盐芥激活标签突变体库的构建及盐芥转座子标签突变体的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物对盐胁迫的适应是一个非常复杂的过程,如何提高作物的耐盐性仍然面临着极大的挑战。对植物在受到盐胁迫时所作出的反应进行分析,寻找植物基因组中与耐盐相关的基因,进一步研究这些基因的反应机制,不仅对于揭示植物耐逆的机理具有重要的理论意义,而且对于耐盐作物的培育具有重要的实践意义。
     盐芥是拟南芥的一种近缘植物,与拟南芥一样,盐芥也具有很多可以被做为分子生物学研究模式系统的优点:比如说短的生活史、小的基因组、易于被转化以及丰富的种子等等。盐芥和拟南芥在cDNA和氨基酸水平上分别有95%和90%的同源性,这样在开展研究时,我们就可以方便地将拟南芥的很多信息(比如说基因、蛋白质数据库以及突变体系等)用于盐芥耐盐性的分子生物学研究。但是,与拟南芥不同的是盐芥非常抗盐,短时间内能耐受高达500mMNaCl的冲击,并且在受到盐胁迫时既不产生盐腺也没有发生复杂的形态上的变化,这些结果说明盐芥的耐盐性很大程度上源于它自身基本的生理和生化机制。目前,盐芥已经成为一种非常有研究价值的耐盐模式系统,人们已经先后开展了对盐芥生理生化、基因表达的研究,同时还建立了各种cDNA文库和突变体库。
     盐芥基因组的测序即将完成,功能基因组学研究将会成为我们以后研究工作的重点,而通过各种不同的方法建立大规模的突变体库是目前植物功能基因组学研究的最直接也是最有效的方法。从目前来看,在进行突变体建库时用到的方法主要有以下几种:自发突变、理化诱变和插入突变,其中插入突变又可以分为T-DNA插入突变和转座子标签两种方法。
     本实验以植物耐盐模式系统盐芥为研究材料,通过农杆菌介导的花浸染法将激活标记载体pSKI015、转座子标签Ds launch pad的T-DNA载体分别导入盐芥基因组,试图建立盐芥插入突变体库。对初步获得的抗性植株,进行了分子检测以及侧翼序列的克隆与分析。本实验仅对盐芥插入突变体库的建立进行了初步的工作,大规模的突变体库正在构建之中。
     本论文的主要目的是建立耐盐模式植物盐芥的激活标签突变体库,同时还对转座子标签法得到盐芥突变体的方法进行了初步的研究。主要结果如下:
     1.盐芥激活标签突变体库的建立
     本实验是通过农杆菌介导的花浸染法将激活标记载体pSKI015导入盐芥基因组,试图建立一定规模的盐芥激活标记突变体库。实验中得到的结果主要有以下几个方面,
     (1)利用激活标记载体pSKI015对盐芥进行遗传转化,共获得转化T0代种子800g左右,通过除草剂(Basta)筛选,共获得抗性苗约853株。
     (2)对得到的抗性苗进行检测,是通过对Bar基因的PCR检测来进行的。检测结果发现在853株抗性苗中,共有685株阳性苗,阳性率在80%左右。
     (3)采用TAIL-PCR的方法对得到的阳性苗进行T-DNA插入位点侧翼序列的扩增,并进行测序,得到侧翼序列36条,并进行了相关的序列分析。
     2.盐芥转座子标签突变体的筛选
     通过农杆菌介导的花浸染法将转座子标签的Ds载体导入盐芥的基因组中,然后进行筛选,得到突变体。得到的结果主要有:
     (1)利用Ds载体对盐芥进行遗传转化,通过除草剂(Basta)筛选,共获得抗性苗约87株。
     (2)对获得的抗性苗进行PCR检测,是通过对Bar基因的PCR检测来进行的。结果发现在87株抗性苗中共有76株阳性苗。
The mechanism of plants adaptation to salt stress is very complex, so improving the salt tolerance of crops is still a great challenge. Therefore, analyzing the mechanism of plants responses to salt stress, exploring genes related to salt tolerance not only have important theoretical significance, but also have important practical significance for cultivation of salt-tolerant crops.
