酿酒酵母CK2的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CK2是一种保守的蛋白激酶,它广泛分布于真核生物中,通过磷酸化蛋白底物的丝氨酸/苏氨酸/酪氨酸在很多生物学过程中发挥作用。CK2不同于其它蛋白激酶之处在于它具有组成型活性,并且既可以利用ATP又可以利用GTP作为磷酰基供体。CK2是一个多亚基复合物,它包括α-亚基(催化亚基)和β-亚基(调节亚基),前者包含蛋白激酶的催化结构域。
     我们解析了重组scCK2α与不同核苷酸辅底物(GMPPNP,ATP和AMPPN)与金属离子(Mg2+或Mn2+)的晶体结构。scCK2α的整体结构和同源蛋白相似,包括两个结构域及两个结构域之间的辅底物结合位点。然而,scCK2α的晶体结构呈现出与其同源蛋白不同的三个特征。首先,scCK2α在序列上的独特之处在于它包含了一段38个残基的插入序列,功能目前尚不清楚。根据结构分析并结合之前的研究,我们推测它可能参与保持其活性中心的开放构象,同时它并不参与和两个调节亚基的结合。其次,scCK2α中的两对残基Lys45-Glu53和Arg48-Glu53的相互作用使得Lys5o采取了一种特殊的构象,使其可以直接固定辅底物的γ-磷酸基团,这样就使得“必需二价阳离子”显得不那么必需。我们推断scCK2α可能存在多种“核苷酸-二价阳离子”结合方式,这明显不同于在活性中心有两个二价阳离子结合的zmCK2α或hCK2α。最后,scCK2α-AMPPN结构中G1u53的构象变化破坏了它与Lys45和Arg48的结合,使得辅底物结合口袋变大。这种构象变化暗示了一个关于ADP/GDP释放的路径,因为在CK2a中,催化三联体由"DFG"变成了"DWG",其中的Trp的NE1原子与Leu212的O原子形成氢键,这就使得由原来的"DFG翻转”促成ADP的释放变得不太可能。巧合的是,在辅底物结合部位我们观察到了两个残基Arg161和Lys197捕捉到了两个S042-离子,对这两个残基进行突变,突变体结合和利用ATP/GTP的效率都大大降低,这与我们关于潜在的释放路径的推测相符。
     虽然CK2各亚基间的亲和力很高,但是目前的研究表明CK2只是一个结合较强的瞬时复合物,各个亚基在细胞内也是独立运动的。hCK2的全酶形式α2β2的晶体结构表明,两个β-亚基形成一个同二聚体,两个α-亚基各自结合在它的两侧形成一个“蝴蝶”形状。我们的实验表明,酿酒酵母CK2的四个亚基相互作用方式似乎与hCK2不同,而且核苷酸与催化亚基scCK2α的结合可能会调节它与β-亚基的结合。目前仅知道CK2β和CK2β'对于组装成全酶必不可少,也不可替代,但具体组装方式还有待进一步的实验验证。
     CK2不仅能做为一个全酶存在并发挥功能,其亚基还可与其它蛋白质组装成不同的复合物,只不过相比之下CK2亚基间的结合更强。当细胞被紫外线照射受损时,hFACT可以结合到hCK2上,改变后者的构象和底物特异性,使其在细胞内特异地磷酸化p53的Ser392,从而稳定p53的四聚体结构以重启基因转录或复制。在酿酒酵母中,有报道指出CK2可能是通过CHD1间接地与Spt16-Pob3结合,也有报道提到CK2可以和Spt16-Pob3直接结合,但是并没有给出直接的实验证据。
     FACT在转录和复制过程中都发挥了重要的作用,人源FACT (hFACT)包括Spt16和SSRP1两个亚基,但是在酿酒酵母中FACT (yFACT)却包含三个亚基:Spt16, Pob3,以及一个类HMGl蛋白——Nhp6A/Nhp6B。人源Spt16和酵母Spt16同源,具有相似的长度,Pob3缺少相对于SSRP1的C端部分,后者包含一个HMG1结构域。我们克隆并纯化了scCK2的四个亚基,Spt16、Pob3和Nhp6A/Nhp6B,并证明了它们确实存在相互作用(Pob3和CK2β、CK2β'),但是CK2与FACT的结合方式及意义还需要进一步探究。与此同时我们还得到了Pob3-M和Pob3(1-112aa)的晶体结构,后者可以结合dsDNA,但是它在整个yFACT中发挥的功能还不清楚。
CK2is a ubiquitous and conserved protein kinase in eucaryotic organisms, and important in many biological processes. It is unique by keeping constitutive activity and using both ATP and GTP as phosphor donor. CK2is a heterotetramer like a "butterfly" consisting of catalytic and regulatory subunits. In this study, we present the crystal structures of recombinant scCKα with GMPPNP, ATP and AMPPN complexed with either Mg2+or Mn2+as the coordinated divalent cations. The overall structure of scCK2α shows high similarity with its homologous proteins by consisting of two domains and that co-substrate lies in the cleft between them. Whereas, three characteristic features distinct scCK2a from its homolog. Firstly, scCK2a is unique by containing an insertion region that contributes to keep the constitutive activity conformation of scCK2a catalytic site. Secondly, interaction of Lys45-Glu53and Arg48-Glu53in scC2a leads Lys50to adopt a unique conformation able to stabilize the y-phosphate of co-substrate, which makes the existence of the "essential divalent