台湾以东黑潮锋的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先采用较强的海洋温度锋判别标准,利用研究海区的温度断面观测资料提取了温度锋信息,并参考了有关水文图集和文献,分析表明台湾以东表层温度锋不明显,而水下却终年存在较强的黑潮温度锋。然后对研究海区的海面高和三维温盐流进行了气候态数值模拟,由数值模拟结果获得的台湾以东温度锋的结果,同利用观测资料和图集分析得到的结果在趋势上是一致的,即台湾以东从次表层至350m存在较明显的黑潮温度锋。该锋随深度加深,其强度和宽度均呈先增大后减小的趋势;该温度锋的位置存在随深度加深而逐渐向东偏移的趋势;且具有季节变化,其强度和宽度夏季达到最大,冬季较弱。
     提取了中国海及邻近海域卫星遥感海面温度(SST)资料中的温度锋信息,如果采用强标准,则台湾以东表层温度锋不明显。为了深入研究台湾以东水下温度锋的时空多尺度变化规律及其形成变化机制,进行了海面高和三维温盐流数值再分析。再分析中采用开发的并行化混合坐标POMgcs海洋模式,发展了一种适合海洋锋面分析的全三维空间多重网格三维数据同化方法。该方法通过引入平滑惩罚项,解决了存在的“牛眼”现象,保证了同化效果的客观性;可以依次提取不同波长的信息,解决了传统三维变分数据同化仅提取特定波长信息的问题;并由于在三维空间实现了变分数据同化,克服了由于分层同化而造成的虚假分析梯度的缺点。
     采用同样的海洋温度锋判别标准,提取了上述海洋再分析结果中的温度锋信息。提取的台湾以东黑潮温度锋的气候态统计结果与上述结果基本一致。由最大熵谱分析得知,该温度锋除了存在显著的年周期外、还存在显著的2.1a、195d、124d、90d、59d多尺度变化周期。
     利用本文再分析及其温度锋信息提取结果,研究了台湾以东黑潮温度锋的形成变化机制。认为台湾以东黑潮携带着大量的高温高盐水,黑潮暖平流使台湾以东上层水温增高,加大黑潮流轴两侧水下温度的梯度。与此同时,台湾以东沿岸上升流较强,上升的冷水与黑潮高温水相汇,形成较强的水平温度梯度,因此在台湾以东近岸形成了黑潮温度锋。分别通过对该温度锋强度与黑潮流量及其与上升流流速的交谱分析表明,黑潮流量越大或上升流流速越强,该温度锋就越强。上升流和黑潮流量均在夏季最强,在两者共同作用下,使这一带的水下黑潮温度锋在夏季较强。诊断分析发现,上升流对该温度锋的贡献约为黑潮暖平流的3倍,认为上升流是该温度锋的主要形成变化机制。上升流约在200m层达到最大值,而从200m水层以上至表层的上升流逐渐减小到几乎为零,因此台湾以东表层几乎不存在明显的温度锋,但在次表层温度锋较强。研究还表明,冷涡(暖涡),会使得台湾以东黑潮温度锋右侧水温降低(升高),减弱(增强)锋面两侧温度梯度,从而削弱(增强)台湾以东黑潮温度锋强度,减小(加大)锋的宽度。
     对再分析结果中的一次锋面波动进行了研究,通过对其能量来源的诊断分析表明,正压不稳定的贡献与斜压不稳定的贡献比K-H不稳定大1-2个数量级,而斜压不稳定的贡献约为正压不稳定的5倍,因此该锋面波动基本上由斜压不稳定性提供能量。
In this paper, based on the stronger judgment criterion for oceanic thermal front, the thermal front information is extracted from the temperature profile observations in the study area. By using the hydrographical atlas and referring to related literatures, the temperature distribution trend of different levels is also analyzed. The results show that the surface thermal front to the east of Taiwan is not obvious, while there is an all-year strong Kuroshio thermal front under the surface. The sea surface height (SSH),3-dimensional (3D) temperature, salinity and current in that area are numerically simulated. And the final result is consistent in the tendency with that from observations and atlas. There is more obvious Kuroshio thermal front from subsurface to 350m to the east of Taiwan; with depth increasing, both intensity and width of this thermal front has the tendency of decrease following increase; and the position of such thermal front tends to be eastward with the depth's increasing; such front is characterized by seasonal changes that the strongest strength and width are in summer and the weakest in winter.
