长江流域及黄、东海铝的生物地球化学循环及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝是海洋中的痕量元素,主要来源于陆地岩石风化产物的溶解并通过河流和大气沉降输送到海洋,海洋中溶解态铝的含量可用于示踪陆源物质输送、大气沉降及不同水团的混合,其海洋生物地球化学行为的研究受到广泛重视。黄、东海是世界上最宽广的陆架边缘海之一,接受大量来自黄河、长江等大河流域及东亚沙尘输送的陆源物质,同时受季风气候和太平洋西边界强流——黑潮入侵陆架的影响形成复杂的环流体系,是研究铝的生物地球化学循环的理想场所,其来源、通量、内部循环及其埋藏的研究对于丰富铝的生物地球化学研究具有重要的科学意义。本论文以长江流域和黄、东海为研究对象,系统地认识了长江流域和黄、东海铝的分布特征、时空变化及其影响因素,获得的主要认识如下:
     2009年秋季调查期间长江主流溶解态铝的含量范围为146-1263 nmol/L,上游浓度显著地高于下游。长江主流溶解态铝的平均含量为548±354 nmol/L,与三峡截流前1997年调查的结果相比含量显著降低。长江北方支流溶解态铝的含量高于南方支流。三峡截流前后,长江上游及其主要北方支流溶解态铝的浓度年际变化不大,而长江下游及主要南方支流溶解态铝的浓度则较截流前显著降低。长江流域南、北支流溶解态铝的含量主要受两方面因素的影响:一、流域盆地岩石土壤组成、风化特点、气候条件、径流量等因素是造成南、北支流溶解态铝含量差异的主要原因;二、人为活动对溶解态铝含量有重大影响,部分支流如牛拦江由于受到人为活动的影响使得溶解态铝含量较1997年明显升高。人为活动的影响还体现在三峡大坝的建设上,长江截流使得上游流速减缓、坝区前水体存留时间延长、下游含沙量明显降低,这些均对南、北支流铝的分布和迁移转化产生明显的影响。长江流域溶解态铝的含量与我国及世界其它河流相比仍处于中等偏下水平,没有受到人为活动的明显扰动。我国主要河流中溶解态铝的含量随流域化学风化率增加而显著降低,主要受气候变化控制。
     黄海海域溶解态铝的分布受黄海沿岸流、朝鲜沿岸流及黄海暖流的共同影响,基本呈现出山东半岛以南近岸区域含量较高,黄海中部含量最低的平面分布特征。季节变化上,黄海溶解态铝的含量冬季略高于春季。影响黄海铝的生物地球化学循环的主要因素有:一、春季沙尘气溶胶在海洋表层的溶解释放,沙尘过镜后黄海表层溶解态铝的含量显著升高,随深度增加含量逐渐下降。2007年春季航次开始阶段受到沙尘暴的影响,根据现场采集的沙尘气溶胶样品计算了沙尘输送通量和大气沙尘沉降带来的溶解态铝的沉降通量,估算了沙尘沉降对黄海表层溶解态铝含量的影响,估算结果与实测结果较好地吻合。二、浮游植物水华对黄海溶解态铝生物地球化学循环的调控作用。黄海水华发生过程中溶解态铝与硅酸盐的垂直分布剖面一致,且随着水华的发生、发展过程黄海中部表层溶解态铝的含量明显降低,水华过程中采集的悬浮颗粒物样品中HAc-Al提取态铝含量较非水华期明显升高,这些结果均说明浮游植物的生长对黄海海域铝的生物地球化学循环具有重要的影响。通量计算结果表明,黄海大气沙尘沉降带来的溶解态铝的输送通量与长江、鸭绿江等河流输送的通量相当,黄海溶解态铝的存留时间约为87±9天。
     东海中陆架溶解态铝的分布主要受长江及浙闽沿岸径流、台湾暖流、黑潮等水团的共同影响,基本呈现出沿岸区域含量较高,随离岸距离增加含量逐渐降低的平面分布特征。季节变化特征上,受陆源径流的季节变化影响东海中陆架溶解态铝的含量秋季高于冬季。通量计算结果表明,黑潮和台湾暖流的入侵对东海溶解态铝的分布影响非常显著,而河流输送通量则与大气干、湿沉降通量相当。东海中陆架溶解态铝的存留时间约为337±154天。以溶解态铝含量作为长江陆源输送的示踪因子,根据三端员模型计算自长江口向西南琉球群岛方向延伸的PN断面上长江冲淡水、黑潮和台湾暖流的混合情况,估算春、秋季长江冲淡水在PN断面的影响程度。结果表明,长江冲淡水对陆架的影响程度秋季强于春季。长江冲淡水的影响主要集中在距河口150 km范围以内,至距河口300 km处长江冲淡水的影响小于2%,主要受黑潮次表层水入侵的影响。
     黄海中部海域现场和实验室的铝加富培养实验结果均表明,浮游植物生长过程中会有效地清除海水中的溶解态铝。Al的加富会使培养初期浮游植物的比生长率降低,且降低的程度随铝加富浓度的增加而加大。Al的加富虽然会延缓培养初期浮游植物的生长,但对最终的浮游植物生物量不产生影响。2007-2009年间在黄、东海用20μm浮游植物网现场采集浮游植物样品,用草酸盐淋洗试剂淋洗以区分浮游植物细胞内结合态铝和细胞外吸附态铝。浮游植物总铝的含量范围为4.4-48.6mg/g内,其中细胞内结合态铝的含量范围为2.2-48.0mg/g。浮游植物总铝的含量在黄、东海的沿岸区域较高,随离岸距离的增加含量逐渐下降。而细胞内结合态铝占总铝比值则在黄海中部较高,长江口海域比较低。初步分析结果表明,硅藻样品中铝主要以细胞内结合态形式存在,而甲藻样品中铝则主要以细胞表面吸附态形式存在。硅藻水华发生初期浮游植物细胞内铝主要以结合态形式存在,而在水华衰退期则表面吸附态含量开始升高。
     分析了黄海中部E2站、长江口A13站、浙闽沿岸E5站、东海中陆架E6站和东海陆坡P4站重力管及沉积物多管样品中的Al/Ti的平均比值变化情况,结果发现,E2站、E5站和P4站重力管沉积物样品中Al/Ti比值高于黄河、长江沉积物及黄土、土壤背景值中Al/Ti比值,表明黄、东海陆架边缘海海区沉积物中存在“过剩铝”信号。过剩铝占沉积物总铝的比例在黄海中部最高,达到11.8%,且与生物硅含量正相关,在浙闽沿岸和东海陆坡海区过剩铝含量约为5%,表明沉积物中的过剩铝含量与海洋生源的自生沉积有关。
Aluminum is the trace metal in the ocean, mainly comes from the dissolution of weathering products and can be used as the tracer of terrestrial input, atmospheric deposition and mixing of different water masses. The study of marine biogeochemical cycles of aluminum in natural waters gets more and more attentions these years. The Yellow Sea (YS) and East China Sea (ECS) is the most extensive continental shelf in the world. It receives huge amounts of terrestrial materials from large rivers (e.g., Changjiang, Huanghe etc.) and from East Asia dust storms. The current systems in the YS and ECS are regulated by the seasonal variability of monsoons and incursion of Kuroshio and Taiwan Warm Current. Therefore, the YS and ECS is an ideal place to study the source, sink, internal cycles of aluminum in the continental shelf region. The knowledge of biogeochemical cycles of aluminum in the shelf region can help scientist to deeply understand its behavior in the ocean. This thesis presents the results of biogeochemical cycles of aluminum in the Changjiang drainage basin, the YS and the ECS shelf. The distributions, seasonal variations and its effect factors are mainly discussed. The main results are listed below.
     Water samples were collected from river mouth upstream over a distance of 3500-4000 km in Changjiang and its 15 northern and southern tributaries during September-October in 2009. The concentrations of dissolved aluminum in the main stream of Changjiang range from 146 to 1263 nmol/L, with an average of 548±354 nmol/L. The concentrations of dissolved aluminum are higher in the upstream than the downstream, and are also higher in the northern tributaries than the southern tributaries. Compared with the results obtained at April-May 1997 before the construction of Three Gorges Dam (TGD), the concentrations of dissolved aluminum in the upstream of Changjiang and major northern tributaries show little annual variations. However, the concentrations of dissolved aluminum in the downstream of Changjiang and southern tributaries decrease dramatically after the construction of TGD. Source rocks in the drainage basin and weathering characteristics are the first control factor on the concentrations of dissolved aluminum in the northern and southern tributaries. Several tributaries are contaminated by human activity (e.g. Nulanjiang). Construction of TGD in the main stream at the Yichang brings several influences, for example, decreasing the water flow and increasing the water residence time before the dam, decreasing the suspended particle contents after the dam etc. All of these influences will change the concentrations and transportations of dissolved aluminum in the Changjiang. Compared with the other Chinese and world rivers, the concentrations of dissolved aluminum remain at the lower level. The concentrations of dissolved aluminum in different drainage basins in China are mainly controlled by the weather characteristics.
     Three cruises were carried out aboard R/V Beidou in March-April 2007, February 2009 and March-April 2009, respectively, to understand the biogeochemical behaviors of aluminum in the YS. The distributions of dissolved aluminum in the YS are influenced by the mixing of Yellow Sea Coastal Current, Korean Coastal Current and the Yellow Sea Warm Current. The concentrations of dissolved aluminum are high in the coastal area of Shandong peninsula and relative low in the central YS. The concentrations of dissolved aluminum in winter are higher than the average concentrations in spring. Strong East Asia dust storms in spring have important impacts on the distributions of dissolved aluminum in the YS. The concentrations of dissolved aluminum show surface maximum profiles after the dust deposition, which are quite different with the normal profiles in the shelf. The impact of one dust deposition on the increment of dissolved aluminum in the top mix layer of YS is estimated. The estimation matches with the real measured results very well. The concentrations of dissolved aluminum in the top mixed layer of the central YS decrease sharply during the spring bloom. The vertical profiles of dissolved Al are similar with that of silicate during the bloom, which shed light on the biological mediation of dissolved Al in the YS. The HAc-Al fractions in the suspended particles increase during the bloom. Input fluxes of dissolved Al from atmospheric deposition, riverine input and exchanges with the East China Sea and Bohai are estimated, in which the atmospheric deposition is the major source of dissolved Al in the SYS. Combined the dissolved Al inventory with the total input flux, a 87±9 days'residence time of dissolved Al in the SYS is inferred.