cation" not that essential. The multiple nucleotide-divalent cation binding modes of the active site of scCK2a is apparently different from the two-divalent cation ion occupied the catalytic active site of zmCK2a or hCK2a. Finally, conformation change of Glu53of scCK2a-AMPPN breaks its interaction with Lys45and Arg48, as a result, the co-substrate-binding pocket becomes more open. This could suggest a clue of a possible ADP/GDP release pathway, because the NE1of Trp in "DWG motif" of CK2α forms a hydrogen bond with the O atom of Leu212, which seems making the ADP release process by means of "DFG-in flip to DFG-out" model in most of eukaryotic protein kinase impossible.
     Previous researches provided that CK2was a strong transient complex and its subunits could move independently though high affinity (4nM of Kd) among its subunits.The crystal structure of hCK2isoform α2β2demonstrated that the two β-subunits interacted with each other to form a dimer, and the two catalytic subunits bind to the opposite side. Our results displayed that interaction between the subunits of scCK2may be different from hCK2isoform α2β2, though more experimental verification is required.
     The subunits of CK2could combine with other proteins to form complex with weak affinity compared with inner CK2. Interestingly, this interaction is mediated by regulatory subunits.hSpt16and SSRP1could bind to CK2induced by UV irradiation and this direct interaction results in conformation change of CK2, which could then specifically target p53over other substrates. In the case of Saccharomyces cerevisiae, properly the CK2interact indirectly with Spt16-Pob3through CHD1. There are also reports referring to that CK2associated with Spt16-Pob3, but they did not provide experimental evidence.
     FACT is a histone chaperone with roles in transcription, replication, and repair. It could promote and subsequently restrict access to DNA as a result of dynamic nucleosome reorganization. Human FACT is a stable heterodimer comprised of hSpt16and SSRP1proteins. Whereas in S. cerevisiae, yFACT consists of Spt16/Cdc68, pob3and Nhp6which is a HMGl-like protein.The yeast and human Spt16proteins are structurally related throughout their lengths. However, the Pob3protein does not contain sequences related to the C-terminal portion of SSRP1, which contains a high-mobility group (HMG) box domain. We cloned and purified the subunits of CK2and yFACT of S. cerevisiae. Our result confirmed that CK2could interact with FACT though their function is still unclear. Meanwhile, we obtained the crystal structure of Pob3-M and Pob3(1-112aa), but Pob3-M does not participate in the interaction of Pob3and CK2. EMSA assay demonstrated that Pob3(1-112aa) could bound dsDNA, which need more studies to determine the significance of its DNA-binding function.