     Thellungiella halophila (Salt cress) is a close relative of Arabidopsis thaliana, and has good genetic features such as a short life cycle, a small size of genome, an efficient transformation and high seed numbers, etc. Thellungiella halophila and Arabidopsis thaliana share 95% and 90% identities on cDNA and amino acid sequences respectively, so it is convenient to transfer informations of Arabidopsis (gene database, protein database and mutant lines) to molecular analysis on salt tolerance of salt cress. But, in sharp contrast with Arabidopsis, Thellungiella is able to withstand dramatic salinity shock up to 500 mM NaCl. This plant does not produce salt glands or other complex morphological alterations either before or after salt adaption. Up to now, Thellungiella has become a valuable model for the study of salt tolerance. And analysis on salt cress physiology, biochemistry and gene expression, and the construction of different cDNA libraries and mutant libraries have been made.
     Since Thellungiella sequencing is to be completed, the main task of this work will be functional genomic study, and the most direct and efficient way of functional genome study is to construct large-scale mutant library by various kinds of methods. From the current view, the mutant library construction methods used are mainly the following: spontaneous mutation, physical and chemical mutagenesis and insertional mutagenesis, in which insertion mutations can be divided into T-DNA insertional mutagenesis and transposon tagging methods.
     In this experiment, activation tagging vector pSKI015 and Ds launch pad T-DNA vector were respectively introduced into Thellungiella by Agrobacterium tumefaciens-mediated flora dip transformation with an intention to construct an insertional mutant library. Molecular analysis and cloning of the flanking genomic sequences have been conducted to the obtained resistant plants. Summarily, in this experiment, only primary research was made on construction of Thellungiella insertional mutant library and the library in large scale is being constructed now.
     The main objectives of the dissertation were to construct an activation tagging mutant library of Thellungiella and the transposon tagging method to obtain Thellungiella mutants had also been explored. The main results are as following:
     1.The construction of activation tagging mutant library of Thellungiella
     In this experiment, activation tagging vector pSKI015 was introduced into Thellungiella by Agrobacterium tumefaciens-mediated flora dip transformation with an intention to construct an activation-tagged mutant library. The main results are as following:
     (1) Activation tagging vector pSKI015 was introduced into the salt tolerance model plant Thellungiella halophila by Agrobacterium tumefaciens-mediated flora dipping method, we have obtained nearly 800g of T0 transgenic seeds, and 853 lines of Basta-resistant Thellungiella seedlings by Basta screening.
     (2) The basta-resistant Thellungiella plants were further identified by PCR detection of Bar gene, and the results showed that 685 of 853 resistant seedlings were positive, the positive rate reached 80%.
     (3) TAIL-PCR method were used to obtain the flanking genomic sequences of T-DNA insertion site from the 685 Bar-resistant Thellungiella seedlings, about 36 flanking sequences have been obtained, and BLAST analysis of these sequences have been done.
     2. The selection of Thellungiella transposon-tagged mutants Transposon tagged vector Ds was introduced into Thellungiella halophila by Agrobacterium tumefaciens-mediated flora dipping transformation.Then we selected transgenic T0 plants by Basta. And we obtained resistant Thellungiella seedlings. The main results were as below:
     (1) Transposon tagged vector Ds was introduced into Thellungiella halophila, we obtained transgenic T0 seeds, selected by Basta, about 87 Basta-resistant Thellungiella seedlings were obtained.
     (2) The results of PCR detection of Bar gene in resistant plants found that,76 lines of 87 resistant seedlings were positive.
引文
[1] Tester M and Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot, 2003, 91, 5: 503-507
    [2]宋婷. (2005)盐芥激活标记突变体库的构建[D]. (山东师范大学硕士学位论文)
    [3]刘玉. (2007)盐芥和拟南芥抗盐的生理生化机制研究[D].中央民族大学硕士学位论文)
    [4]赵勐. (2008)不同盐类对盐生植物和非盐生植物的影响[D]. (山东师范大学硕士学位论文)
    [5] Amtmann A, Bohnert HJ, Bressan RA. Abiotic stress and plant genome evolution.Search for new models. Plant Physiol, 2005, 138 : 127-130
    [6] Bressan R. A., Zhang C.Q., Zhang H. et al. Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol, 2002, 127: 1354–1360
    [7] Henig R M.,The Monk in the Garden Houghton Mimin Co,New York 2000
    [8] 0rel V Gregor Mendel:The First Geneticist.Oxford University Press.Oxford 1996
    [9]赵吉强. (2008)盐芥激活标签突变体库的建立及过量表达YAP1对拟南芥耐盐性的影响[D]. (山东师范大学博士学位论文)
    [10]刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用[J].植物生理与分子生物学学报,2005,31(4). 389.395.