     The oceanic thermal front information is extracted from the satellite remote sensing sea surface temperature (SST) data of China Seas. It is found that the surface thermal front is not obvious if the strong criterion is adopted. In order to study the 3D multi-scale temperature variation rule of the Kuroshio front under the surface to the east of Taiwan and discuss the mechanism of frontogenesis, the SSH,3D temperature, salinity and current are numerically reanalyzed in this frontal zone. The paralleled hybrid coordinates POMgcs is applied in this reanalysis. A new full-space multi-scale data assimilation method applicable to the analysis of the ocean front is developed. Through adopting the penalized smooth term, the "bull's eye" is settled, which ensures the objectivity of this new method. This new method can extract different wave-length information in turn and can make full-space 3D variational (3D-Var) data assimilation, so it overcomes the shortcomings of the traditional 3D-Var data assimilation method which only extracts the specific wavelength information and results in false analysis gradient due to the stratified assimilation.
     As for the reanalysis results above, by using the same stronger judgment criterion for oceanic front, the oceanic thermal front information is extracted. The climatology statistic results of the Kuroshio thermal front to the east of Taiwan are basically consistent with the above simulated results. From the maximum entropy spectral analysis, this thermal front not only has the significant annual cycle, but also has the significant multi-scale variation cycle, like 2.1a,195d,124d,90d and 59d.
     By using the reanalysis results and the extracted thermal front information, the frontogenesis and changing mechanisms of the Kuroshio thermal front to the east of Taiwan are studied. The Kuroshio to the east of Taiwan carries vast water with high temperature and high salinity, and the Kuroshio warm advection raise the water temperature at the upper level ocean to the east of Taiwan, which can enlarge the gradient of the water temperature at the both side of the current axis of the Kuroshio. At the same time, the upwelling is strong due to water depth varying sharply in the coast to the east of Taiwan, and the elevating cold water convenes with the high-temperature Kuroshio water, forming stronger horizontal temperature gradient, thereafter, the Kuroshio thermal front is created in the offshore area to the east of Taiwan. The cross spectral analysis of the thermal front intensity and the Kuroshio flux and that of thermal front intensity and the upwelling velocity of flow show that the stronger the upwelling and the Kuroshio flux are, the stronger the intensity of the Kuroshio thermal front is. Because the upwelling and the Kuroshio flux are strongest in summer, the Kuroshio thermal front under the surface caused by the cooperation of them in this area is the strongest in summer. It is found through the diagnostic analysis that the contribution of the upwelling to this thermal front is three times than that of the Kuroshio warm advection, that is to say, the upwelling is the main mechanism for the frontogenesis and maintenance of this thermal front. The upwelling velocity reachs its maximum at 200m level and from this level to surface reduces to almost zero. Therefore, the surface thermal front to the east of Taiwan is not obvious while the subsurface frontal intensity is stronger. The presence of vortex may influence this thermal front. The result indicates that cold vortex (warm vortex) can reduce (raise) the water temperature to the right of the Kuroshio thermal front to the east of Taiwan, and weaken (strengthen) the bilateral temperature difference of the front, thereby weaken (strengthen) the strength of the Kuroshio thermal front to the east of Taiwan and narrow (widen) the width of this front.
