1/2磷酸化显著增强,而且单个细胞生长能力增强。在上皮细胞形态变化和细胞与基质的粘附力下降的发生机制中,上皮细胞-间充质转化(EMT)往往起着至关重要的作用。EMT的主要特征有细胞粘附分子(如E-钙粘素)表达的减少、细胞骨架发生变化、形态上具有间充质细胞的特征等。这种转换允许上皮细胞摆脱细胞-细胞间连接,而表现得更具侵袭性。本论文又利用荧光免疫细胞化学染色法、transwell小室法对EMT相关的指标进行了检测。结果显示:人pIgR过表达的MDCK细胞形态上具有间充质细胞的特征,细胞骨架发生改变,具有粘附力下降、迁移和侵袭能力增强等EMT细胞行为学特征,并且有E钙粘素减少这一典型EMT分子特征。软琼脂克隆形成实验进一步表明:人pIgR过表达的MDCK细胞具备了一定的体外成瘤能力。上述结果表明,糖蛋白pIgR高表达具有明显的促MDCK细胞恶性转化的作用,pIgR在细胞恶性增殖和EMT中均发挥一定作用。
     综上所述,本论文首次证明潘氏细胞不仅参与先天性免疫,而且可能参与IgA介导的获得性免疫。本研究给潘氏细胞参与炎症性肠道疾病(IBD)提供了更多的证据,也给IBD的临床治疗研究提供了新思路。本研究还发现糖蛋白pIgR高表达具有明显的促MDCK细胞恶性转化的作用,为今后深入研究其中的作用机制、进而为肿瘤药物开发提供潜在靶点奠定了理论基础。
Polymeric immunoglobulin receptor (pIgR) belongs to type I trans-membrane glycoprotein. It could specifically bind to polymeric IgA or polymeric IgM, and transport them into the secretion via the process of transcytosis. On basal to apical transport across epithelial cells, the pIgR extracellular domain is cleaved, releasing secreotry component (SC) in association with pIgA. pIgR can mediate the transcytosis of polymeric IgA, and thus ensure the multiple functions of sIgA, such as luminal prevention of pathogen attachment, intracellular neutralization of viruses, and antigen secretion from lamina propria. Thus, efficient secretion of pIgR is a prerequisite of polymeric IgA-mediated mucoscal protection.
     pIgR is always expressed in all types of secretory epithelia, with the highest levels observed in the intestine. In human small intestine, pIgR is expressed predominantly on immature cells within crypts and at lower levels on the villi cells. The localization of pIgR and IgA suggest that absorptive columnar cells, but not other cells, are primarily responsible for sIgA secretion into the intestine. Accordingly, it is generally accepted that it is the absorptive columnar cells but not other cells, including Paneth, goblet, or endocrine cells, that account for the synthesis of the pIgR, transportation of IgA, and secretion of sIgA in the small intestine. However, it was showed that positive staining of pIgR is specifically localized in Paneth cells of the rat small intestine, which suggested the possible relationship of Paneth cells and pIgR. Paneth cells are pyramidal epithelial cells found at the base of the crypts of Lieberkühn in the small intestines of many mammalian species. Paneth cells have been commonly recognized as important effectors of intestinal innate immunity. Resent researches showed that Paneth cells were involved in intestinal inflammation. Whether Paneth cells can synthesize pIgR and participate in IgA transportation or not is an important issue for the research work of IBD. It will be helpful for the improvement of clinical therapy of IBD.
     Firstly, the techniques of molecular biology was use to synthesize the specific digoxigenin-labeled cRNA probe of rat and human pIgR. Then, with the specific marker of Paneth cells- lysozyme, double-labeled fluorescent immunohistochemistry and double-labeled fluorescent in situ hybridization were used to determine RNA and protein expression in rat and human small intestine. Our results showed that pIgR mRNA and protein could be detected in rat and human Paneth cells, suggested that Paneth cells could synthesize pIgR. Another noteworthy finding is that, in humans, pIgR is expressed both in absorptive cells and Paneth cells, but in rats, it is found only in Paneth cells.
     Although pIgR plays an essential role in mucosal immunity, it was still reported to have varied functions in the body. Previous studies indicated that pIgR was over-expressed in some epithelial tumor tissues or cells, which suggested that there might be some relationship between pIgR and epithelial tumor. But the relationship is still unclear now. Whether or not pIgR will be used as a specific marker of tumor, or will be treated as a molecular target of anti-tumor medicines hasn’t been reported. It will be useful to investigate and illustrate the important role of pIgR in tumorgenesis.
     Firstly, MDCK- hpIgR cells which over-express human pIgR was successfully constructed with the technique of transfection. Then, the common characters of MDCK-hpIgR cells and MDCK-mock cells were detected and compared. It was shown that MDCK-hpIgR cells proliferate more quickly than MDCK-mock cells. Moreover, the shape of these cells changed significantly and they were digested easily from the flat. The cell proliferation was detected using flow cytometry, western blotting and other techniques. The results showed that MDCK-hpIgR cells have the characters of high proliferation index, increasing expression of PCNA and increasing phosphorylation of ERK1/2. Flat clone experiments confirmed that over-expression of human pIgR made MDCK cells have malignant proliferation.
