新型组合式膜生物反应器的设计及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器是一种由膜分离单元与生物处理单元相结合的新型水处理技术。由于一体式膜-生物反应器(MBR)具有处理效率高、污泥产量低和占地面积小等特点,其研究和应用受到了广泛关注。特别是处理医院废水时,MBR的出水悬浮物浓度非常低,污水中未处理掉的细菌与病毒失去了屏障,从而也易于被杀灭。然而,膜生物反应器的应用仍受到膜污染的影响,从而导致膜通量较小,清洗较困难,运行管理不太方便。
     为解决现有技术存在的上述问题,本文探索了膜组件与其他生物处理工艺的组合方式,结合各工艺的特点设计了一种新型组合式膜生物反应器。实质是膜组件与倒置A2/O、生物接触氧化工艺的组合,根据理论知识和现有条件的结合设计出膜生物反应器的尺寸然后制作反应设备并投入运行。
     试验用水取自大连医大二院的医院废水。原水SS为200-300 mg/L,COD为400-600 mg/L,TOC为200-300 mg/L,TN为90-120 mg/L,TP为3-5 mg/L,粪大肠菌为1.7×108 MPN/L。接种污泥采用大连市春柳河污水处理厂污泥浓缩池处理后的污泥,然后进行培养驯化,直到运行稳定。
     膜生物反应器分为缺氧区、厌氧区、好氧区、沉淀区、生物接触氧化区和膜组件区,各自的体积分别为12.48L、12.48L、28.08L、14.82L、16.25L和30.66L。反应器启动后,经过多次试验,好氧反应池中的曝气量最终确定为0.1 m3/h,生物接触氧化池的曝气量为0.08 m3/h,膜组件区的曝气量为0.15 m3/h,该膜生物反应器的最佳水力停留时间为7.73~8.68 h。通过对试验方案的不断调整,该反应器对各项污染指标的去除率分别为:COD为90%,TOC为85%,TN为80%,TP为90%,SS为99%以上,粪大肠菌为70MPN/L。有很好的抗冲击负荷能力,膜生物反应器能高效的去除污染指标是各处理单元共同作用的结果。该工艺处理的容积负荷约为2.2KgCOD/(m3.d)。
     试验经过两个月后,总磷的去除率达不到要求,而倒置A2/O工艺TP的出水在1~2 mg/L左右。采取的应对措施是定期排泄沉淀池中的污泥,并向沉淀池中投加FeCl3混凝剂以提高磷的去除率。经试验证明,FeCl3的最佳投加量为33 mg/L。
     经过70天的运行试验,跨膜压差变化很小,始终保持在0.06 MPa以下。膜通量不断降低,而且下降幅度越来越大。为了保证膜生物反应器能够有效、稳定地运行,采用0.1%的NaClO和0.2%的硫酸对膜生物反应进行定期清洗,膜通量恢复至96%以上。
Membrane bioreactor is a new water treatment technology combined a membrane separation unit and the biological treatment unit. Submerged membrane bioreactor has many advantages such as obvious treating efficiency, less sludge production and small floor coverage. The study and application has been received extensive attention, especially for medical sewage treatment. The concentration of effluent suspended in the MBR water is very low, so the untreated bacteria and viruses are easier to be killed without protecting. However, the application of membrane bioreactor is still subject to membrane fouling, leading to less flux, cleaning more difficult, inconvenient operation and management.
     To solve the above problems existing in current technology, this article explores a new technology combined the membrane module and other biological treatment. Combine the features of each technology, Design the new combined membrane bioreactor. The technology combined by membrane, inverted A2/O and the biological oxidation process. Design the size of membrane bioreactor based on the theoretical knowledge and the existing conditions, then product the equipment and put into operation.
     The aim of this paper was to solve these above problems. This paper has investigated the combination of membrane and other biological technology, and absorbed the advantages of other treatments and designed the new membrane biological reactor. According to the sticking time of water and other conditions, and worked out the size of reactor and made it.
     The test wastewater was taken from the 2nd affiliated hospital of Dalian, to ensure stable quality and sometimes would be adjusted accordingly, Raw water SS is 200~300 mg/L, COD is 400~600 mg/L, TOC is 200~300 mg/L, TN is the 90~120 mg/L, TP is 3~5 mg/L, and faecal coliform is about 1.7×108 MPN/L. Seed sludge was collected from the sludge thickener of Dalian Chunliu sewage treatment plant, and then cultivated in acclimation.