引文
(1994). The CCP4 suite:programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50,760-763.
    Abramczyk, O., Zien, P., Zielinski, R., Pilecki, M., Hellman, U., and Szyszka, R. (2003). The protein kinase 60S is a free catalytic CK2alpha' subunit and forms an inactive complex with superoxide dismutase SOD1. Biochemical and biophysical research communications 307,31-40.
    Adams, J. A. (2001). Kinetic and catalytic mechanisms of protein kinases. Chemical reviews 101, 2271-2290.
    Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., et al. (2010). PHENIX:a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66,213-221.
    Agostinis, P., Goris, J., Pinna, L. A., and Merlevede, W. (1987). Regulation of casein kinase 2 by phosphorylation/dephosphorylation. The Biochemical journal 248,785-789.
    Akten, B., Jauch, E., Genova, G. K., Kim, E. Y., Edery, I., Raabe, T., and Jackson, F. R. (2003). A role for CK2 in the Drosophila circadian oscillator. Nature neuroscience 6,251-257.
    Allende, J. E., and Allende, C. C. (1995). Protein kinases.4. Protein kinase CK2:an enzyme with multiple substrates and a puzzling regulation. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 9,313-323.
    Andrews, A. J., and Luger, K. (2011). Nucleosome structure(s) and stability:variations on a theme. Annual review of biophysics 40,99-117.
    Antonelli, M., Daniotti, J. L., Rojo, D., Allende, C. C., and Allende, J. E. (1996). Cloning, expression and properties of the alpha' subunit of casein kinase 2 from zebrafish (Danio rerio). European journal of biochemistry/FEBS 241,272-279.
    Aravind, L., and Koonin, E. V. (1998). Eukaryotic transcription regulators derive from ancient enzymatic domains. Current biology:CB 8, R111-113.
    Battistutta, R., Sarno, S., De Moliner, E., Marin, O., Issinger, O. G., Zanotti, G., and Pinna, L. A. (2000). The crystal structure of the complex of Zea mays alpha subunit with a fragment of human beta subunit provides the clue to the architecture of protein kinase CK2 holoenzyme. European journal of biochemistry/FEBS 267,5184-5190.
    Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R., and Leslie, A. G. (2011). iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta crystallographica Section D, Biological crystallography 67,271-281.
    Belotserkovskaya, R., Oh, S., Bondarenko, V. A., Orphanides, G., Studitsky, V. M., and Reinberg, D. (2003). FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090-1093.
    Berkey, C. D., and Carlson, M. (2006). A specific catalytic subunit isoform of protein kinase CK2 is required for phosphorylation of the repressor Nrgl in Saccharomyces cerevisiae. Current genetics 50,1-10.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000). The Protein Data Bank. Nucleic acids research 28,235-242.
    Bibby, A. C, and Litchfield, D. W. (2005). The multiple personalities of the regulatory subunit of protein kinase CK2:CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. International journal of biological sciences 1,67-79.
    Bidwai, A. P., Reed, J. C., and Glover, C. V. (1995). Cloning and disruption of CKB1, the gene encoding the 38-kDa beta subunit of Saccharomyces cerevisiae casein kinase II (CKII). Deletion of CKII regulatory subunits elicits a salt-sensitive phenotype. The Journal of biological chemistry 270,10395-10404.
    Biondi, R. M., and Nebreda, A. R. (2003). Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. The Biochemical journal 372,1-13.
    Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & development 16, 6-21.
    Bischoff, N., Olsen, B., Raaf, J., Bretner, M., Issinger, O. G., and Niefind, K. (2011). Structure of the human protein kinase CK2 catalytic subunit CK2alpha' and interaction thermodynamics with the regulatory subunit CK2beta. Journal of molecular biology 407,1-12.