     In mechanism of the shape change and the decrease of adhesion, the epithelial mesenchymal transition always plays an important role. EMT is the process of polar epithelia transforming into the cells capable of free movement. The main characters of EMT include the decrease of E-cadherin, the different cell framework, and the shape of mesenchymal cells. This transition allows the tumor cells shake off the cell-cell connection and to be more invadable. The results showed that the cell shape and framework formed by F-actin of MDCK-hpIgR were similar as mesenchymal cells. Over-expression of human pIgR inhibited the adhesion of MDCK cells on fibronectin, and promoted migration and invasion of them. In addition, MDCK-hpIgR cells have the molecular character of EMT- decrease expression of E-cadherin. The degree of cell malignant was tested by the soft agar clone experiment. It was shown that, in vivo, over-expression of human pIgR could promote the cells gain the ability of tumor formation. These results indicated that over-expression of human pIgR made MDCK cells have the characters of malignant proliferation and EMT, and finally be the malignant cells.
     In sum, Paneth cells may play a critical role in IgA-mediated acquired immunity in the gastrointestinal tract in addition to their well-recognized role in innate immunity. This will add to the accumulating evidences that Paneth cells are involved in intestinal inflammation, and, therefore, support a potential role in mucosal inflammation-driven pathologic disorders in humans. Furthermore, the new finding that over-expression of human pIgR made MDCK cells become into malignant cells, will be helpful for the future researches that promote pIgR to be a new molecular target of anti-cancer medicines.
引文
1. Brandtzaeg P. Role of secretory antibodies in the defence against infections. Int. J. Med. Microbiol,2003,293:3-15.
    2. Johansen, F.E., and P. Brandtzaeg. Transcriptional regulation of the mucosal IgA system. Trends. Immunol 2004,25: 150-157.
    3. Brandtzaeg P, Johansen FE. Immunology of the Gut. In: Desselberger U, Gary J, eds. Viral Gastroenteritis. Elsevier Science BV, 2003: 69-91.
    4. Chung LP, Keshav S, Gordon S.Cloning the human lysozyme cDNA: inverted Alu repeat in the mRNA and in situ hybridization for macrophages and Paneth cells. Proc Natl Acad Sci USA, 1988,85:6227-6231.
    5. Mason DY, Taylor CR.The distribution of muramidase (lysozyme) in human tissues. J Clin Pathol. 1975,28: 124-132.
    6. Harwig SS, Tan L, Qu XD, Cho Y, Eisenhauer PB, Lehrer RI.Bactericidal properties of murine intestinal phospholipase-A2. J Clin Invest .1995,95:603-610.
    7. Nevalainen TJ, Gronroos JM, Kallajoki M. Expression of group II phospholipase A2 in the human gastrointestinal tract. Lab Invest. 1995,72: 201-208.
    8. Cunliffe RN. Alpha-Defensins in the gastrointestinal tract. Mol Immunol. 2003; 40: 463-467.
    9. Poter EM, Bevins CL, Ghosh D, Ganz T. The multifaceted Paneth cell. Cell Mol Life Sci. 2002,59:156-170.
    10. Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S, Ogunbiyi O, Nunez G, Keshav S: Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology. 2003, 125:47-57.
    11. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, et al. Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc Natl Acad Sci USA .2005,102:18129-18134.
    12. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, et al. NOD2 (CARD15)mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression. Gut, 2004, 53:1658-1664.
    13. Brandtzaeg P.Mucosal and glandular distribution of immunoglobulin components: differential localization of free and bound SC in secretory epithelial cells. J Immunol. 1974, 112: 1553-1559.
    14. Poger ME, Lamm ME.Localization of free and bound secretory component in human intestinal epithelial cells. A model for the assembly of secretory IgA. J Exp Med. 1974,139: 629-642.
    15. Brown WR, Isobe K, Nakane PK: Studies on translocation of immunoglobulins across intestinal epithelium. II. Immunoelectron-microscpic localization of immunoglobulins and secretory component in human intestinal mucosa. Gastroenterology. 1976, 71: 985-995.
    16. Brown WR, Isobe K, Nakane PK, Pacine B: Studies on translocation of immunoglobulins across intestinal epithelium. IV. Evidence for binding of IgA and IgM to secretory component in intestinal epithelium. Gastroenterology. 1977,73: 1333-1339.
    17. Kai-Zhong T, Qing-Juan T, Yun L, Zhi-Min K, Chun-Lei J. Changes of lysozyme and secretory component in ileum of 72h sleep-deprived rat. Chinese Journal of Behavioral Medical Science .2004,13: 491-493.
    18. Poter EM, Bevins CL, Ghosh D, Ganz T. The multifaceted Paneth cell. Cell Mol Life Sci. 2002,59:156-170.
    15. Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S, Ogunbiyi O, Nunez G, Keshav S: Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology. 2003, 125:47-57.
    19. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, et al. Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc Natl Acad Sci USA .2005,102:18129-18134.
    20. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, et al. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression. Gut, 2004, 53:1658-1664.
    21. Zhang JR, Mostov KE, Lamm ME, et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharv ngeal epithelial cells. Cell, 2000,102 (6): 827-837.