     The frontal wave in the reanalysis result is studied in this paper. It is found through the diagnostic analysis of the energy source of the frontal wave that the contribution of barotropic instability or that of baroclinic instability is more than that of K-H instability by 1-2 order of magnitude, and the contribution of the baroclinic instability is 5 times than that of the barotropic instability, thereby the frontal wave is basically driven by the baroclinic instability.
引文
1)李冬,POMgcs海洋模式并行计算软件,国家海洋信息中心,2008年1月。
    1)汤毓祥,郑义芳.东海温度锋的分布特征及其季节变异.“八五”科技攻关项目技术报告
    [1]鲍曼,M.J., W.E.埃萨阿斯.《沿岸过程中的海洋锋》,许建平,刘仁清译.北京:海洋出版社,1986
    [2]曾呈奎,徐鸿儒,王春林主编.中国海洋志.《中国海洋志》编撰委员会.郑州:大学出版社,2003
    [3]郑义芳,丁良模,谭铎.黄海南部及东海海洋锋的特征.黄渤海海洋,1985,3:9~17
    [4]赵保仁.黄海冷水团锋面与潮混合.海洋与湖沼,1985,16:451~460
    [5]赵保仁.北黄海冷水团环流结构探讨——潮混合对环流结构的影响.海洋与湖沼,1996,27:429~435
    [6]Tomczak. Shelf and Coastal Oceanography.1998
    [7]林传兰.厄尔尼诺、南方涛动现象和东海黑潮锋的研究.海洋预报服务,1985,2:36~42
    [8]林传兰.东海黑潮锋的海洋学特征及其与渔场的关系.东海海洋,1986,4:8~16
    [9]汤毓祥.初论东海黑潮锋的区域性差异.黄渤海海洋,1992,10:1~9
    [10]朱祖佑.台湾近海之海洋状况.经济部国立台湾大学合办渔业生物试验所研究报告,1963,1(4):29~37
    [11]Tominaga, Masahide. Brief analysis of the upwelling phenomena near the eastern coast of Taiwan. Acta Oceanographica Taiwanica,1972,2:25~38
    [12]范光龙.台湾大学理学院海洋研究所研究报告,1979,10:155~163
    [13]范光龙.台湾大学理学院海洋研究所研究报告,1980,11:105~117
    [14]Bodvarsson, M. Gudrun. On upwelling along the eastern coast of Taiwan:A review of hydrographic and chemical data. Acta Oceanographica Taiwanica,1976,6:98~117
    [15]Jing Chunsheng and Li li. An initial note on quasi-stationary, cold-core Lanyu eddies southeast off Taiwan Island. Chinese Science Bulletin,2003,48(19):2101~2107
    [16]Shirshov, P. P.. OCEANIC FRONTS AND RELATED PHENOMENA. Institute of Oceanology Russian Academy of Science, Moscow and the Russian State Hydrometeorological University, St. Peterburg. Konstantin Fedorov International Memorial Symposium, Intergovernmental Oceanographic Commission, Workshop Report No.1998.159
    [17]Rossby, C. G. On the mutual adjustment of pressure and velocity distribution in certain simple current systems. J. Mar. Res.,1937,1:15~28
    [18]Csanady, G T.. On the equilibrium shape of the thermocline in a shore zone. J. Phys. Oceanogr.,1971,1:263~270
    [19]Hsueh, Y., and B. Cushman-Roisin. On the formation of surface to bottom fronts over steep topography. J. Geophys. Res.,1982,88:743~750
    [20]Ou Hsien-Wang. Some two-layer models of the shelf-slope front:Geostrophic adjustment and its maintenance. J. Phys. Oceanogr.,1983,13:1798~1808
    [21]Ou Hsien-Wang. Geostrophic adjustment:a mechanism for frontogenesis. J. Phys. Oceanogr., 1984,14
    [22]Blumen W., R Wu. Geostrophic adjustment:Frontogenesis and energy conversion. J. Phys. Oceanogr.,1995,25:428~438
    [23]Wu R. and W. Blumen. Geostrophic adjustment of a zero potential vorticity flow initiated by a mass imbalance. J. Phys. Oceanogr.,1995,25:439~458
    [24]Wang Dong-Ping. Model of frontogenesis:Subduction and upwelling. J. Mar. Res.,1993,51: 497~513
    [25]Cushman-Roisin Benoit. Effects of horizontal advection on upper ocean mixing:a case of frontogenesis. J. Phys. Oceanogr.,1981,11:1345~1356
    [26]Chen Dake, W. Timothy Liu, Wenqing Tang and Zhiren Wang. Air-sea interaction at an oceanic front:Implications for frontogenesis and primary production. Geophys. Res. Lett., 2003,30:3