    Biswas, D., Dutta-Biswas, R., and Stillman, D. J. (2007). Chdl and yFACT act in opposition in regulating transcription. Molecular and cellular biology 27,6279-6287.
    Biswas, D., Yu, Y., Prall, M., Formosa, T., and Stillman, D. J. (2005). The yeast FACT complex has a role in transcriptional initiation. Molecular and cellular biology 25,5812-5822.
    Blau, J. (2003). A new role for an old kinase:CK2 and the circadian clock. Nature neuroscience 6, 208-210.
    Boeger, H., Griesenbeck, J., Strattan, J. S., and Kornberg, R. D. (2003). Nucleosomes unfold completely at a transcriptionally active promoter. Molecular cell 11,1587-1598.
    Boeger, H., Griesenbeck, J., Strattan, J. S., and Kornberg, R. D. (2004). Removal of promoter nucleosomes by disassembly rather than sliding in vivo. Molecular cell 14,667-673.
    Boldyreff, B., Mietens, U., and Issinger, O. G. (1996). Structure of protein kinase CK2: dimerization of the human beta-subunit. FEBS letters 379,153-156.
    Bossemeyer, D., Engh, R. A., Kinzel, V., Ponstingl, H., and Huber, R. (1993). Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5-24). The EMBO journal 12,849-859.
    Brehm, A., Tufteland, K. R., Aasland, R., and Becker, P. B. (2004). The many colours of chromodomains. BioEssays:news and reviews in molecular, cellular and developmental biology 26,133-140.
    Bren, G. D., Pennington, K. N., and Paya, C. V. (2000). PKC-zeta-associated CK2 participates in the turnover of free IkappaBalpha. Journal of molecular biology 297,1245-1258.
    Brewster, N. K., Johnston, G. C., and Singer, R. A. (1998). Characterization of the CP complex, an abundant dimer of Cdc68 and Pob3 proteins that regulates yeast transcriptional activation and chromatin repression. The Journal of biological chemistry 273,21972-21979.
    Brewster, N. K., Johnston, G. C., and Singer, R. A. (2001). A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Molecular and cellular biology 21, 3491-3502.
    Bruno, M., Flaus, A., Stockdale, C., Rencurel, C., Ferreira, H., and Owen-Hughes, T. (2003). Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. Molecular cell 12,1599-1606.
    Budd, M. E., Tong, A. H., Polaczek, P., Peng, X., Boone, C., and Campbell, J. L. (2005). A network of multi-tasking proteins at the DNA replication fork preserves genome stability. PLoS genetics 1, e61.
    Bustin, M. (1999). Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Molecular and cellular biology 19,5237-5246.
    Bustin, M. (2001). Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends in biochemical sciences 26,152-153.
    Cairns, B. R. (2007). Chromatin remodeling:insights and intrigue from single-molecule studies. Nature structural & molecular biology 14,989-996.
    Clapier, C. R., and Cairns, B. R. (2009). The biology of chromatin remodeling complexes. Annual review of biochemistry 78,273-304.
    Cochet, C., and Chambaz, E. M. (1983). Oligomeric structure and catalytic activity of G type casein kinase. Isolation of the two subunits and renaturation experiments. The Journal of biological chemistry 258,1403-1406.
    Collett, M. S., and Erikson, R. L. (1978). Protein kinase activity associated with the avian sarcoma virus src gene product. Proceedings of the National Academy of Sciences of the United States of America 75,2021-2024.
    Cook, A., Lowe, E. D., Chrysina, E. D., Skamnaki, V. T., Oikonomakos, N. G., and Johnson, L. N. (2002). Structural studies on phospho-CDK2/cyclin A bound to nitrate, a transition state analogue: implications for the protein kinase mechanism. Biochemistry 41,7301-7311.