    22. Harris JP, South MA. Secretory component: a glandular epithelial cell marker. Am J Pathol, 1981,105: 47-53.
    22. Kvale D, Brandtzaeg P. Butyrate differentially affects constitutive and cytokine-induced expression of HLA molecules, secretory component (SC), and ICAM-1 in a colonic epithelial cell line (HT-29, clone m3).Adv Exp Med Biol, 1995,371:183-188.
    23. Bearzi I, Ranaldi R, Santinelli A, et al. Epithelial dysplasia of the gastric mucosa. A morphometric and ploidy pattern study. Pathol Res Pract. 1992,188(4-5):550-555.
    24. Takeeda M, Hayashi Y, Yamato M, et al. Roles of endogenous prostaglandins and cyclooxygenase izoenzymes in mucosal defense of inflamed rat stomach. J Physiol Pharmacol, 2004,55(2): 193-205.
    25. Hirozane N, Tanaka K, Nakane Y, et al. Expression of HLA-DR and secretory component antigens and lymphocyte infiltration in human gastric nonmalignant and malignant tissues: an immunohistochemical study. J Surg Oncol, 1991,46(2):77-86.
    26. Papadopoulos N, Immunohistochemical expression of vimentin and secretory component antigens in endometrial hyperplasia and neoplasia. Eur J Gynaecol Oncol. 2002, 23(5):411-414.
    27. Sean Sean C. Brock, et al. The Human Polymeric Immunoglobulin Receptor Facilitates Invasion of Epithelial Cells by Streptococcus pneumoniae in a Strain-Specific and Cell Type-Specific Manner. INFECTION AND IMMUNITY.Sept. 2002, p.5091-5095.
    28. Christine Elm, Characterization of the interaction of the pneumococcal surface protein SpsA with the human polymeric immunoglobulin receptor (hpIgR). Indian J Med Res, 2004, 119: 61-65.
    29. Rossel M,et al. Nonspecific increased serum levels of secretory component in lung tumors: relationship to the gene expression of the transmembrane receptor form. Am J Respir Cell Mol, 1993,9(3):341-346.
    30. Kaetzel CS. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev, 2005,206:83-99.参考文献
    1. Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules in cytologicalpreparations. Proc Natl Acad Sci U S A, 1969,63(2):378-383.
    2. Pardue ML, Gall JG. Proc Natl Acad Sci USA, 1969,64(2):600-604.
    3 .Kai-Zhong T, Qing-Juan T, Yun L, Zhi-Min K, Chun-Lei J.Changes of lysozyme and secretory component in ileum of 72h sleep-deprived rat. Chinese Journal of Behavioral Medical Science, 2004,13: 491-493.
    4. Brandtzaeg PMucosal and glandular distribution of immunoglobulin components: differential localization of free and bound SC in secretory epithelial cells. J Immunol, 1974, 112: 1553-1559.
    5. Poger ME, Lamm ME. Localization of free and bound secretory component in human intestinal epithelial cells. A model for the assembly of secretory IgA. J Exp Med, 1974, 139: 629-642.
    6. Brown WR, Isobe K, Nakane PK. Studies on translocation of immunoglobulins across intestinal epithelium. II. Immunoelectron-microscpic localization of immunoglobulins and secretory component in human intestinal mucosa. Gastroenterology, 1976,71: 985-995.
    7. Brown WR, Isobe K, Nakane PK, Pacine B. Studies on translocation of immunoglobulins across intestinal epithelium. IV Evidence for binding of IgA and IgM to secretory component in intestinal epithelium. Gastroenterology, 1977, 73: 1333-1339.
    8. Cunliffe RN, Rose FR, Keyte J, Abberley L, Chan WC, Mahida YR. Human defensin 5 is storedin precursor form in normal Paneth cells and is expressed by some villous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut, 2001, 48(2): 176-185.
    9. Hollander D. Inflammatory bowel diseases and brain-gut axis. J Physiol Pharmacol, 2003, 54 Suppl 4:183-190.
    10. Gironella M, Iovanna JL, Sans M, Gil F, Penalva M, Closa D, Miquel R, Pique JM, Panes J.Anti-inflammatory effects of pancreatitis associated protein in inflammatory bowel disease.Gut, 2005,54(9): 1244-1253.
    11. Bevins CL. Paneth cell defensins: key effector molecules of innate immunity. Biochem Soc Trans, 2006,34(Pt 2):263-6.
    12. Kimura T, Kosaka J, Nomura T, Yamada T, Miki Y, Takagi K, Kogami T, Sasaki J. Quantification of in situ hybridization signals in rat testes. J Histochem Cytochem, 2004, 52(6):813-20.
    13. Helmrath MA, Fong JJ, Dekaney CM, Henning SJ. Rapid expansion of intestinal secretory lineages following a massive small bowel resection in mice. Am J Physiol Gastrointest Liver Physiol, 2007,292(1 ):G215-22.
    14. Brandtzaeg, P. 2003. Role of secretory antibodies in the defence against infections. Int. J. Med. Microbiol, 293:3-15.
    15. Johansen, F.E., and P. Brandtzaeg. Transcriptional regulation of the mucosal IgA system. Trends. Immunol, 2004,25: 150-157.