    [11] Zeng-lan Wang, Ping-Hua Li, Hui Zhang, Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Science, 2004, 166: 609-616
    [12]李妍.耐盐研究模式植物——盐芥[J].生物学通报, 2007,42(2).
    [13]赵可夫,李法增.中国盐生植物[M].北京;科学出版社,1999.
    [14]董美芳,袁王俊,尚富德.小盐芥营养器官的结构特点与其盐渍环境的关系研究[J].西北植物学报,2005年6期.
    [15] Taji T, Seki M, Satou T et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol, 2004, 135 : 1697-1709
    [16] Inan G , Zhang Q, Li PH et al. Salt Cress.A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles. Plant Physiol, 2004, 135: 1-20
    [17] Volkov V, B. Wang, P.J.Dominy et al. Thellungiella halophila ,a salt-tolerant relative of Arabidopsis thaliana,possesses effective mechanisms to discriminate between potassium and sodium. Plant, Cell and Environment, 2003, 27: 1-13
    [18]赵昕,赵敏桂,谭会娟,刘玉冰.NaCI胁迫对盐芥和拟南芥K+、Na+吸收的影响(简报) [J].草业学报,2007年04期.
    [19]赵昕,谭会娟,丁楠.NaCl胁迫对盐芥质膜和液泡膜ATPase活性的影响[J].西北植物学报,2009年29卷4期
    [20] Teusink RS, Rahman M, Bressan RA, Jenks MA. Cuticular waxes on Arabidopsis thaliana close relatives Thellungiella halophila and Thellungiella parvula. Int J Plant Sci, 2002, 163: 309–315
    [21]岳思君,郑蕊,陈宁,植物功能基因组学研究进展[J].生物技术通讯,2005(16),2:217-220
    [22]王景雪,孙毅,徐培林等,植物功能基因组学研究进展[J].生物技术通报,2004,1:18
    [23] Breyne P,Zabeau M.Genome-wide expression analysis of plant cell cycle modulated genes:Genome studies and molecular genetics[J].Plant Biol,2001,4:136–142
    [24] Rie Terada,Hiroko Urawa,Yoshishige Inagaki et al.Efficient gene targeting by homologous recombination in rice[J].Nat Biotechnol,2002,20(10):1030-1034
    [25] Velculescu VE,Zhang L,Vogelstein B,et al.Serial analysis of gene expression[J].Science, 1995,270:484-487
    [26]王曙光(2007).多功能T-DNA标签系统的建立及杨树突变体库的创制[D]. (西北农林科技大学硕士论文).
    [27] Bouchez D and H?fte H Functional Genomics in Plants, Plant Physiol, 1998, 118: 725-732
    [28] Somerville C and Somerville S. Plant functional genomics. Science, 1999, 285: 380-383
    [29]阮伯胜(2008).粳稻“日本晴”突变体库的创建和部分重要性状的遗传分析[D]. (浙江大学硕士学位论文)
    [30]郭龙彪,储成才,钱前.水稻突变体与功能基因组学[J].植物学通报,2006, 23 (1): 1-13
    [31]李祥(2008).棉花启动子突变体库的创建与初步分析[D]. (华中农业大学硕士学位论文)
    [32] Fisher K S,Barton J,Khush G S et al.Collaboration in rice[J],Science.2000,290:279-280
    [33] Leung H,Wu C,Baraoidan M et al.Deletion mutants functional genomics:progress in phenotyping, sequence assignment and database development, International Rice Genetics Symposium(2000),IRRI Philippines,Abstract Book,2000:18
    [34] Delseny M,Salsesa J,Cookea R et al.Rice genomics:Present and future[J],Plant Physiol Biochem, 2001,39:323-334
    [35] Jeon JS and An G.Gene tagging in rice:a high throughput system for functional genomics[J].Plant Sci,2001,161:211-219
    [36] Bruce P,May and Robert A.Martienssen.Transposon Mutagenesis in the Study of P1ant Development[J].Critical Reviews in Plant Sciences,2003,22(1):1-35
    [37]胡英考,转座子标签法克隆分离植物基因的研究进展[J].生物技术通报2003,2:18-21
    [38]杨珍珍,李萍,王崇英(2008). T-DNA介导的基因诱捕技术及其在植物功能基因组学研究中的应用[J].植物学通报25, 112~120.