    [27]Hill, A. E., and J. H. Simpson. On the interaction of thermal and haline fronts. The Islay front revisited. Estuarine Coast. Shelf Sci.,1989,28:495~505
    [28]Simpson, J. H., and J. R. Hunter. Fronts in the Irish Sea. Nature,1974,250:404~406
    [29]Simpson, J. H., C. M. Allen and N. C. G. Morris. Fronts on the Continental Shelf. J. Geophys. Res.,1978,83:4607~4614
    [30]Ou Hsien-Wang, Chang-Ming Dong, and Dake Chen. Tidal diffusivity:a mechanism for frontogenesis. J. Phys. Oceanogr.,2003,33:840~847
    [31]Hoskins, B. J.. The mathematical theory of frontogenesis. Annu. Rev. Fluid Mech.,1982,14: 131-151
    [32]Spall Michael A.. Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J. Geophys. Res.,1995,100:2543-2557
    [33]Gawarkiewicz, G. G., and D. C. Chapman. The role of stratification in the formation and maintenance of shelf-break fronts. J. Phys. Oceanogr.,1992,22:753~772
    [34]Linder Christopher A., Glen G. Gawarkiewicz, and Robert S. Pickart. Seasonal characteristics of bottom boundary layer detachment at the shelfbreak front in the Middle Atlantic Bight. J. Geophys. Res.,2004,109:C03049
    [35]Csanady, G. T.. The arrested topographic wave. J. Phys. Oceanogr.,1978,8:47~62
    [36]Chapman David C. and Steven J. Lentz. Trapping of a coastal density front by the bottom boundary layer. J. Phys. Oceanogr.,1994,24:1464~1479
    [37]Pollard, R. T. and L. A. Regier. Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr.,1992,22:609~625
    [38]Mourino Beatriz, Emilio Fernandez and Mario Alves. Thermohaline structure, ageostrophic vertical velocity fields and phytoplankton distribution and production in the northeast Atlantic subtropical front. J. Geophys. Res.,2004,109:C04020
    [39]Xu Qin. Ageostrophic Pseudovorticity and Geostrophic C-Vector Forcing-a new look at the Q Vector in three dimensions. J. Atmos. Sci.,1992,49:981~990
    [40]Chu, Peter C.. C-vector for identification of oceanic secondary circulations across Arctic Fronts in Fram Strait. Geophys. Res. Lett.,2002,29:10
    [41]Charney, J. G. The dynamics of long waves in a baroclinic westerly current. J. Meteor.,1947, 4:135~163
    [42]Orlanski, I.. The instability of frontal waves. J. Atmos. Sci.,1968,25:178~200
    [43]Orlanski, I.. The influnence of bottom topography on the stability of jets in a baroclinic fluid. J. Atmos. Sci.,1969,26:1216~1232
    [44]Flagg, C. N. and Robert C. Beardsley. On the stability of the shelf water/slope water front South of New England. J. Geophys. Res.,1978,83:4623~4631
    [45]Gawarkiewicz Glen. Linear stability models of shelfbreak fronts. J. Phys. Oceanogr.,1991,21: 471~488
    [46]David R. Lyzenga. Interaction of short surface and electromagnetic waves with ocean fronts. J. Geophys. Res.,1991,96:10765~10772
    [47]Halliwell George R., Jr., Ge Peng, and Donald B. Olson. Stability of the Sargasso Sea Subtropical Frontal Zone. J. Phys. Oceanogr.,1994,24:1166~1183
    [48]Xue Huijie and George Mellor. Instability of the Gulf Stream Front in the South Atlantic Bight. J. Phys. Oceanogr.,1993,23:2326~2350
    [49]Samelson, R. M.. Linear instability of a mixed-layer front. J. Geophys. Res.,1993,98: 10195~10204
    [50]Samelson, R. M. and D. C. Chapman. Evolution of the instability of a mixed-layer front. J. Geophys. Res.,1995,100:6743~6759
    [51]Stern Melvin E.. Lateral mixing of water masses. Deep-Sea Res.,1967,14:747~753
    [52]Niino Hiroshi. A linear stability theory of double-diffusive horizontal intrusions in a temperature-salinity front. J. Fluid. Mech.,1986,171:71~100
    [53]Kuzmina Natalia and Victor Zhurbas. Effects of double diffusion and turbulence on interleaving at baroclinic ocean fronts.2000