    16. Rodning CB, Erlandsen SL, Wilson ID. Localisation of lmmunoglobulin in human small intestinal Paneth cells. Clin Res, 1975,23: 520A.
    17. Rodning CB, Wilson ID, Erlandsen SL. Immunoglobulins within human small-intestinal Paneth cells. Lancet, 1976,1(7967): 984-987.
    18. Erlandsen SL, Rodning CB, Montero C, Parsons JA, Lewis EA and Wilson ID. Immunocytochemical identification and localization of immunoglobulin A within Paneth cells of the rat small intestine. J Histochem Cytochem, 1976,24(10): 1085-1092.
    19. Brandtzaeg P, Johansen FE. Immunology of the Gut. In: Desselberger U, Gary J, eds. Viral Gastroenteritis. Elsevier Science BV, 2003,69-91.
    20. Satoh Y, Ishikawa K, Tanaka H, Ono K. Immunohistochemical observations of immunoglobulin A in the Paneth cells of germ-free and formerly-germ-free rats. Histochemistry, 1986, 85(3): 197-201.
    21. Poter EM, Bevins CL, Ghosh D, Ganz T. The multifaceted Paneth cell. Cell Mol Life Sci, 2002,59:156-170.
    22. Haapamaki MM, Gronroos JM, Nurmi H, et al. Gene expression of group II phospholipase A2 in intestine in ulcerative colitis. Gut, 1997,40:95-101.
    23. Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S, Ogunbiyi O, Nunez G, Keshav S: Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology, 2003, 125:47-57.
    24. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, et al.Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc Natl Acad Sci USA, 2005,102:18129-18134.
    25. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, et al.NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression. Gut, 2004,53:1658-1664.
    26. Mestecky J, Lue C, Russell MW. Selective transport of IgA. Cellular and molecular aspects. Gastroenterol Clin North Am, 1991,20: 441-471.
    27. Brandtzaeg P. Mucosal and glandular distribution of immunoglobulin component: Differential localization of free and bound SC in secretory epithelial cells. J Immunol, 1974, 112:1553-1559.
    28. Ahnen DJ, Brown WR, Kloppel TM. Secretory component: the polymeric immunoglobulin receptor. What's in it for the gastroenterologist and hepatologist? Gastroenterology, 1985, 89:667-682.
    29. Delacroix DL, Hodgson HJF, McPherson A, et al: Selective transport of polymeric IgA in bile: Quantivative relationships of monomeric and polymeric IgA, IgM and other proteins in serum, bile, and saliva. J Clin Invest, 1982,70:230-241.
    30. Jonard PP, Rambaud JC, Dive C, et al.Secretion of immunoglobulins and plasma proteins from the jejunal mucosal: Transport data and origin of polymeric immunoglobulin A. J Clin Invest, 1984,74: 525-535.
    21. Poter EM, Bevins CL, Ghosh D, Ganz T. The multifaceted Paneth cell. Cell Mol Life Sci, 2002,59:156-170.
    22. Haapamaki MM, Gronroos JM, Nurmi H, et al. Gene expression of group II phospholipase A2 in intestine in ulcerative colitis. Gut, 1997,40:95-101.
    23. Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S, Ogunbiyi O, Nunez G, Keshav S: Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology, 2003, 125:47-57.
    24. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, et al.Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc Natl Acad Sci USA, 2005,102:18129-18134.
    25. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, et al.NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression. Gut, 2004,53:1658-1664.
    26. Mestecky J, Lue C, Russell MW. Selective transport of IgA. Cellular and molecular aspects. Gastroenterol Clin North Am, 1991,20: 441-471.
    27. Brandtzaeg P. Mucosal and glandular distribution of immunoglobulin component: Differential localization of free and bound SC in secretory epithelial cells. J Immunol, 1974, 112:1553-1559.
    28. Ahnen DJ, Brown WR, Kloppel TM. Secretory component: the polymeric immunoglobulin receptor. What's in it for the gastroenterologist and hepatologist? Gastroenterology, 1985, 89:667-682.
    29. Delacroix DL, Hodgson HJF, McPherson A, et al: Selective transport of polymeric IgA in bile: Quantivative relationships of monomeric and polymeric IgA, IgM and other proteins in serum, bile, and saliva. J Clin Invest, 1982,70:230-241.
    30. Jonard PP, Rambaud JC, Dive C, et al.Secretion of immunoglobulins and plasma proteins from the jejunal mucosal: Transport data and origin of polymeric immunoglobulin A. J Clin Invest, 1984,74: 525-535.
    31. Nagura H, Tsutsumi Y, Hasegawa H, et al. IgA plasma cells in biliary mucosa: A likely source of locally synthesized IgA in human hepatic bile. Clin Exp Immunol, 1983,54:671-680.
    32. Delacroix DL, Malburny GN, Vaerman J-P. Hepatobiliary transport of plasma IgA in the mouse: Contribution to the clearance of intravascular IgA. Eur J Immunol, 1985,15:893-899.
    33. Koertge TE, Butler JE. Dimeric mouse IgA is transported into bile five times more rapidly than into mouse bile. Scand J Immunol, 1986,24:567-574.
    34. Mestecky J, McGhee JR. Immunoglobulin A(IgA): Molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol, 1987,40: 153-245.