     Two cruises were carried out aboard R/V Beidou in November-December 2006 and February 2007, respectively, to understand the biogeochemical behaviors of aluminum in the ECS shelf. The distributions of aluminum in the YS and ECS show the effects of land-source inputs from the Changjiang and the adjacent rivers in the Zhejiang and Fujian Province and also from water masses mixing from Kuroshio and Taiwan Warm Current, with obvious seasonal variations. The concentrations of dissolved aluminum are high in the coastal area of the ECS shelf and decrease with the distance from the coast. The distributions and seasonal variations of dissolved aluminum in a southeast transect from the Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the ECS shelf are mainly discussed in the thesis. Combining the different inputs from the Changjiang, atmospheric deposition, Kuroshio waters and Taiwan Warm Current with the total amount of Al, a simple budget was established for the ECS Shelf. The incursion of Kuroshio Subsurface Water and Taiwan Warm Current has significant impact on the distribution of dissolved aluminum in the ECS Shelf. The input flux from atmospheric deposition is similar with that of river. The results reveal an average residence time of 337±154 days for dissolved Al. The impact of Changjiang terrestrial materials over the continental shelf (PN section) is discussed. Using three distinct aluminum-salinity end-members, it is determined that the contribution of the Changjiang in the autumn is significant than the spring. The impact of Changjiang is highest at the station nearest the Changjiang Estuary, and decreased seaward along the PN section within a distance of 150 km. At a distance of 300 km from the Changjiang mouth, the freshwater input was hardly seen and the incursion of Kuroshio waters became dominant.
     Results of aluminum enrichment incubation experiments both in situ during the cruise in the YS and in lab show that phytoplankton can scavenge the dissolved aluminum from the water column effectively. The enrichment of aluminum will decrease the specific growth rate of phytoplankton in the initial stage, and this effect become serious with the increasing aluminum enrichments. However, the enrichment of Al in the incubation system doesn't affect the total phytoplankton biomass compared with the control group. Several phytoplankton samples were collected during 2007 and 2009 in the YS and ECS by the 20μm phytoplankton sieves. The phytoplankton samples were dealt with the trace metal clean reagent to differentiate the intra-cellular Al and extra-cellular Al contents. The total contents of aluminum in phytoplankton collected in the YS and ECS shelf range in 4.4-48.6 mg/g, with the intra-cellular Al contents of 2.2-48.0 mg/g. Total aluminum contents in phytoplankton are high in the coastal area and decrease with the increasing of distance from the coast. However, the ratio of intra-cellular to total Al contents in phytoplankton is high in the central YS and low in the Changjiang Estuary. Aluminum exists in the intra-cellular pool for the diatom, while in the extra-cellular pool for the dinoflagellates. During the diatom bloom in the YS, Al exists in the interior pool at the early stage of bloom and change to surface associate phase during the decay of bloom.
     Gravity core sediments were collected in the central YS (E2), Changjiang Estuary (A13), coastal area of Zhejiang and Fujian (E5), mid ECS shelf (E6) and ECS edge (P4) aboard the R/V Dong Fang Hong 2 in September 2002. The average ratios of Al to Ti in the gravity core sediments collected in stations E2, E5 and P4 are higher than the source terrestrial materials from Huanghe, Changjiang, loess and soil, which indicate the existence of excess aluminum in the continental shelf. The average contents of excess aluminum at stations E2, E5 and P4 are 11.8%,5.4% and 5.1%, respectively, which shed light on the biogenic deposition of aluminum in the YS and ECS Shelf.
引文
1. Abe, K, Ishibi, Y and Watanabe, Y,2003. Dissolved copper in the Yellow Sea and East China Sea-Cu as a tracer of the Changjiang discharge. Deep-Sea Res. Ⅱ,50:327-337.
    2. Alberti, G., D'Agostino, G., Palazzo, G., Biesuz, R. and Pesavento, M.,2005. Aluminum speciation in natural water by sorption on a complexing resin. Journal of Inorganic Biogeochemistry,99:1779-1787.
    3. Alexander, C.R., DeMaster, D.J., Nittrouer, C.A.,1991. Sediment accumulation in a modern epicontinental-shelf setting:The Yellow Sea. Marine Geology,98:51-72.
    4. Anderson, R.F. and Henderson, G.M.,2004. GEOTRACES gathers speed. Global Change News Letter,60:10-13.
    5. Anderson, M.A. and Morel, F.M.M.,1982. The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnology and Oceanography, 27:789-813.
    6. Andrew, R.B., Achterberg, E.P., Croot, P.L., de Baar, H.J.W., Laan, P., Moffett, J.W., Ussher, S. and Worsfold, P.J.,2006. A community-wide intercomparison exercise for the determination of dissolved iron in seawater. Marine Chemistry,98:81-99.
    7. Aucour, A.M., Tao, F.X., Moreira-Turcq, P., Seyler, P., Sheppard, S. and Benedetti, M.F., 2003. The Amazon River:behaviour of metals (Fe, Al, Mn) and dissolved organic matter in the initial mixing at the Rio Negro/Solimoes confluence. Chemical Geology,197:271-285.
    8. Augusto, L., Bonnaud, P. and Ranger, J.,1998. Impact of tree species on forest soil acidification. Forest Ecological Management,105:67-78.
    9. Baker, A.R., Jickells, T.D., Witt, M., and Linge, K.L.,2006. Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Marine Chemistry,98:43-58.
    10. Baldigo, B.P., Lawrence, G.B., Bode, R.W., Simonin, H.A., Roy, K.M. and Smith, A J.,2009. Impacts of acidification on macroinvertebrate communities in streams of the western Adirondack Mountains, New York, USA. Ecological Indicators,9:226-239.
    11. Banakar V.W., Parthiban G. and Pattan P.,1997. Chemistry of surface sediment along a north-south transect across the equator in the central Indian Basin:an assessment of biogenic and detrital influences on elemental burial on the seafloor. Chemical Geology,147:217-232.
    12. Behrenfeld, M.J.B., Kolber, Z.S., Aiken, J. and Falkowski, P.J.,1996. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature,383: 508-511.
    13. Benoit, G., Oktay-Marshall, S.D., Cantu, A., Hood, E.M., Coleman, C.H., Corapcioglu, M.O. and Santschi, P.H.,1994. Partitioning of Cu, Pb, Ag, Zn, Fe, Al and Mn between filter-retained particles, colloids and solution in six Texas estuaries. Marine Chemistry,45, 307-336.
    14. Bentalab, I. and Fontugne, M.,1998. The role of the southern Indian Ocean in the glacial to the interglacial atmospheric CO2 change organic carbon isotope evidences. Earth and Planetary Change,16/17:25-36.
    15. Berner, R.A.,1991. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science291,339-376.
    16. Berner, R.A.,1992. Weathering plants and the long term carbon cycle. Geochimica et CosmochimicaActa,56,3225-3231.
    17. Bi, S.P, Du, S.D. and Correll, D.L.,1997. Estimation of Al speciation in surface waters of low ionic strength by a simple computer model. International Journal of Environmental Analytical Chemistry,68:479-495.
    18. Bi, S.P.,1995a. A simple model for predicting the pH values of acidic natural waters. Analytica Chimica Acta,314:111-119.
    19. Bi, S.P.,1995b. Investigation of the factors influencing Al speciation in natural water equilibria with the mineral phase gibbsite. Analyst,120:2033-2039.
    20. Bi, S.P., An, S.Q. and Liu, F.,2001a. A practical application of Driscoll's equation for predicting the acid-neutralizing capacity in acidic natural waters equilibria with the mineral phase gibbsite. Environment Internaitonal,26:327-333.
    21. Bi, S.P., An, S.Q., Yang, M. and Chen, T.,2001b. Dynamics of aluminum speciation in forest-well drainage waters from the Rhode River watershed, Maryland. Environment International,26:377-380.
    22. Bjerknes, V., Fyllingen, I., Holtet, L., Teien, H.C., Rosseland, B.O. and Kroglund, F.,2003. Aluminium in acidic river water causes mortality of farmed Atlantic salmon (Salmo salar L.) in Norwegian fjords. Marine Chemistry,83:169-174.
    23. Blum, J.D. The effect of Late Genozoic Glaciation and tectonic uplift on silicate weathering rates and the marine 87Sr/86Sr record. In:Tectonic Uplift and Climate Change. New York, London:Plenum Press,1997,259-288.
    24. Boruvka, L., Mladkova, L. and Drabek, O.,2005. Factors controlling spatial distribution of soil acidification and Al forms in forest soils. Journal of Inorganic Biogeochemistry,99: 1796-1806.
    25. Boyd, P.W. Watson, A.J., Law, C.S., et al.,2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature,407:695-702.
    26. Boyd, P.W., Law, C.S., Wong, Y., et al.,2004. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature,428:549-553.
    27. Brown, M.T. and Bruland, K.W.,2009. Dissolved and particulate aluminum in the Columbia River and coastal waters of Oregon and Washington:Behavior in near-field and far-field plumes. Estuarine, Coastal and Shelf Science,84:171-185.
    28. Bruland, K.W., Rue, E.L., Smith G.J. and DiTullio, G.R.,2005. Iron, macronutrients and diatom blooms in the Peru Upwelling regime:Brown and blue waters of Peru. Marine Chemistry,93:81-103.
    29. Buesseler, K.O., Andrews, J.E., Pike, S.M. and Charette, M.A.,2004. The Effects of Iron Fertilization on Carbon Sequestration in the Southern Ocean. Science,304(5669):414-417.
    30. Buesseler, K.O., Bauer, J.E., Chen, R.F., et al.,1996. An intercomparison of cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. Marine Chemistry,55:1-31.
    31. Burns, D.A., Murray, K.R., Bode, R.W. and Passy, S.,2008. Changes in stream chemistry and biology in response to reduced levels of acid deposition during 1987-2003 in the Neversink River Basin, Catskill Mountains. Ecological Indicators,8:191-203.
    32. Caffery, P.F., Ondov, J.M., Zufall, M.J. ad Davidson, C.I.,1998. Determination of size-dependent dry particle deposition velocities with multiple intrinsic. Environmental Science & Technology 32(11),1615-1622.
    33. Cameron, E.M., Hall, G.E.M., Veizer, J. and Krouse, H.R.,1995. Isotopic and elemental hydrogeochemistry of a major river system:Fraser River, British Columbia, Canada, Chemical Geology,122,149-169.
    34. Campbell, P.G.C.,1995. Interaction between trace metals and aquatic organisms:a critique of the free-ion activity model. In:Tessier, A. and Turner, D.R. (Eds.) Metal Speciation and Aquatic Systems. New York, Wiley. pp.45-102.
    35. Chai, C., Yu, Z.M., Shen, Z.L., Song,X.X., Cao, X.J. and Yao, Y.,2009. Nutrient characteristics in the Yangtze River Estuary and the adjacent East China Sea before and after impoundment of the Three Gorges Dam. Science of Total Environment,407:4687-4695.