    [54]Kuz' mina, N. P.. On the vertical structure of three-dimensional intrusive interleaving of the oceanic fronts with high baroclinicity and thermoclinicity. Oceanology,2001,41:338~344
    [55]Simeonov Julian and Melvin Stern. Double-diffusive intrusions on a finite-width thermohaline front. J. Phys. Oceanogr,2004,34:1723~1740
    [56]Lee, T. N., L. P. Atkinson and R. Legeckis. Observations of a Gulf stream frontal eddy on the Georgia Continental Shely, April 1977. Deep-Sea Research,1981,28A:347-377
    [57]Gawarkiewicz Glen, Frank Bahr, Robert C. Beardsley, and Kenneth H. Brink. Interaction of slope eddy with the shelfbreak front in the Middle Atlantic Bight. J. Phys. Oceanogr.,2001,31: 2783~2796
    [58]Pavia, Edgar G and Benoit Cushman-Roisin. Merging of frontal eddies. J. Phys. Oceanogr., 1990,20:1886~1906
    [59]Rubino Angelo, Katrin Hessner, and Peter Brandt. Decay of Stable warm-core eddies in a layered frontal model. J. Phys. Oceanogr.,2002,32:188~201
    [60]Herbette Steven, Yves Morel and Michel Arhan. Subduction of a surface vortex under an outcropping front. J. Phys. Oceanogr.,2004,34:1610~1627
    [61]Ou Hsien-Wang and Arnold Gordon. Subduction along a midocean front and the generation of intrathermocline eddies:a theoretical study. J. Phys. Oceanogr.,2002,32:1975~1986
    [62]Cushman-Roisin Benoit. Frontal Geostrophic Dynamics. J. Phys. Oceanogr.,1986,16: 132~143
    [63]Gangopadhyay Avijit, Allan R. Robinson, Patrick J. Haley, Wayne G Leslie, Garlos J. Lozano, James J. Bisagni and Zhitao Yu. Feature-Oriented Regional Modeling and Simulations (FORMS) In the Gulf of Maine and Georges Bank. Continental Shelf Research,2002
    [64]Pavia, Edgar G and Benoit Cushman-Roisin. Modeling of Oceanic fronts using a particle method. J. Geophys. Res.,1988,93:3554~3562
    [65]赵保仁.黄海潮生陆架锋的分布.黄渤海海洋,1987,5:16~25
    [66]赵保仁.南黄海西部的陆架锋及冷水团锋区环流结构的初步研究.海洋与湖沼,1987,18(3):217~226
    [67]赵保仁等.黄海西部34°N潮生陆架锋的多年变化与跨锋断面的环流结构.海洋科学,1992,2:41~45
    [68]赵保仁.黄海南部温跃层数值模拟——Aken模式的运用.黄渤海海洋,1993,11:62~71
    [69]郑东,张瑞安.烟威及石岛近海春季水团分析.青岛海洋大学学报,1989,19期,浅海变性水团分析和预报研究(专辑):199~204
    [70]汤毓祥.潮混合对形成初夏东海西侧近岸海洋锋的作用.黑潮调查研究论文选(二).北京:海洋出版社,1990.49~58
    [71]戚建华,苏育嵩.黄海潮生陆架锋的数值模拟研究.海洋与湖沼,1998,29:247~254
    [72]刘克修,赵保仁,朱兰部.黄海温度锋及断面水温分布数值预报试验研究.海洋科学集刊,1998,40:1~11
    [73]赵保仁,曹德明,李徽翡,王其茂.渤海的潮混合特征及潮汐锋现象.海洋学报,2001,23:113~118
    [74]翁学传,王从敏.东海西北部海水温、盐度结构初步探讨.海洋科学集刊,1984,21:49~61
    [75]赵保仁.长江冲淡水锋面变动及其与泾流量的关系.海洋科学集刊,1992,33:27~35
    [76]朱建荣,丁平兴,胡敦欣.2000年8月长江口外海区冲淡水和羽状锋的观测.海洋与湖沼,2003,34:249~255
    [77]潘玉球,徐端蓉,许建.浙江沿岸上升流区的锋面结构、变化及其原因.海洋学报,1985,7:291~301
    [78]潘玉球等.浙江沿岸上升流锋区特征及其成因的初步探讨.海洋湖沼通报,1989,3:1-7
    [79]王胄,陈庆生.台湾海峡东侧冷季之闽浙沿岸水入侵事件.台湾大学海洋学刊,1990,25:31~54
    [80]黄大吉,苏纪兰.陆坡附近锋面的稳定性.海洋学报,1991,13(2):158~168
    [81]刘先炳,苏纪兰.浙江沿岸上升流和沿岸锋面的数值研究.海洋学报,1991,13:305~314
    [82]苏纪兰主编.《杭州湾锋面研究》.中国海洋学文集2.北京:海洋出版社,1992
    [83]Pingree, R.D. and Griffiths, D.K.. Tidal fronts on the shelf seas around the British Isles. Journal of Geophysical Research,1978,83:4615~4622
    [84]Kazmin Alexander S. and Michele M. Rienecker. Variability and frontogenesis in the large-scale oceanic frontal zones. J. Geophys. Res.,1996,101:907~921
    [85]Kostianoy, A. G, A. I. Ginzburg, S. A. Lebedev, M. Frankignoulle and B. Delille. Fronts and mesoscale variability in the Southern Indian ocean as inferred from the TOPEX/POSEIDON and ERS-2 altimetry data. Oceanology,2003,43:632~642
    [86]Lyzenga, D. R.. Interaction of short surface and electromagnetic wave with ocean fronts. J. Geophys. Res.,1991,96:10765~10772
    [87]Zhang X.. Capillary-gravity and capillary waves generated in a wind wave tank. Observations and the ories. J. Fluid Mech.,1995,289:51~82
    [88]Phillip, O. M.. Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech.,1985,156:505-531