    35. Orlans E, Peppard JV, Payne AW, et al. Comparative aspects of the hepatobiliary transport of IgA. Ann NY Acad Sci, 1983,409: 411-427.
    36. Vaerman J-P, Delacroix DL. Role of the liver in the immunobioloby of IgA in animals and humans. Controversies in Nephrology, 1984,40: 17-31.
    37. Husband, A.J., and V. L. Clifton. Role of intestinal immunization in urinary tract defence. Immunol. Cell. Biol, 1989,67: 371-376.
    38. Gyure, L.A., J.G Hall, S.M. Hobbs, and L.E. Jakson IgA antibodies in the bile of rats. V. Primacy of the GALT as a source of IgA. Immunology, 1991, 72: 85-88.
    39. Cappeller, W.A., K.J. Bloch, R.A. Hatz, E.A. Carter, J. Fagundes, DA. Sullivan, and PR. Harmatz Reduction in biliary IgA after burn injury. Role of diminished delivery via the thoracic duct and of enhanced loss from the systemic circulation. Ann. Surg, 1992, 215: 338-343.
    40. Brandtzaeg P. The role of J chain and secretory component in receptor-mediated glandular and hepatic transport of immunoglobulins in man. Scand J Immunol, 1985,22: 111-146.
    41. Lemaitre-Coelho I, Jackson GDF, Vaerman J-P. Relevance of biliary IgA antibodies in rat intestinal immunity. Scand J Immunol, 1978, 8:459-463.
    42. Snoeck, V, I.R. Poters, and E. Cox.The IgA system: a comparison of structure and function indifferent species. Vet. Res. 2006,37: 455-467.
    43. Brandtzaeg, P., H.S. Carlsen, and T.S. Halstensen.The B-cell system in inflammatory bowel disease. Adv. Exp. Med. Biol, 2006, 579:149-167参考文献
    1. Kvalc D. Brandtzacg P. But> rate differentially affects constitutive and cylokinc-induccd expression of HLA molecules, secretory component (SC). and ICAM-I in a colonic epithelial cell line (HT-29. clone m3).Adv Exp Mcd Biol. 1995.371:183-188.
    2. Bcar/.i I. Ranaldi R. Santinclli A. ct al. Epithelial dysplasia of the gastric mucosa. A morphomctric and ploidy pattern study. Pathol Res Pract. 1992. 188(4-5):55()-555.
    3. Takccda M. Hayashi Y. Yamato M. ct al. Roles of endogenous prostaglandins and cyclooxygcnasc izoenzymes in mucosal defense of inflamed rat stomach. J Physiol Pharmacol. 2004.55(2): 193-205.
    4. Hiro/anc N. Tanaka K. Nakanc Y. ct al. Expression of HLA-DR and secretory component antigens and lymphocyte infiltration in human gastric nonnialignant and malignant tissues: an immunohistochemical study. J Surg Oncol. 1991.46(2):77-86.
    5. Harris JP. South MA. Secretory component: a glandular epithelial cell marker. Am J Pathol. 1981.105:47-53.
    6. Papadopoulos N. Immunohistochemical expression of vimentin and secretory component antigens in endomctrial hypcrplasia and ncoplasia. Eur J Gynaccol Oncol. 2002. 23(5)411-414.
    7. Scan Scan C. Brock, ct al. The Human Polymeric Immunoglobulin Receptor FacilitatesInvasion of Epithelial Cells by Streptococcus pneumoniac in a Strain-Specific and Cell Type-Specific Manner. Infection and Immunity. 2002. 70(9): 5091-5095.
    8. Christine Elm.Charactcri/ation of the interaction of the pncumococcal surface protein SpsAwith the human polymeric immunoglobulin receptor (hpIgR). Indian J Mcd Res. 2004. 119(1): 61-65.
    9. Rosscl M.ct al. Nonspecific increased scrum levels of secretory component in lung tumors:relationship to the gene expression of the transmembranc receptor form. Am J Rcspir Cell Mol Biol. 1993.9(3): 341-346.
    10. Kaetzel CS. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev, 2005,206:83-99.
    11. Zhang AL, Wang QS, Zhong YH, Chen G, Xi L, Xie CH, Zhou YF, Ma D. Effect of transcriptional factor snail on epithelial-mesenchymal transition and tumor metastasis. Ai Zheng, 2005,24(11)1301-1305.
    12. Wu X, Chen H, Parker B, Rubin E, Zhu T, Lee JS, Argani P, Sukumar S. HOXB7, a Homeodomain Protein, Is Overexpressed in Breast Cancer and Confers Epithelial-Mesenchymal Transition. Cancer Res, 2006,66(19):9527-9534.
    13. Moreno-Bueno G, Cubillo E, Sarrio D, Peinado H, Rodriguez-Pinilla SM, Villa S, Bolos V, Jorda M, Fabra A, Portillo F, Palacios J, Cano A. Genetic profiling of epithelial cells expressing e-cadherin repressors reveals a distinct role for snail, slug, and e47 factors in epithelial-mesenchymal transition. Cancer Res, 2006,66(19):9543-9556.
    14.【美】J.萨姆布鲁克,D.M.拉塞尔.分子克隆实验指南.科学出版社,2002.