     The SMBR is divided into anoxic zone, anaerobic zone, oxic zone, settling zone, biological contact oxidation (BCO) zone and membrane module zone and the capacity is 12.48 L, 12.48 L, 28.08 L, 14.82 L, 16.25 L and 30.66 L respectively. After reactor startup through a series of test, the aerobic reaction aeration pond identified as 0.1 m3/h, biological contact oxidation pond aeration is 0.08 m3/h, aeration membrane area was 0.15 m3/h, and the prime HRT for the membrane bioreactor was 7.73~8.68 h. The experiment program was adjusted continuously. The results showed that the eliminating efficiency of pollutants with the new combined membrane bioreactor could be perfect and the removal rates of COD, TOC, TN, TP, SS exceeded approximately 90%, 85%, 80%, 90% and 99%, respectively. The process of the volume load is about 2.2 Kg COD/ (m3.d), have a good shock load, the membrane bioreactor has so efficiently removal of the pollution index is the result of the interaction processing units.
     After two months experiment, the removal rate of TP increased gradually, the removal rate of TP in inverted A2/O is 1~2 mg/L. The measures are regularly discharge the sludge from the sedimentation tank and FeCl3 coagulant dosage in order to enhance the removal of phosphorus rate of trial. The result demonstrated that the prime quantity of FeCl3 dosage was 33mg/L.
     After 70 days of operation, it showed that there was little change in transmembrane pressure and always kept the following under 0.06 MPa. The membrane flux decrease and the growing drop substantially. To ensure the membrane bioreactor steady and operate effectively, cleaning membrane by 0.1% NaClO and 0.2% H2SO4 to and the membrane flux recovered to more than 96%.
引文
[1]徐彬.水资源的危机警示-中国未来水资源形势严峻.决策与信息,2004,(8): 6~7
    [2]籍国东.我国污水资源化的现状分析与对策探讨[J].环境科学进展,1998,(5): 10~15
    [3]刘鸿亮,韩国刚,严济民等.中国水环境预测与对策概论[M].北京:中国环境科学出版社,1998: 35~55
    [4]陈频.污水回用技术与应用[J].金陵职业大学学报,2003, 18(l): 41~42
    [5]水利部南京资源研究所,中国水利水电院水资源研究所编著[M].21世纪中国水供求.南京:中国水利水电出版社,1999: 150~176
    [6]樊耀波,王菊思.水与废水处理中的膜生物反应器技术.环境科学,16(5): 79~81
    [7]黄霞,桂萍,范晓军等.膜生物反应器废水处理工艺的研究进展.环境科学研究,1998, 11(1): 40~44
    [8]彭跃莲,刘忠洲.膜生物反应器在废水处理中的应用.水处理技术, 1999, 25(4): 63~69
    [9]黄霞,曹斌,文湘华,魏春海.膜-生物反应器在我国的研究与应用新进展.环境科学学报,28(3): 417~432
    [10]白玲,蓝伟光,严滨,万金保.废水处理中膜生物反应器的研究进展.膜科学与技术,28(1): 91~96
    [11]陈殿英.膜生物反应器废水处理新工艺.化工环保,2002, 22(5): 261~264
    [12] Visvanathan C, Aim RB. Membrane separation bioreactors for wastewater treatment [J]. Critical Reviews in Environmental Sci Tech, 2000, 30(1): 1~48
    [13]王宝贞,王琳.水污染治理新技术[M].北京:科学出版社,2004: 60
    [14]杨琦,黄霞,尚海涛,等.分置式膜-生物反应器凝胶层膜污染模型研究.环境科学,27(11): 2344~2349
    [15]王珊,梅凯,汤晓燕,等.沉浸式膜生物反应器的技术开发与应用.石油化工安全环保技术,24(3): 52~55
    [16]殷峻,陈英旭.膜生物反应器中的膜污染问题.环境污染治理技术与设备,2001,2(3): 62~68
    [17]李春杰,何义亮,欧阳铭.错流膜生物反应器水力清洗特性研究.环境科学, 1999, 20(2): 57
    [18] Trouve E, Urbain V, Manem J. Treatment of municipal wastewater by membrane bioreactor: results of a semi-industrial pilot-scale study [J]. Wat. Sci. Technol., 1994, 30(4):151~157
    [19] Bailey AD, Hansford GS, Dold PL. The use of cross flow microfiltration to enhance the performance of an activated sludge reactor[J]. Wat. Res., 1994, 28(2): 297~301
    [20] Cheng TW, Yeh HM, Gau CT. Resistance analyses for ultrafiltration in tubular membrane module [J]. Separation Science and Technology, 1997, 32(16):2623~2640
    [21]李琳(译).膜技术基本原理[M].北京:清华大学出版社, 1999. 270~273
    [22]Ingham KC. Ultrafiltration Membrane and Application. Cooprt AR (ed). New York: Plenum, 1980.141
    [23]Munir C. Ultrafiltration Handbook.Lancaster: Technomic, 1986: 175.