    [89]Johannessen, J. A., R. A. Shuchman, G Digranes, D. R. Lyzenga, C. Wackerman, O. M. Johannessen, and P. W. Vachon. Coastal ocean fronts and eddies imaged with ERS-1 synthetic aperture radar. J. Geophys. Res.,1996,101:6651~6667
    [90]Hessner Katrin, Angelo Rubino, Peter Brandt, and Werner Alpers. The Rhine outflow plume studied by the analysis of synthetic aperture radar data and numerical simulations. J. Phys. Oceanogr.,2001,31:3030~3044
    [91]Zheng Quannan, Pablo Clemente-Colon, Xiao-Hai Yan, W. Timothy Liu, and Norden E. Huang. Satellite synthetic aperture radar detection of Delaware Bay plumes:Jet-like feature analysis. J. Geophys. Res.,2004,109:C03031
    [92]刘宝银.利用NOAA卫星红外信息对东海黑潮表层温度盘的解释.山东海洋学院院报,1982,12:11~19
    [93]郑义芳,周参武,修树孟.1986年5-6月日本南部黑潮及其邻近海区温、盐度分布与黑潮锋的特征.黑潮调查研究论文选(一).北京:海洋出版社,1990.277~286
    [94]Guo Binghuo et al.. Kuroshio warm filament and the source of the warm water of the Tsushima warm current. Proceedings of Japan China Joint Symposium of the Cooperative study on the kuroshio Novenber.1990,14~16 Tokyo Japan.17~21
    [95]笪良龙,卢晓亭,李玉阳.海洋遥感信息提取技术研究报告.海军潜艇学院,2002
    [96]陈标,张本涛,何伟平.利用星载SAR图像检测海洋锋的方法.遥感技术与应用,2002,17:177~180
    [97]格拉哥列娃,斯克里普图诺娃.《海洋水温预报》,王宗山,徐伯昌译.北京:海洋出版社,1982
    [98]Clarke, L. C. and T. Laevastu. Numerical methods for synoptic computation of oceanic fronts and water type boundaries. Internat. J. Oceanology and Limnology,1967,1:21~29
    [99]Beccerle, J.. Prediction of mid-oceanic frontal passage confirmed in near-surface current measurements. J. Geophys. Res.,1972,17:1637~1646
    [100]Robinson, A. R., H. G Arango, A. J. Miller, A. Warn-Varnas, P.-M. Poulain, and W. G Leslie. Real-time operational forecasting of shipboard of Iceland-faeroe Front variability. Bull. Ams., 1996,77:243~259
    [101]Lynch, D. R.. Real-time data assimilative modeling of Georges Bank, Oceanogr.,2001,14: 65~77
    [102]Popova, Ekaterina E., Meric A. Srokosz, and David A. Smeed. Real-time forecasting of biological and physical dynamics at the Iceland-Faeroes Front in June 2001. Geophys. Res. Lett.,2002,29:14
    [103]Uda. M.. Oceanography Met.,1947,5
    [104]Nokao, T.. Oceanic variability in relation to fisheries in the East China Sea and the Yellow Sea. Tous of the Faculty of Marine Science and Technology Takai University, Special Number, 1977.199-367
    [105]Eguchi, I., A. Shibata, Y. Takano and S. Minato. Mesoscale disturbances in the Kuroshio front in the East China Sea. Report of Kuroshio Exploitation and Utilization Research,1982,5: 104~111
    [106]Shibata, A.. Meander of the Kuroshio along the edge of Continental Shelf in the East China Sea. Umito Sea.,1983,58:1-8
    [107]Shibata, A. and I. Eguchi. Frontal eddies observed in the East China Sea in the May and October of 1982. The Oceanographical Magazine,1985,35:21~29
    [108]Nagata, Y. and K. Takeshita. Variation of the Sea Surface Temperature Distribution across the Kuroshio Front in the Tokara Strait. J. Oceanogr. Soc., Japan,1985,41:244~258
    [109]Sugimoto, T., F. Kimura, and K. Miyaji. Meander of the Kuroshio front and current variability in the East China Sea. J. Oceanogr. Soc. Japan,1988,44:125~135
    [110]郑义芳,谭铎.东海海洋锋和跃层现象.黑潮调查研究论文集.北京:海洋出版社,1987
    [111]Liu Choteng and Pai Suchang. As Kuroshio turns:(Ⅱ) The oceanic front north of Taiwan. Acta Oceanographica Taiwannica,1987,18:49~61
    [112]于洪华,苗育田.东海黑潮锋的特征分析.黑潮调查研究论文选(三).北京:海洋出版社,1991.204~211
    [113]汤毓祥,郑义芳,中村保昭.东海黑潮锋三维结构的初步分析.黑潮调查研究论文选 (四).北京:海洋出版社,1992.33~42
    [114]万邦君,汤毓祥,郭炳火.东海东北部海洋锋特征的初步分析.黑潮调查研究论文选(四).北京:海洋出版社,1992.12~22
    [115]陆赛英.东海黑潮锋区营养盐的横向输送.黑潮调查研究论文选(四).北京:海洋出版社,1992.134~141