    15. Beresford MJ, Wilson GD, Makris A. Measuring proliferation in breast cancer: practicalities and applications.Breast Cancer Res, 2006, 8(6):216.
    16. Carrozzino F, Soulie P, Huber D, Mensi N, Orci L, Cano A, Feraille E, Montesano R. Inducible expression of Snail selectively increases paracellular ion permeability and differentially modulates tight junction proteins Ani J Physiol Cell Physiol, 2005, 289(4): 1002-1014.
    17. Ma H, Calderon TM, Kessel T, Ashton AW, Berman JW. Mechanisms of hepatocyte growth factor-mediated vascular smooth muscle cell migration. Circ Res, 2003,93(11): 1066-1073.
    18.左连富.流式细胞仪在生物医学领域中的应用,第l版.北京:北京师范大学出版社,1993, 372.373.
    19. Mark L, Graham II, Paul A, et al. Simultaneous measurement of progesterone receptors and DNA indices by flow cytometry: Characterization of an assay in breast cancer cell lines. Cancer Res, 1989,49(15):3934-3942.
    20. Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, Scudiero DA, Monks A, Boyd MR. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst, 1990, 82(13): 1113-1118.
    21. Pardee AB. Tumor progression—targets for differential therapy. J Cell Physiol, 2006, 209(3):589-591.
    22. Swanton C. Cell-cycle targeted therapies. Lancet Oncol, 2004,5(l):27-36.
    23. Massague J. Gl cell-cycle control and cancer. Nature, 2004,432(7015):298-306.
    24. Ioachin E. Immunohistochemical tumour markers in endometrial carcinoma. Eur J Gynaecol Oncol, 2005,26(4):363-371.
    25. Sugawa S, Palliser D, Eisen HN, Chen J. How do cultured CD8(+) murine T cell clones survive repeated ligation of the TCR? Int Immunol, 2002,14(l):23-30.
    26. Jorda M, Olmeda D, Vinyals A, Valero E, Cubillo E, Llorens A, Cano A, Fabra A. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci, 2005,118(15):3371-3385.
    27. Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis.Cell, 2004,118(3): 277-279.
    28. Maeda M, Johnson KR, Wheelock MJ. Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition. J Cell Sci, 2005, 118(5):873-887.
    29. WHO Technical Report Series. Annex 1: Requiments for the used of animal cells in vitro substrated for the production of bidoglcals. 1998, 878.
    30. Xia D, Stull JT, Kamrn EK. Myosin phosphatase targeting subunit 1 affects cell migration by regulating myosin phosphory lation and actin assembly. Exp Cell Res, 2005,304(2):506-517.
    31. Besson A, Gurian-West M, Schmidt A, et al. p27Kipl modulates cell migration through the regulation of RhoA activation.Genes Dev, 2004,18(8):862-876.
    32. Sum EYM, Segara D, Duscio B, et al. Overexpression of LM04 induces mammary hyperplasia, promotes cell invasion, and is a predictor of poor outcome in breast cancer. Proc Natl Acad Sci, 2005, 102(21):7659-7664.
    33. Janulis M, Silberman S, Ambegaokar A, et al. Role of mitogen-activated protein kinases and c-Jun/AP-1 trans-activating activity in the regulation of proteaype in NIH 3T3 fibroblasts. J Biol Chem, 1999,274(2):801-813.
    34. Faulstich H, Zobeley S, Rinneithaler G, Small JV Fluorescent phallotoxins as probes for filamentous actin. J MUSCLE RES CELL MOTIL, 1988,9: 370-383.
    35. Aubert M, Paincot L, Crotte C, et al. Restoration of a(l,2) fucosyltransferase activity decreases adhesive and metastatic properties of human pancreatic cancer cells. Cancer Res, 2000,60(5): 1449-1456.
    36. Birkle S, Zeng G Gao L, et al. Role of tumor-associated gangliosides in cancer progression.Biochimie, 2003,85(3-4):455-463.
    37. Shaw LM. Tumor cell invasion assays. Methods Mol Biol, 2005,294:97-105.
    38. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol, 2005,17(5):548-58.
    39. Yan W, Shao R. Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation.! Biol Chem, 2006, 281(28): 19700-19708.
    40. Eble JA, Haier J. Integrins in cancer treatment. Curr Cancer Drug Targets, 2006,6(2):89-105.
    41. Entschladen F, Drell TL, Lang K, et al. Analysis method of human cell migration. Exp cell Res,2005,307(2):418-426.参考文献
    1. Underdown BJ, Switzer I, Jackson GD. Rat secretory component binds poorly to rodent IgM. JImmunol,1992, 149 (2): 487-491.
    2. Wieland WH, Orzaez D, Lammcrs A, et al. A functional polymeric immunofive globulin receptor in chicken (Gallus gallus) indicates ancient role of secretory IgA in mucosal immunity. Biochem J, 2004,380 (3): 669-676.
    3. Braathen R, Hohman VS, Brandtzaeg P, Johansen FE. Secretory antibody formation: conservedbinding interactions between J chain and polymeric Ig receptor from humans and amphibians. J Immunol, 2007 Feb 1; 178(3): 1589-97.
    4. Brandtzaeg P, Savilahti E. Further evidence for a role of secretory component (SC) and J chainin the glandular transport of IgA.Adv Exp Med Biol, 1978;107:219-26.