    36. Chang, S.I. and Reinfelder, J.R.,2000. Bioaccumulation, subcellular distribution and trophic transfer of copper in a marine diatom. Environmental Science & Technology,34 (23):4931-4935.
    37. Chen, C.C., Gong, G.Q. and Shiah, F.K.,2007. Hypoxia in the East China Sea:One of the largest coastal low-oxygen areas in the world. Marine Environmental Research,64:399-408.
    38. Chen, C.T.A., Zhai, W.D. and Dai, M.H.,2008a. Riverine input and air-sea CO2 exchanges near the Changjiang (Yangtze River) Estuary:Status quo and implication on possible future changes in metabolic status. Continental Shelf Research,28:1476-1482.
    39. Chen, C.T.R.,1996. The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf. Oceanol. Acta,19:523-527.
    40. Chen, C.T.R.,1998. Response to Liu's comments on "The Kuroshio Intermediate Water is the major source of nutrients on the East China Sea continental shelf"by Chen (1996). Oceanologica Acta,21:713-716.
    41. Chen, J., Wang, F., Xia, X. and Zhang, L.,2002. Major element chemistry of the Changjiang (Yangtze River). Chemical Geology,187(3-4):231-255.
    42. Chen, M. and Wang, W.X.,2001.Bioavailability of natural colloidal Fe to marine plankton: influence of colloidal size and aging. Limnology and Oceanography,46:1956-1967.
    43. Chen, X.Q., Yan, Y.X., Fu, R.S., Dou, X.P. and Zhang, E.F.,2008b. Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorges Dam Period:A discussion. Quaternary International,186:55-64.
    44. Chetelat, B., Liu, C.Q., Zhao, Z.Q., Wang, Q.L., Li, S.L., Li, J., Wang, B.L.,2008. Geochemistry of the dissolved load of the Changjiang Basin rivers:Anthropogenic impacts and chemical weathering. Geochimica et Cosmochimica Acta,72:4252-4277.
    45. Chou, L. and Wollast, R.,1997. Biogeochemical behavior and mass balance of dissolved aluminum in the western Mediterranean Sea. Deep Sea Res. Ⅱ,44,741-768.
    46. Chung, C.S., Hong, G.H., Kim, S.H., Lim, J.H., Park, J.K. and Yang, D.B.,1998. Shore based observation on wet deposition of inorganic nutrients in the Korean Yellow Sea coast. The Yellow Sea,4:30-39.
    47. Chung, C.S., Hong, G.H., Kim, S.H., Lim, Y.I. and Lee, J.H.,2002. Determination of the rate of thermocline ventilation in the Yellow Sea using 222Rn. In:Hong, G.H., Zhang, J. and Chung, C.S. (Eds.) Impact of interace exchange on the biogeochemical processes of the Yellow and East China Seas. Bum Shin Press, Seoul 2002,341-350.
    48. Cronan, C.S. and Grigal, D.F.,1995. Use of Calcium/Aluminum Ratios as Indicators of Stress in Forest Ecosystems. Journal of Environmental Quality,24:209-226.
    49. Dai, M.H., Benitez-Nelson, C.R.,2001. Colloidal organic carbon and 234Th in the Gulf of Maine. Marine Chemistry,74:181-196.
    50. Dai, M.H., Martin, J.M. and Gustave, G.,1995.-The significant role of colloids in the transport and transformation of organic carbon and associated trace metals (Cd, Cu and Ni) in the Rhone delta (France). Marine Chemistry,51:159-175.
    51. Dai, Z., Du, J., Li, J., Li, W., Chen, J.,2008. Runoff characteristics of the Changjiang River during 2006:effect of extreme drought and the impounding of the Three Gorges Dam. Geophysical Research Letters 35, L07406. doi:10.1029/2008GL033456.
    52. de Baar, H.J.W., et al.,1995. Importance of iron for plankton blooms and carbon-dioxide drawdown in the Southern-Ocean. Nature,373 (6513):412-415.
    53. DeMaster, D.J., Ragueneau, O. and Nittrouer, C.A.,1996. Preservation efficiencies and accumulation rates for biogenic silica and organic C, N, and P in high-latitude sediments. Journal of Geophysical Research,101(C8):18501-18515.
    54. Ding, Z.L., Sun, J.M., Yang, S.L. and Liu, T.S.,2001. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochimica et Cosmochimica Acta,65(6):901-913.
    55. Dise, N.B., Matzner, E., Armbruster, M. and MacDonald, J.,2001. Aluminium output fluxes from forest ecosystems in Europe:a regional assessment. Journal of Environmental Quality, 30,1747-1756.
    56. Dixit, S. and van Cappellen, P,2002. Surface chemistry and reactivity of biogenic silica. Geochim. Cosmochim. Acta,66:2559-2568.
    57. Dixit, S., van Cappellen P. and van Bennekom, A.J.,2001. Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments. Marine Chemistry, 73:333-352.
    58. Driscoll, C.T. and Kimberley, M.P. The chemistry of aluminium in surface waters. In:Sposito, G. (Ed.) The environmental chemistry of aluminium. Lewis Publishers; 1996. p363-419.
    59. Driscoll, C.T.,1984. A procedure for the fractionation of aqueous aluminium in dilute acidic waters. International Journal of Environmental Analytical Chemistry,16:267-283.
    60. Driscoll, C.T., Baker, J.P., Bisogni, J.J., and Schofield, C.L.,1980. Effect of aluminum speciation on fish in dilute acidified waters. Nature,284:161-164.
    61. Duce, R.A., Liss, P.S., Merrill, J.T. et al.,1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles,5:193-259.
    62. Dupre, B., Gaillardet, J., Rousseau, D. and Allegre, C.J.,1996. Major and trace elements of river-borne material:The Congo Basin. Geochimica Cosmochimica Acta,60,1301-1321.
    63. Dymond J, Collier R, McManus J, Honjo S and Manganini S,1997. Can the aluminum and titanium contents of ocean sediments be sued to determine the paleoproductivity of the oceans? Paleoceanography,12:586-593.
    64. Elkins, K.M. and Nelson, J.,2002. Spectroscopic approaches to the study of the interaction of aluminum with humic substances. Coordination Chemistry Review,228:205-225
    65. Exley, C. (Ed.), Aluminium and Alzheimer's Disease:The Science Describes the Link, Elsevier, Amsterdam,2001.
    66. Eyrolle, F., Benedetti, M.F., Benaim, J.Y. and Fevrier, D.,1996. The distribution of colloidal and dissolved organic carbon, major elements, and trace elements in small tropical catchments. Geochimica Cosmochimica Acta,60,3643-3656.
    67. Fu, M.Z., Wang, Z.L., Li, Y., Li, R.X., Sun, P., Wei, X.H., Lin, X.Z. and Guo, J.S.,2009. Phytoplankton biomass size structure and its regulation in the Southern Yellow Sea (China): Seasonal variability. Continental Shelf Research, doi:10.1016/j.csr.2009.08.010
    68. Gaillardet, J., Dupre, B., Allegre, C.J. and Negrel, P.,1997. Chemical and physical denudation in the Amazon River Basin. Chemical Geology,142,141-173.
    69. Gaillardet, J., Dupre, B.A. and Allegr, C.J.,1995. A global geochemical mass budget applied to the Congo Basin Rivers:Erosion rates and continental crust composition. Geochimica et Cosmochimica Acta,59,3469-3485.
    70. Gallinari, M., Ragueneau, O., Corrin, L., DeMaster, D.J., and Treguer, P.,2002. The importance of water column process on the dissolution properties of biogenic silica in deep-sea sediments I. Solubility. Geochimica et Cosmochimica Acta,66:2701-2717.
    71. Gehlen, M., Beck, L., Calas, G., Flank, A.M., Van Bennekom, A. J., and Van Beusekom, J. E. E.,2002. Unraveling the atomic structure of biogenic silica:Evidence of the structural association of Al and Si in diatom frustules. Geochimica et Cosmochimica Acta,66(9),1601-1609.
    72. Gehlen, M., Heinze, C., Maier-Reimer, E., and Measures, C. I.,2003. Coupled Al-Si geochemistry in an ocean general circulation model:A tool for the validation of oceanic dust deposition fields? Global Biogeochemical Cycles,17(1),1028, doi:10.1029/2001GB001549.
    73. Geider, R.J. and LaRoche, J.,1994. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynthesis Research,39: 275-301.
    74. Gelabert, A., Pokrovsky, O. S., Schott, J., Boudou, A., Feurtet-Mazel, A., Mielczarski, J., Mielczarski, E., Mesmer-Dudons, N. and Spalla O.,2004. Study of diatoms/aqueous solution interface. I. Acid-base equilibria, surface charge and spectroscopic observation of two freshwater periphytic and two marine planktonic diatoms. Geochim. Cosmochim. Acta,68, 4039-4058.
    75. Gelado-Caballera, M.D., Torres-Padron, M.E., Hernandez-Brito, J.J., et al.,1996. Aluminum distributions in central east Atlantic waters (Canary Islands). Marine Chemistry,51:359-372.
    76. GEOTRACES Science Plan:An international study of marine biogeochemical cycles of trace elements and isotopes. Draft version,2005,87 pp.
    77. Gislason, S.E., Arnorsson, S. and Armannsson, H.,1996. Chemical weathering of basalt in Southwest Iceland:effects of runoff age of rocks and vegetative glacial cover. American Journal of Science 296,837-907.
    78. Gong, G. C., Wen, Y. H., Wang, B. W. and Liu, G. J.,2003. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Res., Part Ⅱ,50,1219-1236.
    79. Gong, G., Chang, J., Chiang, K., Hsiung, T., Hung, C., Duan, S. and Codispoti, L.A.,2006. Reduction of primary production and changing of nutrient ratio in the East China Sea:effect of the Three Gorges Dam? Geophysical Research Letters 33, L07610. doi:10.1029/2006GL025800.
    80. Greenamoyer, J.M. and Moran, S.B.,1997. Investigation of Cd, Cu, Ni and Th in the colloidal size range in the Gulf of Maine. Marine Chemistry,57:217-226.
    81. Guibaud, G. and Gauthier, C.,2005. Aluminum speciation in the Vienne river on its upstream catchment (Limousin region, France). Journal of Inorganic Biogeochemistry,99:1817-1821.
    82. Guo, L.D, Wen, L.S, Tang, D. and Santschi, P.H.,2000b. Re-examination of cross-flow ultrafiltration for sampling aquatic colloids:evidence from molecular probes. Marine Chemistry,69:75-90.
    83. Guo, L.D., Coleman, C.H. and Santschi, P.H.,1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Marine Chemistry,45:105-119.