    [116]郑义芳.东海东北部海区黑潮锋的位置变动及其对陆架外缘附近海区水团分布的影响.黑潮调查研究论文选(二).北京:海洋出版社,1990.22~28
    [117]汤毓祥,郑义芳.关于黄、东海海洋锋的研究.海洋通报,1990,9:89~96
    [118]郑义芳,汤毓祥,黄卫民.东海北部黑潮锋的短周期变动及其两侧海况的变化.黑潮调查研究论文选(三).北京:海洋出版社,1991.26~35
    [119]郑全安等.黑潮流系典型中尺度现象遥感与动力学研究.黑潮调查研究论文选(一).北京:海洋出版社,1990.313~323
    [120]郭炳火.东海黑潮锋面涡旋、暖丝和暖环.中国邻近海域物理和化学海洋学讨论会论文集.北京:海洋出版社,1992
    [121]郑义芳,郭炳火,汤毓祥,修树孟,中村保昭.东海黑潮锋面涡旋的观测.黑潮调查研究论文选(四).北京:海洋出版社,1992.23~31
    [122]陈真,郑义芳,黄卫民.黑潮锋面涡对东海外陆架生化结构的影响.黑潮调查研究论文选(四).北京:海洋出版社,1992.115~123
    [123]孟凡,赵晶,李钦亮,马兆党.东海北部黑潮锋面涡旋区浮游动物的生态结构.黑潮调查研究论文选(四).北京:海洋出版社,1992.142~149
    [124]管秉贤.台湾以东及东海黑潮调查研究的主要动向及结果.海洋学报,1983,5(2):133~146
    [125]Chu Tsu-You. Study of the Kuroshio current between Taiwan and Ishigaki-jima. Acta Oceanographica Taiwanica,1976,6:1-24
    [126]Fedorov, K. N.. The Physical Nature and Structure of Ocean Fronts. Springer-Verlag, N. Y. 1987
    [127]陈达熙等.渤海黄海东海海洋图集(水文).北京:海洋出版社,1993.423~426
    [128]Mellor, George, Sirpa Hakkinen, Tal Ezer and Richard Patchen. A Generalization of a Sigma Coordinate Ocean Model and an Intercomparison of Model Vertical Grids. Ocean Forecasting: Conceptual Basis and Applications. Berlin:N. Pinard, J. Woods (Eds.), Springer,2002.55~72
    [129]Ezer, Tal and George L. Mellor. A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-level grids. Ocean Modelling,2004,6:379~403
    [130]孙文心,江文胜,李磊.近海环境流体动力学数值模型.北京:科学出版社,2004.249~250
    [131]Mellor, G. L.. Analytic prediction of the properties of stratified planetary surface layers. J. Atmos. Sci.,1973,30:1061~1069
    [132]Mellor, George and Tetsuji Yamada. A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. Journal of the Atmospheric Science,1974,31:1791~1806
    [133]Mellor, George and Tetsuji Yamada. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Reviews of Geophysics and Space Physics,1982,20(4): 851~875
    [134]Galperin, b., L. H. Kantha, S. Hassid and A. Rosati. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci.,1988,45:55~62
    [135]张学峰,刘克修,李威,何忠杰,马继瑞.黄海东海海温海洋模式参数化方法数值试验.已提交审稿,2008
    [136]George Mellor, Alan F. Blumberg. Wave breaking and ocean surface layer thermal response. J Phys Oceanogr.,2004,34:693-698
    [137]Stacey Michael W. and Stephen Pond. On the Mellor-Yamada turbulence closure scheme:the surface boundary condition for q2. J. Phys. Oceanogr.,1997,27:2081-2086
    [138]Craig, Peter D. and Michael L. Banner. Modeling wave-enhanced turbulence in the ocean surface layer. J Phys Oceanogr.,1994,24:2546-2559
    [139]薛惠洁,柴扉,徐丹亚,侍茂崇.南海海流数值计算.中国海洋学文集.北京:海洋出版社,2001,13:1~14
    [140]中国科学院海洋研究所海洋气象组.《西北太平洋海面热量平衡图集》.科学出版社,1979
    [141]Smagorinsky, J.. General circulation experiments with the primitive equations, Ⅰ:the basic experiment. Monthly Weather Review,1963,91:99~164
    [142]Oey, L.-Y., G. L. Mellor and R. I. Hires. A three-dimensional simulation of the Hudson-Raritan estuary, Part Ⅰ:Description of the model and model simulations. J. Phys. Oceanogr.,1985,15:1676~1692
    [143]Bryan, K.. Potential vorticity in models of the ocean circulation. Q. J. R. Meteorol. Soc.,1987, 113:713~734
    [144]Brown, E. D. and B. Owens. Observations of the horizontal interactions between the internal wave field and the mesoscale flow. J. Phys. Ocean.,1981,11:1474~1480
    [145]何忠杰.副热带逆流区及其邻近海域中尺度涡研究:[博士学位论文].青岛:中国海洋大学,2008
    [146]Derber, John and Anthony Rosati. A Global Oceanic Data Assimilation System. Journal of Physical Oceanography,1989,19:1333~1347
    [147]Behrinoer, David W., Ming Ji and Ants Leetmaa. An Improved Coupled Model for ENSO Prediction and Implications for Ocean Initialization. Part Ⅰ:The Ocean Data Assimilation System. Monthly Weather Review,1998,126:1013~1021