    5. Hempen PM, Phillips KM, Conway PS, et al. Transcriptional regulation of the human polymeric Ig receptor gene: analysis of basal promoter elements. J Immunol, 2002, 169 (4): 1912-1921.
    6. Solorzano-Vargas RS, Wang J, Jiang L, et al. Multiple transcription factors in 5'-flanking region of human polymeric Ig receptor control its basal expression. Am J Physiol Gastrointest Liver Physiol. 2002,283 (2): G415-425.
    7. Hughes GJ, Reason AJ, Savoy L, et al. Carbohydrate moieties in human secretory component.Biochim Biophys Acta, 1999,1434 (1): 86-93.
    8. Royle L, Roos A, Harvey DJ, et al. Secretory IgA N- and O-glycans provide a link between theinnate and adaptive immune systems. J Biol Chem, 2003,278 (22): 20140-20153.
    9. Brandtzaeg P, Carlsen HS, Halstensen TS. The B-cell system in inflammatory bowel disease. Adv Exp Med Biol, 2006,579: 149-167.
    10 Lewis MJ, Pleass RJ, Batten MR, Atkin JD, Woof JM. Structural requirements for the interaction of human IgA with the human polymeric Ig receptor. J Immunol,2005 Nov 15;175(10):6694-701.
    11. Wijburg OL, Uren TK, Simpfendorfer K, et al. Innate secretory antibodies protect against natural Salmonella typhimurium infection. J Exp Med, 2006,203 (l):21-26.
    12. Johansen FE, Pekna M, Norderhaug IN, et al. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med, 1999,190 (7): 915-922.
    13. Shimada S, Kawaguchi-Miyashita M, Kushiro A, et al. Generation of polymeric immunoglobulin receptor-deficient mouse with marked reduction of secretory IgA. J Immunol, 1999,163 (10): 5367-5373.
    14. Mazanec MB, Nedrud JG, Kaetzel CS, Lamm ME. A three-tiered view of the role of IgA in mucosal defense. Immunol Today, 1993 Sep;14(9):430-5.
    15. Robinson JK, Blanchard TG, Levine AD, et al. A mucosal IgA-mediated excretory immune system in vivo. J Immunol, 2001,166 (6):3688-3692.
    16. Schwartz-Cornil I, Benureau Y, Greenberg H, et al. Heterologous protection induced by the inner capsid proteins of rotavirus requires transcytosis of mucosal immunoglobulins. J Virol, 2002, 76 (16):8110-8117.
    17. Luton F, Mostov KE. Transduction of basolateral-to-apical signals across epithelial cells: ligand-stimulated transcytosis of the polymeric immunoglobulin receptor requires two signals. Mol Biol Cell, 1999,10 (5): 1409-1427.
    18. de Oliverira IR, de Araujo AN, Bao SN, et al. Binding of lactoferrin and free secretory component to enterotoxigenic Escherichia coli. FEMS Microbiol Lett, 2001,203 (l):29-33.
    19. Crottet P, Corthesy B. Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab')2: a possible implication for mucosal defense. J Immunol, 1998,161 (10): 5445-5453.
    20. Corthesy B. Recombinant immunoglobulin A: powerful tools for fundamental and applied research. Trends Biotechnol, 2002,20 (2): 65-71.
    21. Phalipon A, Cardona A, Kraehenbuhl JP, et al. Secretory component: a new role in secretoryIgA-mediated immune exclusion in vivo. Immunity, 2002,17 (1) 107-115.
    22. Kaetzel CS. The polymeric lmmunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev, 2005,206: 83-99.
    23. Murthy AK, Dubose CN, Banas JA, Coal son JJ, Arulanandam BP. Contribution of polymericimmunoglobulin receptor to regulation of intestinal inflammation in dextran sulfate sodium-induced colitis. J Gastroenterol Hepatol, 2006 Sep;21(9): 1372-80.
    24. Enriquez FJ, Riffs MW. Role of immunoglobulin A monoclonal antibodies against P23 in controlling murine Cryptosporidium parvum infection. Infect Immun, 1998, 66(9):4469-4473.
    25. Marshall LJ, Perks B, Bodey K, Suri R, Bush A, Shute JK. Free secretory component from cystic fibrosis sputa displays the cystic fibrosis glycosylation phenotype. Am J Respir Crit Care Med. 2004 Feb l;169(3):399-406.
    26. Royle L, Roos A, Harvey DJ, Wormald MR, van Gijlswijk-Janssen D, Redwan el-RM, WilsonLA, Daha MR, Dwek RA, Rudd PM. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem. 2003 May 30;278(22):20140-53.
    27. Alfsen A, Iniguez P, Bouguyon E, et al. Secretory IgA specific for a conserved epitope on gp41envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J Immunol, 2001, 166 (10):6257-6265
    28. Fujioka H, Emancipator SN, Aikawa M, et al. Immunocytochemical colocalization of specificimmunoglobulin A with sendai virus protein in infected polarized epithelium. J Exp Med, 1998,188 (7):1223-1229
    29. Huang YT, Wright A, Gao X, et al. Intraepithelial cell neutralization of HIV-1 replication by IgA. J Immunol, 2005 Apr 15; 174 (8):4828-4835.