    [39] Knapp S, Larondelle Y, PoBberg M et al. Transgenic tomato lines containing Ds element at defined genomic positions as tools for targeted transposon tagging. Mol Gen Genet, 1994, 243: 666-673
    [40] Tissier A F, Marillonnet S, Kimyuk V et al. Multiple independent defective Suppressor-mutator transposon insertions in Arabidopsis: A tool for functional Genomics. Plant Cell, 1994, 11: 1841~1852
    [41] Liu Y G and Whitter R F. Thermal asymmetric interlaced PCR: automatable amplification andsequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25: 647~681
    [42] Azpiroz-Leehan R. and Feldmann, KA. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet, 1997, 13: 152~156
    [43] Lindsey K, Topping JF, Muskett PR, et al. Dissecting embryonic and seedling morphogenesis in Arabidopsis by promoter trap insertional mutagenesis. Symp Soc Exp Biol ,1998, 51: 1~10
    [44] Nacry P, Camilleri C, Courtial B, et al. Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics, 1998, 149: 641 650
    [45] Laufs P, Autran D, Traas J. A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis. Plant J, 1999, 18: 131 139
    [46]张健(2007).水稻T-DNA插入突变体侧翼序列的分离与分析及控制杂合单株低育性基因Osfbox的功能研究[D]. (华中农业大学博士学位论文)
    [47]王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998
    [48] Gheysen G,Villarroel R and Van Montagu M. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev, 1991, 5: 287-297
    [49] Mayerhofer R, Koncz-Kalman Z, Nawrath C et al. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J, 1991, 10: 697-704
    [50]朱玉贤.现代分子生物学(第二版) [M].高等教育出版社2002年07月出版
    [51]向阳,朱冬雪,夏雨,吕立堂,赵德刚等植物基因工程中Ti质粒的研究与应用进展[J]生物学通报2003年38期(2)
    [52]王自章.张树珍.李杨瑞T-DNA转移研究进展[J] .生命科学研究2001(z1)
    [53] Brunaud V Balzergue S,Dubreucq B,et a1.T-DNA integration into the Arabidopsis genome depends on sequences of pre insertion sites[J].EMBO Rep,2002,3(12):11 52~1157.
    [54]吕亚慈.水稻T-DNA插入突变技术研究. [J]衡水学院学报2009年第11期(1)
    [56]江树业,陈启锋,葛学军(2003).基因捕捉及其在植物基因分离和功能基因组学上的应用. [J]热带亚热带植物学报11, 181-189.
    [57] Kardailsky I,Shukla VK,Ahn JH et a1.Activation tagging of thefloral inducer FT. Science,1999,286:1962-1965
    [58]彭昊(2005).利用T-DNA插入突变和RNA干涉技术研究水稻基因功能[D]. (中国农业科学院博士学位论文).
    [59] KONCZ C,MARTINI N,MAYERHOFER R,et a1.High-frequency T-DNA-mediated gene tagging in plants[J].Proceedings of the National Academy of Sciences of The United States of America,1989,86:8 467~8 471.
    [60] Weigel.D, Ahn JH, Blázquez MA, et al. Activation tagging in Arabidopsis. Plant Physiol, 2000, 122: 1003~1013
    [61] LU J R,JIN ZH H.Construction of dominant insertional mutagenesis vector in plant[J].Chemistry ofLife, 1994a, 14(6): 49~50(in Chinese).
    [62] LU J R,JIN ZH H.Design of dominant insertional Mutagenesis vector[J].Progress in Biotechnology,1994b, 14(5): 34~35(in Chinese).