    84. Guo, L.D., Santschi, P.H. and Warnken, K.W.,1995. Dynamics of dissolved organic carbon in oceanic environments. Limnology and Oceanography,40:1392-1403.
    85. Guo, L.D., Santschi, P.H. and Warnken, K.W.,2000a. Trace metal composition of colloidal organic material in marine environments. Marine Chemistry,70:257-275.
    86. Guo,L.D, Santschi, P.H.,1997. Composition and cycling of colloids in marine environments. Geophysical Research Letter,35:17-40.
    87. Gustafson, O. and Gschwend, P.M.,1997. Aquatic colloids:concepts, definitions and current challenges. Limnology and Oceanography,42:519-528.
    88. Hall, I.R., Hydes, D.J., Statham, P.J. and Overnell, J.,1999. Seasonal variations in the cycling of aluminium, cadmium and manganese in a Scottish sea loch:biogeochemical processes involving suspended particles. Continental Shelf Research,19,1783-1808.
    89. Hamilton-Taylor, J., Postill, A.S., Tipping, E. and Harper, M.P.,2002. Laboratory measurements and modeling of metal-humic interactions under estuarine conditions. Geochimica Cosmochimica Acta,66:403-415.
    90. Han, Q., Moore, J.K., Zender, C., Measures, C. and Hydes, D.,2008. Constraining oceanic dust deposition using surface ocean dissolved Al. Global Biogeochemical Cycles 22, GB2003, doi:10.1029/2007GB002975.
    91. Haraguchi, H., Itoh, A. and Kimata, C,1995. Chemical Speciation of Trace Metals in Natural Water by Ultrafiltration/Size Exclusion Chromatography/UV Absorption/ICP-MS. Anal. Sci. & Technol.,8(4):405-410.
    92. Haraldsson, C., Lyven, B., Pollak, M., et al.,1993. Multi-element speciation of trace metals in fresh water adapted to plasma source mass spectrometry. Analytica Chimica Acta,284 (2): 327-336.
    93. Helliwell, S., Bately, G.E., Florence, T.M. and Lumsden, G.C.,1983. Speciation and toxicity of aluminium in a model freshwater. English Technology Letter,4:141-144.
    94. Hsu, S.C., Wong, G.T.F., Gong, G.C., Shiah, F.K., Huang, Y.T., Kao, S.J., Tsai, F.J., Lung, S.C.C., Lin, F.J. and Lin, I.I.,2008. Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Marine Chemistry, doi:10.1016/j.marchem.2008.10.003
    95. Hudson, R.J.M. and Morel, F.M.M.,1989. Distinguish between extra-and intracellular iron in marine phytoplankton. Limnology and Oceanography,34:1113-1120.
    96. Hudson, R.J.M. and Morel, F.M.M.,1990. Iron transport in marine phytoplankton:kinetics of cellular and medium coordination reactions. Limnology and Oceanography,35:1002-1020.
    97. Huh, Y., Tsoi, M. Y., Zaitsev, A. and Edmond, J. M.,1988. The fluvial geochemistry of the rivers of Eastern Siberia:I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochimica Cosmochimica Acta,62:1657-1676.
    98. Hung J.J., Chen C.H., Gong G.C., Sheu D.D. and Shiah F.K.,2003. Distributions, stoichiometric patterns and cross-shelf exports of dissolved organic matter in the East China Sea. Deep-Sea Research Ⅱ,50:1127-1145.
    99. Hung, C.C., Gong, G.C., Chung, W.C., Kuo, W.T. and Lin, F.C.,2009. Enhancement of particulate organic carbon export flux induced by atmospheric forcing in the subtropical oligotrophic northwest Pacific Ocean. Marine Chemistry,113:19-24.
    100. Hur, H.B., Jacobs, G.A. and Teague, W.J.,1999. Monthly water mass analyses in the Yellow and East China Seas. Journal of Oceanography,55:171-184.
    101. Hutchins, D.A., Wang, W.X., Schmidt, M.A. and Fisher, N.S.,1999. Dual-labeling techniques for trace metal biogeochemical investigations in aquatic plankton communities. Aquatic Microbial Ecology,19(2):129-138.
    102. Hydes, D.L. and Liss, P.S.,1976. Fluorimetric methods for determination of low concentrations of dissolved aluminum in natural waters. Analyst,101:922-931.
    103. Hydes, D.J.,1979. Aluminum in seawater:Control by inorganic process. Science,205: 1260-1262.
    104. Hydes, D.J. and Liss, P.S.,1977. Behavior of dissolved aluminum in estuarine and coastal waters. Estuarine, Coastal and Marine Science,5:755-769.
    105. Hydes, D.J.,1977. Dissolved aluminum concentration in sea-water. Nature,268:136-137.
    106. Hydes, D.J.,1983. Distribution of aluminium in waters of the northeast Atlantic,25°N to 35 °N. Geochimica et Cosmochimica Acta,47:967-973.
    107. Hydes, D.J., de Lange G.J. and de Baar H.J.W.,1988. Dissolved aluminum in the Mediterranean. Geochimica et Cosmochimica Acta,52:2107-2114.
    108. Iseki, K., Okamura, K. and Kiyomoto, Y.,2003. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea. Deep Sea Research Ⅱ,50:457-473.
    109. Ji, H.B., Wang, S.J., Ouyang, Z.Y., Zhang, S., Sun, C.X., Liu, X.M. and Zhou, D.Q.,2004. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau. Ⅰ. The formation of the Pingba profile. Chemical Geology,203:1-27.
    110. Jiao, N.Z., Zhang, Y., Zeng, Y.H., et al,2007. Ecological anomalies in the East China Sea: Impacts of the Three Gorges Dam? Water Research,41:1287-1293.
    111. Jickells, T. D.,1995. Atmospheric inputs of metals and nutrients to the oceans:their magnitude and effects. Marine Chemistry,48,199-214.
    112. Jickells, T. D.,1999. The input of dust derived elements to the Sargasso Sea; a synthesis. Marine Chemistry,68,5-14.
    113. Jickells, T.D. and An, Z.S., Anderson, K.K. et al.,2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science,308:67-71.
    114. King, F.D. and Devol, A.H.,1979. Estimates of vertical eddy diffusion through the thermocline from phytoplankton nitrate uptake rates in the mixed layer of the eastern tropical Pacific. Limnology & Oceanography,24:645-651.
    115. Koning, E., Gehlen, M., Flank, A.M., Calas, G. and Epping, E.,2007. Rapid post-mortem incorporation of aluminum in diatom frustules:Evidence from chemical and structural analyses. Marine Chemistry,106:208-222.
    116. Kopacek, J., Hejzlar, J,, Kana, J., Norton, S.A., Porcal, P. and Turek, J.,2009. Trends in aluminum export from a mountainous area to surface waters, from deglaciation to the recent: Effects of vegetation and soil development, atmospheric acidification, and nitrogen-saturation. Journal of Inorganic Biogeochemistry,103:1439-1448.
    117. Kramer, J., Laan, P., Sarthou, G., Timmermans, K.R. and Baar, H.J.W.,2004. Distribution of dissolved aluminum in the high atmospheric input region of the subtropical waters of the North Atlantic Ocean. Marine Chemistry,88:85-101.
    118. Kryc, K.A., Murray, R.W. and Murray, D.W.,2003a. Al to oxide and Ti to organic linkages in biogenic sediment:relationships to paleo-export production and bulk Al/Ti. Earth and Planetary Science Letters,211:125-141.
    119. Kryc, K.A., Murray, R.W. and Murray, D.W.,2003b. Elemental fractionation of Si, Al, Ti, Fe, Ca, Mn, P and Ba in five marine sedimentary reference materials:results from sequential extractions. Analitica Chimica Acta,487:117-128.
    120. Li, D.J. and Dag, D.,2004. Ocean pollution from land-based sources:East China Sea, China. AMBIO:A Journal of the Human Environment,33 (1):107-113.
    121. Li, D.J., Zhang, J., Huang, D.J., Wu, Y., Liang, J.,2002. Oxygen depletion off the Changjiang (Yangtze River) Estuary. Science in China Series D-Earth Sciences,45 (12): 1137-1146.
    122. Li, J.B., Ren, J.L., Zhang, J. and Liu, S.M.,2008. The distribution of dissolved aluminum in the Yellow Sea and East China Sea. Journal of Ocean University of China,7(1):48-54.
    123. Li, M., Xu, K., Watanabe, M. and Chen, Z.,2007. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal & Shelf Science,71:3-12.
    124. Lim, D.I., Choi, J.Y., Jung, H.S., Rho, K.C. and Ahn, K.S.,2007. Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas. Progress in Oceanography,73:145-159.
    125. Lim, D.I., Jung, H.S., Choi, J.Y., Yang, S., Ahn, K.S.,2006. Geochemical compositions of river and shelf sediments in the Yellow Sea:Grain-size normalization and sediment provenance. Continental Shelf Research,26:15-24.
    126. Lin, C., Ning, X., Su, J., Lin, Y. and Xu, B.,2005. Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976-2000. Journal of Marine Systems,55:223-234.
    127. Liu, J.P., Li, A.C., Xu, K.H., Velozzi, D.M., Yang, Z.S., Milliman, J.D. and DeMaster, D.J., 2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Research,26:2141-2156.
    128. Liu, K. K., Tang, T.Y., Gong, G. C., Chen, L. Y., Shiah, F. K.,2000. Cross-shelf and along-shelf nutrient fluxes derived from flow fields and chemical hydrography observed in the southern East China Sea off northern Taiwan. Continental Shelf Research,20:493-523.
    129. Liu, S. M., Ye, X. W., Zhang, J. and Zhao, Y. F.,2002. Problems with biogenic silica measurements in marginal seas. Marine Geology,192:383-392.
    130. Liu, S.M., Zhang, J., Chen, H.T., Wu, Y., Xiang, H. and Zhang, Z. F.,2003. Nutrients in the Changjiang and its tributaries. Biogeochemistry,62:1-18.
    131. Lynnes, J.A., Derzaph, T.L.M. and Weger, H.G.,1998. Iron limitation resulted in induction of ferricyanide reductase and ferric chelate reductase activities in Chlamydomonas reinhardtii. Planta,204:360-365.
    132. Mackenzie, F.T, Stoffyn, M. and Wollast, R.,1978. Aluminum in seawater:control by biological activity. Science,199:680-682.
    133. Mackin, J.E. and Aller, R.C.,1983. Diagenesis of dissolved aluminum in organic-rich estuarine sediments. Geochimica Cosmochimica Acta,48:229-313.
    134. Mackin, J.E. and Aller, R.C.,1984a. Processes affecting the behavior of dissolved aluminum in estuarine waters. Marine Chemistry,14:213-232.