    30. Kaetzel CS, Robinson JK, Chintalacharuvu KR, et al. The polymeric immunoglobulin receptor(secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA. Proc Natl Acad Sci USA, 1991,88 (19):8796-8800.
    31. Zhang JR, Mostov KE, Lamm ME, et al. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharv ngeal epithelial cells. Cell, 2000,102 (6): 827-837.
    32. Kaetzel CS. Polymeric Ig receptor: defender of the fort or Trojan horse? Curr Biol, 2001 Jan 9;ll(l):R35-8.
    33. Okamoto CT, Song W, Bomsel M, Mostov KE. Rapid intemalization of the polymeric immunoglobulin receptor requires phosphorylated serine 726. J Biol Chem, 1994 Jun 3;269(22): 15676-82.
    34. Leung SM, Ruiz WG, Apodaca G. Sorting of membrane and fluid at the apical pole of polarized Madin-Darby canine kidney cells. Mol Biol Cell, 2000 Jun;ll(6):2131-50.
    35. Jou TS, Leung SM, Fung LM, Ruiz WG, Nelson WJ, Apodaca G Selective alterations in biosynthetic and endocytic protein traffic in Madin-Darby canine kidney epithelial cells expressing mutants of the small GTPase Racl. Mol Biol Cell, 2000 Jan;ll(l):287-304.
    36. Wang E, Brown PS, Aroeti B, Chapin SJ, Mostov KE, Dunn KW. Apical and basolateral endocytic pathways of MDCK cells meet in acidic common endosomes distinct from a nearly-neutral apical recycling endosome.Traffic, 2000 Jun;l(6):480-93.
    37. Brown PS, Wang E, Aroeti B, Chapin SJ, Mostov KE, Dunn KW. Definition of distinct compartments in polarized Madin-Darby canine kidney (MDCK) cells for membrane-volume sorting, polarized sorting and apical recycling.Traffic, 2000 Feb;l(2): 124-40.
    38. Hemery I, Durand-Schneider AM, Feldmann G, Vaerman JP, Maurice M. The transcytoticpathway of an apical plasma membrane protein (B10) in hepatocytes is similar to that of IgA and occurs via a tubular pericentriolar compartment. J Cell Sci, 1996,109 (6):1215-1227.
    39. Hunziker W, Peters PJ. Rabl7 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells.J Biol Chem, 1998,273(25): 15734-15741.
    40. Breitfeld PP, Harris JM, Mostov KE. Postendocytotic sorting of the ligand for the polymeric immunoglobulin receptor in Madin-Darby canine kidney cells. J Cell Biol, 1989, 109(2):475-486.
    41. Leung SM, Ruiz WG, Apodaca G Sorting of membrane and fluid at the apical pole of polarized Madin-Darby canine kidney cells. Mol Biol Cell, 2000, ll(6):2131-2150.
    42. Matsumoto N, Asano M, Ogura Y, et al. Release of Non-Glycosylated Polymeric Immunoglobulin Receptor Protein. Scand J Immunol, 2003,58 (4): 471-476..
    43. Hammerschmidt S, Tillig MP, Wolff S, et al. Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol Microbiol, 2000,36 (3): 726-736.
    44. Perrier C, Sprenger N, Corthesy B. Glycans on secretory component participate in innate protection against mucosal pathogens. J Biol Chem, 2006,281(20): 14280 -14287.
    45. Marshall LJ, Perks B, Bodey K, et al. Free secretory component from cystic fibrosis sputa displays the cystic fibrosis glycosylation phenotype. Am J Respir Crit Care Med, 2004, 169 (3): 399-406.
    46. Phalipon A, Corthesy B. Novel functions of the polymeric Ig receptor: well beyond transportof immunoglobulins. Trends Immunol, 2003,24 (2):55-58.
    47.Nakamura Y, Nosaka S, Suzuki M, Nagafuchi S, Takahashi T, Yajima T, Takenouchi-Ohkubo N, Iwase T, Moro I. Dietary fructooligosaccharides up-regulate immunoglobulin A response and polymeric immunoglobulin receptor expression in intestines of infant mice. Clin Exp Immunol, 2004,137(l):52-58.
    48. Schneeman TA, Bruno ME, Schjerven H, Johansen FE, Chady L, Kaetzel CS. Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: linking innate and adaptive immune responses. J Immunol. 2005,175(l):376-384.
    49. Matsumoto N, Asano M, Ogura Y, Takenouchi-Ohkubo N, Chihaya H, Chung-Hsing W, Ishikawa K, Zhu L, Moro I. Release of non-glycosylated polymeric immunoglobulin receptor protein. Scand J Immunol. 2003, 58(4):471-476.
    50. Piskurich JF, Blanchard MH, Youngman KR, et al. Molecular cloning of the mouse polymericIg receptor. Functional regions of the molecule are conserved among five mammalian species. J Immunol, 1995,154 (4): 1735-1747.
    51. Mantis NJ, Cheung MC, Chintalacharuvu KR, et al. Selective adherence of IgA to murine Peyer’s patch M cells: evidence for a novel IgA receptor. J Immunol, 2002, 169 (4): 1844-1851.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700