    [63]侯雷平,李梅兰.T—DNA标签在植物基因克隆和功能分析中的应用. [J]西巍谴物学报,2006,26(5): 1066~1070
    [64]关艳龙,李婉莎,殷奎德,杨永平,胡向阳激活标签法构建拟南芥突变体库及其表型分析[J]云南植物研究2010,32(1):53-59
    [65] Matsuhara S,Jingu F,Takahashi T,et a1.Heat—shock tagging:a simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions[J]. Plant J, 2000(22): 79~86.
    [66] Zuo J, Niu Q W1 Frugis G et a1. The WUSCHEL gene promotes vegetativeto bryonic transition in Arabidopsis[J].Plant J.2 002(30):349—359.
    [67] Tani H,Chen X,Nurmberg P,et a1.Activation tagging in plants:a tool for gene discovery[J].Funct Integr Genomics,2 004(4):258—266.
    [68] Hayashi H, Czaja 1, Lubenow H et al. Activation of a plant gene by T-DNA tagging-Auxin independent growth in vifro,.Science, 1992, 258: 1350-1353
    [69] Matsuhara S, Jingu F, Takahashi T, Komeda Y. Heat-shock tagging: a simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions. Plant J, 2000, 22: 79–86
    [70] Benfey PN, Chua N-H. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J, 1989, 8: 2195–2202
    [71] Helen T, Xinwei C, Pedro N, et al. Activation tagging in plants: a tool for gene discovery. Funct Integr Genomics,2004,4:1-9
    [72]刘思衡编.作物育种与良种繁育学词典. [M]北京:中国农业出版社.2001.第142页.
    [73] Charng Y C, Ma C, Tu J et al. A 200-bp constructed inducible PR-la promoter fusion to the Ac transposase gene drives higher transposition of a Ds element than the native PR-la promotor fusion drives. Plant Sci, 1997,130: 73-86
    [74] Eisen J A,Benito M,Walbot V Sequence similarity of putative transposases links themaize mutator autonomous element and a group of bacterial insertion sequences.Nucl Acids Res,1994,22(13):2634-2636.
    [75] McClintock B.Chromosome organization and genie expression.Cold Spring Harbor Symp Quant Biol,1951,16:13-47.
    [76]苏旭(2009).Mutator转座子介导的玉米突变体库的构建及表型评价[D]. (河北农业大学硕士毕业论文)
    [77] Kumar A and Bennetzen J L. Plant retrotransposons. Annu Rev Genet, 1999, 33:479-532
    [78] Hirochika H. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol, 2001, 4: 118-122
    [79] Paul R. Muskett、, Leah Clissold, Adriano Marocco, Patricia S. Springer, Robert Martienssen,and Caroline Dean A Resource of Mapped Dissociation Launch Pads for Targeted Insertional Mutagenesis in the Arabidopsis Genome Plant Physiology, June 2003, Vol. 132, pp. 506–516,
    [80] Ludwig SR, Habera LF, Dellaporta SL, Wessler SR (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci USA 86: 7092–7096
    [81] Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9: 1797–1810
    [82]王玉飞,陈泽良,乔凤,杜昕颖,贾雷立,袁静,黄留玉.质粒拯救法克隆细菌基因组大片段. [J]微生物学报2008年4期.
    [83] Baldi P,Brunak S.Bioinformatics:The Machine Learning Approach [J].Cambridge Mass:MIT Press,2001.
    [84] Goodman N.Biological data becomes computer literate:new advances inbioinformatics[J].Curr Opinin Biotechnol,2002,13(1):68—71.
    [85]高媛.后基因组时代的生物信息学发展[J].中国科技信息2009年第10期
    [86]石生林,韩艳君,刘彦,秦利.非专业研究生生物信息学课程教学中存在的问题及对策[J].生物信息学2009年06月第7卷第2期1672—5565(2009)一02~125—03.
    [87]冯思玲生物信息学技术研究[J].信息技术, 2009年第5期1009~2552
    [88]刘智琚数据挖掘在生物信息学[J]中的应用软件导刊2009年7B第8卷第7期:1672—7800(2009)07—0156—02
    [89] Qin G J, Kang D M, Dong Y Y et al. Obtaining and analysis of flanking sequences from T-DNA transformants of Arabidopsis. Plant Science, 2003, 165: 941-949
    [90] Jeon J S, Lee S, Jung K H et al. T-DNA insertional mutagenesis for functional gemomics in rice. Plant J, 2000, 22: 561-570

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700