    135. Mackin, J.E. and Aller, R.C.,1984b. Dissolved Al in sediments and waters of the East China Sea:Implications for authigenic mineral formation. Geochim Cosmochim Acta,48:281-297.
    136. Mackin, J.E. and Robert, R.C.,1983. The infinite dilution coefficient for Al(OH)4- at 25 ℃. Geochimica Cosmochimica Acta,147:956-961.
    137. Maring, H.B. and Duce, R.A.,1987. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface waters. I Aluminum. Earth Planet Science Letter,84: 381-392.
    138. Martin, J.H., Gordon R.M. and Fitzwater, S.E.,1990. Iron in Antarctic waters. Nature 345, 156-158.
    139. Martin, J.M. and Whitefield, M. The significance of the river input of chemical elements to the ocean. In:Wong, C.S., Boyle, E., Bruland, K.W., Burton, J.D. and Goldberg, E.D. (eds.), Plenum, New York,265-296.
    140. Martin, J.M., Dai, M.H. and Cauwet, G.,1995. Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy). Limnology & Oceanography,40(1):119-131.
    141. Measures, C. I. and Edmond, J.M.,1988. Aluminum as a tracer of the deep outflow from the Mediterranean. Journal of Geophysical Research,93:591-595.
    142. Measures, C. I. and Vink, S.,1999. Seasonal variations in the distribution of Fe and Al in the surface waters of the Arabian Sea. Deep-Sea Research Ⅱ,46,1597-1622.
    143. Measures, C. I. and Vink, S.,2000. On the use of dissolved aluminum in surface waters to estimate dust deposition on the ocean. Global Biogeochemical Cycles,14,317-327.
    144. Measures, C.I. and Brown, E.T.,1996. Estimating dust input to the Atlantic Ocean using' surface water Al concentrations. In:Guerzoni, S., Chester, R. (Eds.), The impact of African Dust across the Mediterranean, Kluwer, Dordrecht,389pp.
    145. Measures, C.I.,1995. The distribution of Al in the IOC stations of the eastern Atlantic between 30S and 34N. Marine Chemistry,49:267-281.
    146. Measures, C.I.,1999. The role of entrained sediments in sea ice in the distribution of aluminum and iron in the surface waters of the Arctic Ocean. Marine Chemistry,68,59-70.
    147. Measures, C.I., Grant, B., Khadem, M., Lee, D.S. and Edmond, J.M.,1984. Distribution of Be, Al, Se and Bi in the surface waters of the western North Atlantic and Caribbean. Earth and Planetary Science Letters,71:1-12.
    148. Measures, C.I., Sato, T., Vink, S., Howell, S. and Li, Y.H.,2009. The fractional solubility of aluminum from mineral aerosols collected in Hawaii and implications for atmospheric deposition of biogeochemically important trace elements. Marine Chemistry, doi:10.1016/j.marchem.2009.01.014
    149. Meybeck, M.,1976. Total mineral dissolved transport by world major rivers. Hydrological Sciences Bulletin des Sciences Hydrologiques, XXI26:265-282.
    150. Middag, R., de Baar, H.J.W., Laan, P. and Bakker, K.,2009. Dissolved aluminum and the silicon cycle in the Arctic Ocean. Marine Chemistry,115:176-195.
    151. Milliman, J.D., Beardsley, R.C., Yang, Z.S., Limeburner, R.,1985. Modern Huanghe-derived muds on the outer shelf of the East China Sea:identification and potential transport mechanisms. Continental Shelf Research,4,175-188.
    152. Milliman, J.D., Qin, Y.S., Ren, M.E., et al.,1987. Man's influence on the erosion and transport of sediment by Asian rivers:The Yellow River, example. Journal of Geology,95, 751-762.
    153. Millward, G.E. and Liu, Y.P.,2003. Modelling metal desorption kinetics in estuaries. Science of Total Environments,314:613-623.
    154. Misson, L., Ponette, P. and Andre, F.,2001. Regional scale effects of base cation fertilization on Norway spruce and European beech stands situated on acid brown soils:soil and foliar chemistry. Annals of Forest Science,58:699-712.
    155. Moon, D.S., Hong, G. H., Kim, S.H., Chung, C.S., Kim, Y.I., Shon, B.J., Ren, J.L. and Zhang J.,2002. Chemical composition of marine aerosol particles in the Northeast Asian marginal Sea. In Impact of interface exchange on the biogeochemical processes of the Yellow Sea and East China Sea (eds. G.H. Hong, J. Zhang and C.S. Chung). Bum Shin Press, Seoul. pp. 31-68.
    156. Moore, R.M.,1981. Oceanographic distributions of zinc, cadmium, copper and aluminum in waters of the central Arctic Ocean. Geochim Cosmochim Acta,45:2475-2482.
    157. Moran, S.B. and Buesseler, K.O.,1993. Size-fractionated 234Th in continental shelf waters off New England:Implications for the role of colloids in oceanic trace metal scavenging. Journal of Marine Research,51:893-922.
    158. Moran, S.B. and Moore, R.M.,1988a. Evidence from mesocosm studies for biological removal of dissolved aluminum from sea water. Nature,335,706-708.
    159. Moran, S.B. and Moore, R.M.,1988b. Temporal variations in dissolved and particulate aluminum during a spring bloom. Estuarine, Coastal and Shelf Science,27:205-215.
    160. Moran, S.B. and Moore, R.M.,1989. The distribution of colloidal aluminum and organic carbon in coastal and open ocean waters off Nova Scotia. Geochimica Cosmochimica Acta, 53:2519-2527.
    161. Moran, S.B. and Moore, R.M.,1991. The potential source of dissolved aluminum from resuspended sediments to the North Atlantic deep water. Geochimica Cosmochimica Acta,55: 2745-2751.
    162. Moran, S.B., Moore, R.M., and Westerlund, S.1992. Dissolved Al in the Weddle Sea Deep-Sea Research,39:537-547.
    163. Morel, F.M.M. and Price, N.M.,2003. The biogeochemical cycles of trace metals in the oceans. Science,300 (5621):944-947.
    164. Morris, A.W., Howland, R.J.M. and Bale, A.J.,1986. Dissolved aluminum in the Tamar estuary, Southwest England. Geochimica Cosmochimica Acta,50:189-197.
    165. Mortlock, R.A., Charles, C.D., Froelich, P.N., et al.,1991. Evidence for lower productivity in the Atlantic Ocean during the last glaciation. Nature,351:220-223
    166. Miiller, B., Berg, M., Yao, Z.P., Zhang, X.F., Wang, D. And Pfluger, A.,2008. How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam. Science of Total Environment,402:232-247.
    167. Murray, R.W. and Leinen, M.,1996. Scanvenged excess aluminum and its relationship to bulk titanium in biogenic sediment from central equatorial Pacific Ocean. Geochim. Cosmochim. Acta,60(20):3689-3878.
    168. Murray, R.W., Buchholtz Ten Brink, M.R., Gerlach, D.C., et al.,1992. Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert, Perspectives gained from the DSDP and ODP record. Geochimica et Cosmochimica Acta,56:1897-1913.
    169. Murray, R.W., Leinen, M. and Isern, A.R,1993. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean:Evidence for increased productivity during glacial periods. Paleoceanography,8(5):661-669.
    170. Naimie, C.E., Blain, C.A. and Lynch, D.R.,2001. Seasonal mean circulation in the Yellow Sea-a model-generated climatology. Continental Shelf Research,21,667-695.
    171. Narvekar, P.V. and Singbal, S.Y.S.,1993. Dissolved aluminum in the surface microlayer of the eastern Arabian Sea. Marine Chemistry,42:85-94.
    172. Neal, C. and Davies, H.,2003. Water quality fluxes for eastern UK rivers entering the North Sea:a summary of information from the Land Ocean Interaction Study (LOIS). The Science of the Total Environment,314-316:821-882.
    173. Nishioka, J. and Takeda, S.,2000. Change in the concentration of iron in different size fractions during growth of the oceanic diatom Chaetoceros sp.:importance of small colloidal iron. Marine Biology,137:231-238.
    174. Obata H., Nozaki Y., Alibo D. S. and Yamamoto Y.,2004. Dissolved Al, In and Ce in the eastern Indian Ocean and the Southeast Asian Seas in comparison with the radionuclides 210Pb and 210Po. Geochim. Cosmochim. Acta,68,1035-1048.
    175. Ogawa, H., Usui, T. and Koike, I.,2003. Distribution of dissolved organic carbon in the East China Sea. Deep Sea Research II,50:353-366.
    176. Okadera, T., Watanabe, M. and Xu, K.Q.,2006. Analysis of water demand and water pollutant discharge using a regional input-output table:An application to the City of Chongqing, upstream of the Three Gorges Dam in China. Ecological Economics,58: 221-237.
    177. Orians, K.J. and Bruland, K.W.,1986. The biogeochemistry of aluminum in the Pacific Ocean. Earth Planetary Science Letters,76:397-410.
    178. Ormerod, S., Donald, A. and Brown, S.,1989. The influence of plantation forestry on the pH and aluminum concentration of upland welsh streams:A re-examination. Environmental Pollution,62:47-62.
    179. Oulehle, F. and Hruska, J.,2005. Tree species (Picea abies and Fagus sylvatica) effects on soil water acidification and aluminum chemistry at sites subjected to long-term acidification in the Ore Mts., Czech Republic. Journal of Inorganic Biogeochemistry,99:1822-1829.
    180. Pattan, J.N. and Shane, P.,1999. Excess aluminum in deep sea sediments of the Central Indian Basin. Marine Geology,161:247-255.
    181. Park, S.C., Lee, H.H., Han, H.S., Lee, G.H., Kim, D.C. and Yoo, D.G.,2000. Evolution of late Quaternary mud deposits and recent sediment budget in the southeastern Yellow Sea. Marine Geology,170:271-288.
    182. Paul, L.,1999. A multiproxy reconstruction of biological productivity and oceanography in the eastern equatorial pacific for the past 30,000 years. Marine Micropaleontology,37:173-198.
    183. Pinet, P. and Souriau, M.,1988. Continental erosion and large scale relief. Tectonics,7 (3), 563-582.
    184. Planquette, H., Gones, G.R., Statham, P.J. and Morris, P.J.,2009. Origin of iron and aluminum in large particles (>53 μm) in the Crozet region, Southern Ocean. Marine Chemistry,115:31-42.
    185. Rabouille, C., Conley, D.J., Dai, M.H., Cai, W.J., Chen, C.T.A., Lansard, B., Green, R., Yin, K., Harrison, P.J., Dagg, M. and McKee, B.,2008. Comparison of hypoxia amoung four river-dominated ocean margins:The Changjiang (Yangtze), Mississippi, Pear, and Rhone rivers. Continental Shelf Research,28:1527-1537.