    [148]Gaspari, G., and S. E. Cohn. Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc.,1999,125:723~757
    [149]Weaver, A., and P. Courtier. Correlation modeling on the sphere using a generalized diffusion equation. Q. J. R. Meteorol. Soc.,2001,127:1815~1846
    [150]Hayden, Christopher M. and R. James Purser. Recursive Filter Objective Analysis of Meteorological Fields:Applications to NESDIS Operational Processing. Journal of Applied Meteorology,1995,34:3-15
    [151]Xie, Yuanfu, S. E. Koch, J. A. McGinley, S. Albers, and N. Wang, A Sequential Variational Analysis Approach for Mesoscale Data Assimilation.21st Conference on Weather Analysis and Forecasting/17th Conference on Numerical Weather Prediction.2005
    [152]Briggs, William L., Van Emden Henson and Steve F. McCormick. A Multigrid Tutorial. SIAM, 2000.2nd Edition
    [153]Maes, C. Estimating the influence of salinity on sea level anomaly in the ocean. Geophys. Res. Lett.1998,25:3551~3554
    [154]Webster, P. J., and R. Lukas. The Tropical Ocean/Global Atmosphere Coupled Ocan-Atmpsphere Response Experiment (COARE). Bull. Am. Meteorol. Soc.,1992,73: 1377~1416
    [155]Cooper N S. The effect of salinity in tropical ocean models. J. Phys. Oceanogr.,1988,18: 697~707
    [156]Troccoli, A., Balmaseda, M. A., Segschneider, J., Vialard, J., Anderson, D. L. T., Haines, K., Stockdale, T., Vitart, F., and Fox, A. D. Salinity adjustments in the presence of temperature data assimilation. Mon. Wea. Rev.,2002,130:89~102
    [157]Vossepoel, F., and D. W. Behringer. Impact of sea level assimilation on salinity variability in the western equatorial Pacific. J. Phys. Ocean.,2000,30:1706-1721
    [158]Maes, C., and D. Behringer. Using Satellite-derived Sea Level and Temperature Profiles for Determining the Salinity Variability:A New Approach. J. Geophys. Res.,2000,105(C4): 8537~8547
    [159]Le Traon, P. Y., M. Rienecker, P. Bahurel, M. Bell, H. Hurlburt and P. Dandin. Operational oceanography and prediction-a GODAE perspective. In Solicited Papers in the Ocean Observing System for Climate,1999, Ocean OBS 99, session 5B
    [160]Alves, J. O. S., D. L. T. Anderson, and K. Haines. Sea level assimilation experiments in the Tropical Pacific. J. Phys. Oceanogr.,2001,31:305~323
    [161]Han, G, J. Zhu, and G. Zhou. Salinity estimation using the T-S relation in the context of variational data assimilation. J. Geophys. Res.,2004,109:C03018, doi:10.1029/ 2003JC001781
    [162]朱江,周广庆,闫长香,符伟伟,游小宝.一个三维变分海洋资料同化系统的设计和初步应用.中国科学D辑,2007,37(2):261~271
    [163]Reynolds, Richard W., Thomas M. Smith, Chunying Liu, Dudley B. Chelton, Kenneth S. Casey and Michael G. Schlax. Daily High-Resolution Blended Analyses for Sea Surface Temperature.2007
    [164]李炳兰,巴兰春,杜兵.大陆架及邻近海域基础环境图集流系图.天津:国家海洋信息中心,1995
    [165]管秉贤,刘举平,范继栓等.东海G断面二十年(1956~1975)来黑潮表层流速的变动.科学通报,1979,24(21):990~994
    [166]孙湘平.东海黑潮表层流路(途径)的初步分析.黑潮调查研究论文集.北京:海洋出版社,1987.1~14
    [167]袁耀初,远藤昌宏,石崎广.东海黑潮与琉球群岛以东海流的研究.黑潮调查研究论文选(三),北京:海洋出版社,1991
    [168]袁耀初,潘子勤,金子郁雄等.东海黑潮的变异与琉球群岛以东海流.黑潮调查研究论文选(五).北京:海洋出版社,1993.279~297
    [169]郭炳火,葛人峰.东海黑潮锋面涡旋在陆架水与黑潮水交换中的作用.海洋学报,1997,19(5):1~11
    [170]刘勇刚,袁耀初.1992年东海黑潮的变异.海洋学报,1998,26(6):1~11
    [171]陈红霞,袁业立,华锋.东海黑潮主段G-PN断面的多核结构.科学通报,2006,15(6):730~737
    [172]苏纪兰主编.《中国近海水文》.北京:海洋出版社,2005
    [173]陈上及,马继瑞.海洋数据处理分析方法及其应用.北京:海洋出版社,1991
    [174]方欣华,吴巍.海洋随机资料分析.青岛:青岛海洋大学出版社,2002
    [175]顾玉荷.台湾附近海域黑潮表层流轴位置季节变异的探讨.海洋科学集刊,1984,21:233~243
    [176]万邦君,郭炳火,汤毓祥.横穿黑潮锋断面的流场结构.海洋与湖沼,1994,25(6):652~658
    [177]Qiu, B., T. Toda, and N. Imasato. On Kuroshio front fluctuations in the East China Sea using satellite and in situ observational data. J. Geophys. Res.,1990,95:18191~18204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700