    [24]刘昌胜.膜过滤法提取红霉素的工艺与工程问题研究:[硕士学位论文].上海:华东理工大学,1992.
    [25]刘茉娥.超滤膜污染机理的研究及控制.水处理技术,1989,15(3): 163
    [26]宋志伟,杨帆,任南琪.膜生物反应器中膜污染机理及其防治.吉林大学学报(地球科学版),38(4): 676~680
    [27] Urbain V, Mobarry B, V de Silva, et al. Integration of performance, molecular biology and modeling to describe the activated sludge process[J]. Wat. Sci. Technol., 1998, 37(4-5): 223~229
    [28]王珊,梅凯,汤晓燕,等.沉浸式膜生物反应器的技术开发与应用.石油化工安全环保技术,2005,24(3): 52~55
    [29] Field RWW, Howell DJA, Cmpto BB. Critical flux concept for micro-filtration fouling[J]. J Membr Sci, 1995, 100:259~272
    [30]操建华,朱宝库,徐又一.外置式中空纤维膜-生物反应器处理污水的研究.膜科学与技术,26(4): 48~56.
    [31]桂萍,黄霞,汪诚文,等.膜-复合式生物反应器组合系统操作条件及稳定运行特性.环境科学,19(2): 35~38
    [32]刘昌胜,邬行彦,潘德维,等.膜的污染及其清洗.膜科学与技术,16(2): 25~30
    [33]张栋华.膜生物反应器在废水处理中的应用及前景展望.中国化学会第七届水处理化学大会暨学术研讨会论文集
    [34]张颖,李力,杨振刚,等.膜生物反应器用于处理医院污水.中国给水排水,2005,21(2): 83-85
    [35]Manam J, Sanderson E. Membranebio-reactors.In: Megaw Hill (ED). Water Treatrnent Membrane Processes, 1996(17)
    [36]郑祥,朱小龙,张绍圆,等.膜生物反应器在水处理中的研究与应用.环境污染治理技术与设备,2000,1(5): 12~16
    [37]许振良.污水处理膜分离技术的研究进展(一).净水技术,2000,19(3): 3~6
    [38]许宁,李志富,冯文华.生物反应器一中空纤维膜处理医院污水.净水技术. 2003, 22(5): 6~8.
    [39]吴克宏.医院污水处理技术综述.工业用水与废水,2001,32(1): 40~42.
    [40]邢传红等.管式膜-生物反应器处理城市污水的工艺设计.中国给水排水,1999,15(1): 1~4
    [41]新会,刘则华.以剩余污泥减量化为目标的废水生物处理技术研究进展[J].化工进展,2004,23(8): 832~836.
    [42]郑兴灿.污水除磷脱氮技术[M].北京:中国建筑工业出版,1998: 153~192
    [43]王培冈,张冬梅,赵平健.SBR工艺用于生活污水脱氮除磷的试验研究[J].西安科技学院学报,2003,23(1):30~33
    [44]高宇. SBR生物除磷的研究进展[J].重庆工商大学学报(自然科学版),2005,22(1):30~34
    [45]张波,高廷耀.生物脱氮除磷工艺厌氧/缺氧环境倒置效应[J].中国给水排水,1997,13(3): 7-10.
    [46]周国维. A2/O倒置前后生物脱氮效果研究.广西城镇建设,2008, 7: 108~109
    [47]黄理辉,张波,毕学军,马鲁铭.倒置A2/O工艺的生产性试验研究[J].中国给水排水,2004,20(6): 12-15.
    [48]董滨,周增炎,高廷耀.投料倒置A2/O脱氮除磷工艺中试[J].中国给水排水,2004,20(11): 14-17
    [49]高廷耀.环境工程微生物学[M].北京:高等教育出版社,2002: 232~233
    [50]杨林梅.生物接触氧化法处理城镇污水的发展前景.太原科技,2001,1: 17~18
    [51]张胜华.水处理微生物学.北京:化学工业出版社,2005:190~192
    [52]朱成辉,等.好氧移动床生物膜反应器挂膜启动过程.食品与生物技术学报. 2005, 24(2): 92~95
    [53]邬扬善.为什么生物接触氧化法处理城市污水只需一小时左右.中国给水排水,1999,25(2): 35
    [54]刘锐,黄霞,范彬,等.膜生物反应器中溶解性微生物产物的研究进展[J].环境污染治理技术与设备,2002,3(1):1-7.
    [55]陈宏宇,孙宝盛,张海丰.膜生物反应器中溶解性微生物产物对膜污染的影响.水处理技术, 2008,34(7):16-18.
    [56] Fan FS, Zhou HD, Husain H. Use of Chemical Coagulants to Control Fouling Potential for Wastewater Membrane Bioreactor Processes. Water Environment Research, 2007, 79(9): 952-957

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700