    186. Reitmeyer, R., Powell, R.T., Landing, W.M., et al.,1996. Colloidal aluminum and iron in seawater:An intercomparison between various cross-flow ultrafiltration systems. Marine Chemistry,55:75-91.
    187. Ren, J.L., Zhang, J., Li, J.B., Yu, X.Y., Liu, S.M. and Zhang, E.R.,2006. Dissolved aluminum in the Yellow Sea and East China Sea-Al as a tracer of Changjiang (Yangtze River) discharge and Kuroshio incursion. Estuarine, Coastal and Shelf Science,68:165-174.
    188. Rijkenberg, M.J.A., Gerringa, L.J.A., Timmermans, K.R., Fischer, A.C., Kroon, K.J., Buma, A.G.J., Th. Wolterbeek, B. and de Baar, H.J.W.,2008. Enhancement of the reactive iron pool by marine diatoms. Marine Chemistry,109:29-44.
    189. Rosseland, B.O., Blakar, I.A., Bulger, A., Kroglund, F., Kvellestad, A., Lydersen, E., Oughton, D., Salbu, B., Staurnes, M. and Vogt, R.,1992. The mixing zone between limed and acidic river waters-Complex aluminum chemistry and extreme toxicity for salmonids. Environmental Pollution,78:3-8.
    190. Ryu, J.S., Lee, K.S., Chang, H.W. and Shin, H.S.,2008. Chemical weathering of carbonates and silicates in the Han River basin, South Korea. Chemical Geology,247:66-80.
    191. Sadler, K. and Lynam, S.,1987. Some effects on the growth of brown trout from exposure to aluminium at different pH levels. Journal of Fish Biology,31:209-219.
    192. Saito, C., Noriki, S. and Tsunogai, S.,1992. Particulate flux of Al, a component of land origin, in the western North Pacific. Deep-Sea Research,39:1315-1327.
    193. Saito, Y,1998. Sedimentary environment and budget in the East China Sea. Bulletin of Coastal Oceanography,36:43-58 (in Japanese with English abstract).
    194. Salminim, P. (Ed),2006. Geochemical Atlas of Europe, Part 1. Background information, methodology and maps, GTK FOREGS, Geological Survey of Finland, p525.
    195. Safnudo-Wilhelmy, S.A., Tovar-Sanchez, A., Fu, F.X. et al.,2004. The impact of surface adsorbed phosphorus on phytoplankton redfield stoichiometry. Nature,432:897-900.
    196. Scancar, J. and Milacic,2006. Aluminum speciation in environmental samples:a review. Analytical Bioanalytical Chemistry,386:999-1012.
    197. Schuβler, U., Balzer, W. and Deeken, A.,2005. Dissolved Al distribution, particulate Al fluxes and coupling to atmospheric Al and dust deposition in the Arabian Sea. Deep-Sea Research II,52:1862-1878.
    198. Schwartzman, D.W. and Volk, T.,1989. Biotic enhancement of weathering and the habitability of Earth. Nature,340,457-459.
    199. Shen, G. and Xie, Z.,2004. Three Gorges Project:chance and challenge. Science 304 (5671), 681b.
    200. Shi, C., Zhang, D.D. and You, L.,2003. Sediment budget of the Yellow River delta, China: the importance of dry bulk density and implications to understanding of sediment dispersal. Marine Geology,199:13-25.
    201. Spokes, L. J. and Jickells, T. D.,1996. Factors controlling the solubility of aerosol trace metals in the atmosphere on mixing into seawater. Aquatic Geochemistry 1,355-374.
    202. Spokes, L., Jickells, T. and Jarvis, K.,2001. Atmospheric inputs of trace metals to the northeast Atlantic Ocean:the importance of southeasterly flow. Marine Chemistry,76: 319-330.
    203. Stallard, R.F.,1998. Terrestrial sedimentation and the carbon cycle:Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles 12,231-257.
    204. Sternberg, E.,Tang, D., Ho, T.Y., Jeandel, C. and Morel, F.M.M.,2005. Barium uptake and adsorption in diatoms. Geochimica et Cosmochimica Acta,69 (11):2745-2752.
    205. Stevens, C.J., Dise, N.B. and Gowing, D.J.,2009. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates. Environmental Pollution,157:313-319.
    206. Stoffyn, M.,1979. Biological control of dissolved aluminum in seawater:experimental evidence. Science,203:651-653.
    207. Stoffyn, M. and Mackenzie, F.T.,1982. Fate of dissolved aluminum in the oceans. Marine Chemistry,11:105-127.
    208. Stumm, W. and Morgan, J.J., Aquatic Chemistry-Chemical Equilibria and Rates in Natural Waters,3rd ed., Wiley Interscience, New York,1996, p142.
    209. Stutter, M., Smart, R., Cresser, M. and Langan, S.,2001. Catchment characteristics controlling the mobilization and potential toxicity of aluminum fractions in the catchment of the River Dee, northeast Scotland. The Science of the Total Environment,281:121-139.
    210. Su, J.,1998. Circulation dynamics of the China Seas North of 18 N. In:Robinson, A.R., Brink, K.H. (Eds.), The Sea, Vol.11. Wiley, New York, pp.483-505.
    211. Suchet, P.S. and Probst, J.L.,1993. Modelling of atmospheric CO2 consumption by chemical weathering of rocks:Application to the Garonne, Congo and Amazon basins. Chemical Geology 107,205-210.
    212. Suchet, P.S. and Probst, J.L.,1995. A global model for present day atmospheric/soil CO2 consumption by chemical erosion of continental rocks. Tellus,47B:273-280.
    213. Summerfield, M.A. and Hulton, N.J.,1994. Natural controls of fluvial denudation rates in major world drainage basins. Journal of Geophysical Research,99 (B7):13 871-13 883.
    214. Sunda, W.G. and Huntsman, S.A.,1995. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Marine Chemistry,50 (1-4):189-206.
    215. Takayanagi, K. and Gobeil, C.,2000. Dissolved aluminum in the upper St. Lawrence Estuary. Journal of Oceanography,56:517-525.
    216. Tang, D.G. and Morel, F.M.M.,2006. Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Marine Chemistry,98:18-30.
    217. Taylor, S.R.,1964. Abundance of chemical elements in the continental crust:a new table. Geochimica Cosmochimica Acta,28:1273-1285.
    218. Teinen, H.C., Standring, W.J.F. and Salbu, B.,2006. Mobilization of river transported colloidal aluminum upon mixing with seawater and subsequent deposition in fish gills. Science of Total Environment,364:149-164.
    219. Tessier, A., Campbell, P.G.C. and Bisson, M.,1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry,51(7):844-851.
    220. Tovar-Sanchez, A., Sanudo-Wilhelmy, S.A., Garcia-Vargas, M., et al.,2003. A trace metal clean reagent to remove surface-bound iron from marine phytoplankton. Marine Chemistry, 82:91-99.
    221. Tullos, D.,2009. Assessing the influence of environmental impact assessments on science and policy:An analysis of the Three Gorges Project. Journal of Environmental Management, 90:5208-5223.
    222. Uehara, K. and Saito, Y.,2003. Late quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology. Sedimentary Geology,162:25-38.
    223. Uematsu, M., Wang, Z.F. and Uno, I.,2003. Atmospheric input of mineral dust to the western North Pacific region based on direct measurements and a regional chemical transport model. Geophysical Research Letter,30(6):1342-1344.
    224. Upadhyay S and Sen Gupta, R.,1994. Aluminum in the northwestern Indian Ocean (Arabian Sea). Marine Chemistry,47:203-214.
    225. Upadhyay, S. and Sen Gupta, R.,1995. The behaviour of aluminium in waters of the Mandovi estuary, west coast of India. Marine Chemistry,51:261-276.
    226. Upadhyay, S.,2008. Sorption model for dissolved and particulate aluminum in the Conway estuary, UK. Estuarine, Coastal and Shelf Science,76:914-919.
    227. van Bennekom, A.J. and Jager, J.E.,1978. Dissolved Al in the Zaire river plume. Netherlands Journal of Sea Research,12:358-367.
    228. van Bennekom, A.J., Buma, A.G.J. and Nolting, R.F.,1991. Dissolved aluminum in the Weddell-Scotia Confluence and effect of Al on the dissolution kinetics of biogenic silica. Marine Chemistry,35:423-434.
    229. Van Der Loeff, M.R., Helmers, E. and Kattner, G.,1997. Continuous transects of cadmium, copper, and aluminium in surface waters of the Atlantic Ocean,50°N to 50°N: Correspondence and contrast with nutrient-like behavior. Geochimica et Cosmochimica Acta, 61(1):47-61.
    230. Vance, G.F., Stevenson, F.J. and Sikora, F.J. Environmental chemistry of aluminium-organic complexes. In:Sposito, G. (Ed.) The environmental chemistry of aluminium. Lewis Publishers; 1996. p169-220.
    231. Velbel, M.A.,1993. Temperature dependence of silicate weathering in nature:How strong a negative feedback on long term accumulation of atmospheric CO2 and global greenhouse warming? Geology,21:1059-1062.
    232. Viers, J., Dupre, B., Polve, M., Schott, J., Dandurand, J.L. and Braun, J. J.,1997. Chemical weathering in the drainage basin of a tropical weathered (Nsimi-Zoetele site, Cameroon): Comparison between organic-poor and organic-rich waters. Chemical Geology,140: 181-206.
    233. Vink, S. and Measures, C.I.,2001. The role of dust deposition in determining surface water distributions of Al and Fe in the South West Atlantic. Deep-Sea Res. Ⅱ,48:2787-2809.
    234. Walsh, I., Dymond, J. and Collier, R.,1988. Rates of recycling of biogenic components of setting particles in the ocean derived from sediment trap experiments. Deep-sea Research,35: 43-58.
    235. Wang, H.J., Yang, Z.S., Wang, Y., Saito, Y. and Liu, J.P.,2008. Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s. Journal of Hydrology, 349:318-332.
    236. Wells, M.L. and Trick, C.G.,2004. Controlling iron availability to phytoplankton in iron-replete coastal waters. Marine Chemistry,86:1-13.
    237. Wen, L.S., Santshci, P., Gill, G., et al.,1999. Estuarine trace metal distributions in Galveston Bay:importance of colloidal forms in the speciation of dissolved phase. Marine Chemistry, 63:185-212.
    238. Wilkes University Center for Environmental Quality Environmental Engineering and Earth Sciences, National Secondary Drinking Water Standards, http://www.water-research.net/secstandards.htm (accessed in November 2007).
    239. Willey, J.D.,1975. Reactions which remove dissolved alumina from seawater. Marine Chemistry,3:227-240.
    240. Witters, H.E., Van Puymbroeck, S., Vangenechten, J.H.D. and Vanderborght, O.L.J.,1990. The effect of humic substances on the toxicity of aluminum to adult rainbow-trout, Oncorhynchus-mykiss (Walbaum). Journal of Fish Biology,37:43-53.
    241. Wu, J., Boyle, E., Sunda, W. and Wen, L.S.,2001. Soluble and colloidal Fe in the oligotrophic north Atlantic and north Pacific. Science,293:847-849.
    242. Wu, Y., Dittmar, T., Ludwichowski, K.U., Kattner, G., Zhang, J., Zhu, Z.Y. and Koch, B.P., 2007. Tracing suspended organic nitrogen from the Yangtze river catchment into the East China Sea. Marine Chemistry,107:367-377.
    243. Wu, Y., Zhang, J., Li, D.J., Wei, H. and Lu, R.X.,2003. Isotope variability of particulate organic matter at the PN section in the East China Sea. Biogeochemistry,65:31-49.
    244. Xiong, M., Xu, Q.X. and Yuan, J.,2009. Analysis of multi-factors affecting sediment load in the Three Gorges Reservoir. Quaternary International,208:76-84.
    245. Xu, H., Zhang, J., Ren, J. L. and Liu, C. L.,2002. Aluminum in the Macrotidal Yalujiang Estuary:Partitioning of Al along the Estuarine Gradients and Flux. Estuaries,25(4A): 608-621.
    246. Xu, K.H. and Milliman, J.D.,2009. Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphology,104: 276-283
    247. Xu, K.H., Milliman, J.D., Yang, Z.S., Xu, H.,2007. Climatic and anthropogenic impacts on the water and sediment discharge from the Yangtze River (Changjiang),1950-2005. In: Gupta, A. (Ed.), Large Rivers:Geomorphology and Management. John Wiley & Sons, West Sussex, England, pp.609-626.
    248. Xu, L.L., Wu, D.X., Lin, X.P. and Ma, C.,2009. The study of the Yellow Sea Warm Current and its seasonal variability. Journal of Hydrodynamics,21(2):159-165.
    249. Xu, Z. and Liu, C.-Q.,2007. Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau, Southwest China. Chemical Geology,239:83-95.
    250. Yan, W.J., Zhang, S., Sun, P. and Seitzinger, S.P.,2003. How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate:a temporal analysis for 1968-1997. Global Biogeochemical Cycles,17 (4), doi:10.1029/2002GB002029.
    251. Yang, S.L., Li, M., Dai, S.B., Liu, Z., Zhang, J. and Ding, P.X.,2006a. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management. Geophysical Research Letters,33, L06408. doi:10.1029/2005GL025507.
    252. Yang, S.Y., Jung, H.S., Lim, D.I. and Li, C.X.,2003. A review on the provenance discrimination of sediments in the Yellow Sea. Earth Science Reviews,63:93-120.
    253. Yang, S.L., Zhang, J. and Xu, X.J.,2007. Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications, Yangtze River. Geophysical Research Letters 34, L10401. doi:10.1029/2007GL029472.
    254. Yang, Z.S. and Liu, J.P.,2007. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Marine Geology,240:169-176.
    255. Yang, Z.S., Wang, H.j., Saito, Y, Milliman, J.D., Xu, K.H. and Shi, G.-y.,2006b. Dam impacts on the Changjiang (Yangtze River) sediment discharge to the sea:the past 55 years and after the Three Gorges Dam. Water Resource Research 42, W04407. doi:10.1029/2005WR003970.
    256. Yang, S.L., Zhao, Q.Y., Belkin, I.M.,2002. Temporal variation in the sediment load of the Yangtze River and the influences of the human activities. Journal of Hydrology,263,56-71.
    257. Yang, S.Y. and Youn, J.S.,2007. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments. Marine Geology 243,229-241.
    258. Yao, Q.Z., Yu, Z.G., Chen, H.T., Liu, P.X. and Mi, T.Z.,2009. Phosphorus transport and speciation in the Changjiang (Yangtze River) system. Applied Geochemistry,24:2186-2194.
    259. Yeats, P.A., Dalziel, J.A. and Moran, S.B.,1992. A comparison of dissolved and particulate Mn and Al distributions in the western north Atlantic. Oceanologica Acta,15(6):609-619.
    260. Yuan, J., Hayden, L., Dagg, M.,2007. Comment on "Reduction of primary production and changing of nutrient ratio in the East China Sea:effect of the Three Gorges Dam?" by Gwo-Ching Gong et al. Geophysical Research Letters 34, L14609. doi:10.1029/2006GL029036.
    261. Zhang, J. and Liu, M.G.,1994. Observations of nutrient elements and sulphate in atmospheric wet depositions over the Northwest pacific coastal oceans—Yellow Sea. Marine Chemistry, 47:173-189.
    262. Zhang, J. and Su, J. L.,2006. Nutrient dynamics of the China Seas:The Bohai Sea, Yellow Sea, East China Sea and South China Sea. In The Sea (eds. A. Robinson and K. Brink). Press of Harvard University, USA.14:Chapter 14-17.
    263. Zhang, J., Huang, W.W., Liu, M.G. and Zhou, Q.,1990.Drainage basin weathering and major elements transport of two large Chinese rivers (Huanghe and Changjiang), Journal of Geophysical Research,95:13,277-13,288.
    264. Zhang, J., Liu, S.M., Ren, J.L., Wu, Y. and Zhang, G.L.,2007a. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progress in Oceanography,74: 449-478.
    265. Zhang,J., Ren, J.L., Liu, S.M., Zhang, Z.F., Xu, Y., Xiong, H. and Chen, H.T.,2003. Dissolved aluminum and silica in the Changjiang (Yangtze River) and its Tributaries. Global Biogeochemical Cycles,17(3):1077-1087.
    266. Zhang, J., Wu, Y, Liu, C.L., Shen, Z.B., Yu, Z.G. and Zhang, Y.,2001. Aerosol characters from the desert region of Northwest China and the Yellow Sea in spring and summer: observations at Minqin, Qingdao, and Qianliyan in 1995-1996. Atmospheric Environment,3: 5007-5018.
    267. Zhang, J., Xu, H. and Ren, J.L.,2000. Fluorimetric determinations of dissolved aluminum in natural waters after liquid-liquid extraction into n-hexanol. Analytica Chimica Acta,405: 31-42.
    268. Zhang, J., Xu, H., Yu, Z.G., et al,1999a. Dissolved aluminum in four Chinese estuaries: evidence of biogeochemical uncoupling of Al with nutrients. Journal of Asian Earth Science, 17:333-343.
    269. Zhang, J., Yu, Z.G, Wang, J.T., Ren, J.L., Chen, H.T., Xiong, H., Dong, L.X. and Xu, W.Y., 1999b. The subtropical Zhujiang (Pearl River) estuary:Nutrient, trace species and their relationship to photosynthesis. Estuarine, Coastal and Shelf Science,49:385-400.
    270. Zhang, J., Zou, L., Wu, Y. and Lin, Y.A.,2004. Atmospheric wet deposition and changes in phytoplankton biomass in the surface ocean. Geophysical Research Letters,31:11310, doi:10.1029/2004GL019464
    271. Zhang, K. and Gao, H.W.,2007. The characteristics of Asian-dust storms during 2000-2002: From the source to the sea. Atmospheric Environment,41:9136-9145.
    272. Zhang, L., Liu, Z., Zhang, J., Hong, G.H., Park, Y. and Zhang, H.F.,2007b. Reevaluation of mixing among multiple water masses in the shelf:An example from the East China Sea. Continental Shelf Research,27:1969-1979.
    273. Zhang, S.W., Wang, Q.Y., Lv, Y., Cui, H., and Yuan, Y.L.,2008. Observation of the seasonal evolution of the Yellow Sea Cold Water Mass in 1996-1998. Continental Shelf Research,28:442-457.
    274. Zhao, D., Seip, H.M., Zhao, D., Zhang, D.,1994. Pattern and cause of acidic deposition in the Chongqing region, Sichuan Province, China. Water Air Soil Pollut,77:27-48.
    275. Zhu, X.R., Prospero, J.M. and Millero, F.J.,1997. Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at Barbados. Journal of Geophysical Research, Atmospheres,102 (D17):21297-21305.
    276. Zufall, M.J., Davidson, C.I., Caffery, P.F. and Ondov, J.M.,1998. Airbone concentrations and dry deposition fluxes of particulate species to surrogate surface deployed in southern Lake Michigan.Environmental Science &Technology,32(11):1623-1628.
    277.曹承进,秦延文,郑丙辉等,2008.三峡水库主要入库河流氮磷营养盐特征及其来源分析。环境科学,29(2):310-315.
    278.陈建芳,2002.古海洋学研究中的地球化学新指标。地球科学进展,17(3):402-409.
    279.陈静生,关文荣,夏星辉,何大伟,1998.长江干流近三十年来水质变化探析。环境化学,17(1):8-13.
    280.陈静生,洪松,王立新,王飞越,2000.中国东部河流颗粒物的地球化学性质,地理学报,55(4):417-427.
    281.丁昌玲,孙军,汪岷,2009.春季东海产卵场及其邻近海域束毛藻与网采浮游植物群落。渔业科学进展,30(4):50-56.
    282.窦维伟.黄、东海沉积物中金属元素的地球化学组成及铝、钛的形态分布。中国海洋大学硕士论文,2007,80pp.
    283.范德江,杨作升,孙效功,张东奇,郭志刚,2002.东海陆架北部长江、黄河沉积物影响范围的定量估算。青岛海洋大学学报,32(5):748-756.
    284.冯士榨,张经,魏皓(编),渤海环境动力学导论。科学出版社,北京,2007,281pp.
    285.干宁,毕树平,邹公伟,魏宗波,2000.离子交换/8-羟基喹啉荧光法分别测定天然水中的无机和有机单核铝。分析化学研究简报,28(11):1375-1379.
    286.耿晓东,郑粉莉,张会茹,2009.红壤坡面降雨入渗及产流产沙特征试验研究。水土保持公报,23(4):39-43.
    287.古森昌,陈忠,颜文等,2001.南沙海槽区表层沉积物的地球化学特征.海洋地质与第四纪地质,21(2):43-47.
    288.郭海晋,王政祥,邹宁,2008.长江流域水资源概述。人民长江,39(17):3-11.
    289.金秉福,林振宏,季福武,2003.海洋沉积环境和物源的元素地球化学记录释读。海洋科学进展,21(1):99-106.
    290.况琪君,周广杰,胡征宇,2007.三峡库区藻类种群结构与密度变化及其与氮磷浓度的相关性分析。长江流域资源与环境,16(2):231-235.
    291.雷建平,干宁,李伟,毕树平,2002.铬蓝黑R—示波计时电位法快速测定天然水不同形态铝。中国稀土学报,20(增刊):227-232.
    292.李道季,张经,黄大吉,吴莹,梁俊,2002.长江口外氧的亏损。中国科学(D辑),32(8):686-694.
    293.李风歧,苏育蒿(编),海洋水团分析。青岛海洋大学出版社,2000,379 pp.
    294.李晶莹,张经,2002.流域盆地的风化作用与全球气候变化。地球科学进展,17(3),411-419.
    295.李晶莹,张经,2003.中国主要流域盆地风化剥蚀率的控制因素。地理科学23(4),434-440.
    296.李双林,李绍全,孟祥君,2002.东海陆架晚第四纪沉积物化学成分及物源示踪.海洋地质与第四纪地质,22(4):21-28.
    297.连展,魏泽勋,王永刚,方国洪,王新怡,2009.中国近海环流数值模拟研究综述。海洋科学进展,27(2):250-265.
    298.练鸿振,毕树平,田笠卿,2004a.高效液相色谱法研究铝形态的可靠性。分析化学评述与进展,32(12):1677-1682.
    299.练鸿振,康玉芬,艾尔肯·牙森等,2004b.荧光分光光度法分析天然水中铝形态的研究。光谱学与光谱分析,24(11):1391-1394.
    300.林海,王先龙,毕树平,孙成,杨立,刘剑,2004.电感耦合等离子质谱、中子活化分析及其它谱学方法测定环境、生物样品中铝形态和含量研究进展。分析科学学报,20(6):652-656.
    301.林葵,陈则实,郭炳火,汤毓祥,1995.东海黑潮水与陆架水的季节性输运和交换。黄渤海海洋,13(4):1-8.
    302.林植青,郑建禄,陈金斯,等,1985.溶解态的Fe,Al, Mn, Si, Cu, Pb和Zn在河口混合过程中的絮凝.海洋学报,7(2):172-180.
    303.刘恒,2006.贵州六盘水红粘土的工程特性。地球与环境,34(2):67-70.
    304.刘腊美,龙天渝,李崇明,2009.三峡水库上游流域非点源颗粒态磷污染负荷研究。长江流域资源与环境,18(4):320-325.
    305.刘庆新,李庭安,仲立刚,赵建合,李红,2007。含钾页岩的矿物及钾组分含量的转换计算——以宣化烟筒山含钾页岩为例。地质调查与研究,30(4):258-262.
    306.刘瑞民,沈珍瑶,2006.大宁河流域生态环境综合评价及其演变。北京师范大学学报(自然科学版),42(2):200-203.
    307.栾兆坤,1987.水中铝的形态及其形态研究方法..环境化学,6(1):46-55.
    308.毛汉礼,任允武,万国铭,1964.浅海水团的定性分析:T-S点聚图运用的初步调查.海洋与湖沼,6:1-22.
    309.南海中部海域环境资源综合调查报告.北京:海洋出版社,1988.326-338.
    310.钱一雄,蔡习尧,刘忠宝,尤东华,陈跃,2009.塔里木盆地卡塔克南缘2井良里塔组碳酸盐岩沉积地球化学特征。现代地质,23(3):631-637.
    311.乔培军,邵磊,2003.南海南部末次冰期以来的沉积特点及其古环境意义.海洋地质与第四纪地质,23(2):73-78.
    312.邱冬生,庄大方,胡云锋,姚锐,2004.中国岩石风化作用所致的碳汇能力估算。地球科学——中国地质大学学报,29(2):177-190.
    313.任景玲,刘素美,张经,谢亮,李丹丹,程岩,朱德弟,2003.陆源物质输送对赤潮高发区的影响—以铝为例。应用生态学报,14(7):1117-1121.
    314.任景玲,张经,2002a.Al的海洋生物地球化学研究。海洋环境科学,21(1):68-74.
    315.任景玲,张经,刘素美,2005.以Al/Ti比值为地球化学示踪剂反演海洋古生产力的研究进展。地球科学进展,20:1314-1320.
    316.任景玲,张经,2002b.罗纳河中的铝、营养盐及常量元素的研究。青岛海洋大学学报,32(6):993-1000.
    317.师长兴,杜俊,2009.长江上游输沙量阶段性变化和原因分析。泥沙通报,4:17-24.
    318.时俊,刘鹏霞,2009.三峡蓄水前后长江口水域营养盐浓度变化特征和通量估算。海洋环境科学,28(增刊1):16-20.
    319.水利部长江水利委员会编,长江流域及西南诸河水资源公报,2005.http://www.cjw.gov.cn/wawr/2006gb/home.htm
    320.水利部长江水利委员会编,长江流域水土保持公报,2007.北京,40pp.
    321.水利部长江水利委员会编,长江流域综述,长江水利网http://www.cjw.gov.cn/index/river/liuyugk.asp
    322.苏纪兰,潘玉球,1989.台湾以北陆架环流动力学初步研究.海洋学报,11:1-14.
    323.苏纪兰,2001.中国近海的环流动力学机制。海洋学报,23(3):1-16.
    324.孙维侠,史学正,于东升,王库,王洪杰,2004.我国东北地区土壤有机碳密度和领教量的估算研究。土壤学报,41(2):298-301.
    325.汤毓祥,李兴宰,赵哲复,李载学,1997.东海东北部夏季水文状况的研究。黄渤海海洋,15(1):8-19.
    326.汤毓祥,邹娥梅,Lie,H.J.,2001.冬至初春黄海暖流的路径和起源。海洋学报,23(1):1-12.
    327.王丹,孙军,安佰正,倪晓波,刘素美,2008.2006年秋季航次东海陆架浮游植物群集。应用生态学报,19(11):2435-2442.
    328.王辉武,于非,吕连港,刁新源,郭景松,2009.冬季黄海暖流区的空间变化和年际变化牲。海洋科学进展,27(2):140-148.
    329.王立军,张朝生.,1999.珠江广州江段水体沉积物和悬浮颗粒物中27种元素的含量与形成分布特征.应用基础与工程科学学报,7(1):12-20.
    330.王中波,杨守业,李从先.,2004.南黄海中部沉积物岩心常量元素组成与古环境.地球化学,33(5):483-490.
    331.韦刚健,刘颖,李献华等,2003.南海沉积物中过剩铝问题的探讨。 矿物岩石地球化学通报,22(1):23-25.
    332.魏复盛,陈静生,吴燕玉等,1991.中国土壤环境背景值研究。环境科学,12(4):12-19.
    333.席承藩,徐琪,1994.长江流域土壤与生态环境建设.北京:科学出版社,1-15.
    334.夏星辉,张利田,陈静生,2000.岩性和气候条件对长江水系河水主要离子化学的影响。北京大学学报,36(2):246-252.
    335.谢亮,任景玲,张经,刘素美,魏皓,2007。胶州湾中溶解态铝的初步研究,中国海洋大学学报,37(1):135-140.
    336.谢亮.胶体铝的紫外消化测定方法及铝在黄、东海海域的生物地球化学行为。中国海洋大学硕士学位论文,2005,111 pp.
    337.徐胜友,蒋忠诚,1997.我国岩溶作用与大气温室气体C02源汇关系的初步估算。科学通报,42(9):953-956.
    338.杨慧辉,陈岚,1998.海坛岛海域表层沉积物中主要成份的地球化学.海洋学报,20(3):48-55.
    339.杨守业,Jung H.S.,李从先,Lim, Dong Ⅱ,2004黄河、长江与韩国Keum, Yeongsan江沉积物常量元素地球化学特征.地球化学,33(1):99-105.
    340.杨守业,李从先,1999.长江与黄河沉积物元素组成及地质背景.海洋地质与第四纪地质,19(2):19-26.
    341.杨小弟,缪强,钱胜利,毕树平,2005.铵盐存在下铝对辅酶NADH的结构的影响。光谱学与光谱分析,25(1):79-82.
    342.姚伯初,蓝先洪,邱燕,1998.西沙西南海域表层沉积物的地球化学特征.海洋地质第四纪地质,18(1):23-35.
    343.叶浩,石建省,王贵玲,侯宏冰,石迎春,程彦培,2006.砒砂岩化学成分特征对重力侵蚀的影响。水文地质工程地质,6:5-8.
    344.于非,张志欣,兰健,刁新源,郭景松,葛人峰,2005.南黄海春季水温分布特征的分析。海洋科学进展,23(3):281-288.
    345.曾小凡,翟建青,姜彤,苏布达,2008.长江流域年降水量的空间特征和演变规律分析。河海大学学报(自然科学版),36(6):727-732.
    346.张朝生,章申,王立军,1995.长江中下游河流沉积物和悬浮颗粒物中金属元素的形态特征.中国环境科学,15(5):342-347.
    347.张朝生,章申,王立军,王丽珍,1998.长江与黄河沉积物重金属元素地球化学特征及其比较.地理学报,53(4):314-322.
    348.张家诚,李文范,1986.地学基本数据手册。海洋出版社,北京,1377pp.
    349.张经,应时理,1996.长江口中颗粒态重金属:中国主要河口的生物地球化学研究—化学物质的迁移与环境.张经主编,海洋出版社,北京,pp146-159.
    350.张经编,2009.近海生物地球化学的基本原理。高等教育出版社,北京,278pp.
    351.张立城,佘中盛,章申等著,长江水系水环境化学元素系列专著(2)水环境化学元素研究.中国环境科学出版社,北京,1996,291pp.
    352.张岩松,章飞军,郭学武,张曼平,2005.黄海秋季典型站位沉降颗粒物的垂直通量。地球化学,34(2):123-128.
    353.张岩松,章飞军,郭学武,张曼平,2004.黄海夏季水域沉降颗粒物垂直通量的研究。海洋与湖沼,35(3):230-238.
    354.赵其渊.海洋地球化学.北京:地质出版社,1988.130-165 pp.
    355.赵一阳,鄢明才,1992.黄河、长江、中国浅海沉积物化学元素丰度比较。科学通报,13:1202-1204.
    356.周涛,史培军,周绍强,2003.气候变化与人类活动对中国土壤有机碳储量的影响。地理学报,58(5):727-734.
    357.朱道清编,1993.中国水系大辞典.青岛:青岛出版社,796pp.
    358.朱晓梅,张丽萍,方继青,倪含斌,吴希媛,付兴涛,2009.红壤坡地土壤水蚀过程的产流产沙动态模拟试验研究。科技通报,25(5):680-683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700