    Costa, P. J., and Arndt, K. M. (2000). Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtfl protein in transcription elongation. Genetics 156,535-547.
    Costigan, C., Kolodrubetz, D., and Snyder, M. (1994). NHP6A and NHP6B, which encode HMG 1-like proteins, are candidates for downstream components of the yeast SLT2 mitogen-activated protein kinase pathway. Molecular and cellular biology 14,2391-2403.
    Dahmus, M. E. (1981). Purification and properties of calf thymus casein kinases Ⅰ and Ⅱ. The Journal of biological chemistry 256,3319-3325.
    Dahmus, M. E., and Natzle, J. (1977). Purification and characterization of Novikoff ascites tumor protein kinase. Biochemistry 16,1901-1908.
    De Bondt, H. L., Rosenblatt, J., Jancarik, J., Jones, H. D., Morgan, D. O., and Kim, S. H. (1993). Crystal structure of cyclin-dependent kinase 2. Nature 363,595-602.
    de la Cruz, X., Lois, S., Sanchez-Molina, S., and Martinez-Balbas, M. A. (2005). Do protein motifs read the histone code? BioEssays:news and reviews in molecular, cellular and developmental biology 27,164-175.
    Delmas, V., Stokes, D. G., and Perry, R. P. (1993). A mammalian DNA-binding protein that contains a chromodomain and an SNF2/SWI2-like helicase domain. Proceedings of the National Academy of Sciences of the United States of America 90,2414-2418.
    Dhanasekaran, N., and Premkumar Reddy, E. (1998). Signaling by dual specificity kinases. Oncogene 17,1447-1455.
    Dobrowolska, G., Boldyreff, B., and Issinger, O. G. (1991). Cloning and sequencing of the casein kinase 2 alpha subunit from Zea mays. Biochimica et biophysica acta 1129,139-140.
    Dobrowolska, G., Meggio, F., Szczegielniak, J., Muszynska, G., and Pinna, L. A. (1992). Purification and characterization of maize seedling casein kinase IIB, a monomeric enzyme immunologically related to the alpha subunit of animal casein kinase-2. European journal of biochemistry/FEBS 204,299-303.
    Domanska, K., Zielinski, R., Kubinski, K., Sajnaga, E., Maslyk, M., Bretner, M., and Szyszka, R. (2005). Different properties of four molecular forms of protein kinase CK2 from Saccharomyces cerevisiae. Acta biochimica Polonica 52,947-951.
    Duina, A. A. (2011). Histone Chaperones Spt6 and FACT:Similarities and Differences in Modes of Action at Transcribed Genes. Genetics research international 2011,625210.
    Duroux, M., Houben, A., Ruzicka, K., Friml, J., and Grasser, K. D. (2004). The chromatin remodelling complex FACT associates with actively transcribed regions of the Arabidopsis genome. The Plant journal:for cell and molecular biology 40,660-671.
    Durr, H., Flaus, A., Owen-Hughes, T., and Hopfner, K. P. (2006). Snf2 family ATPases and DExx box helicases:differences and unifying concepts from high-resolution crystal structures. Nucleic acids research 34,4160-4167.
    Durr, H., Korner, C., Muller, M., Hickmann, V., and Hopfner, K. P. (2005). X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121,363-373. Eckhart, W., Hutchinson, M. A., and Hunter, T. (1979). An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18,925-933.
    Emsley, P., and Cowtan, K. (2004). Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60,2126-2132.
    Ermakova, I., Boldyreff, B., Issinger, O. G., and Niefind, K. (2003). Crystal structure of a C-terminal deletion mutant of human protein kinase CK2 catalytic subunit. Journal of molecular biology 330,925-934.
    Evans, D. R., Brewster, N. K., Xu, Q., Rowley, A., Altheim, B. A., Johnston, G. C., and Singer, R. A. (1998). The yeast protein complex containing cdc68 and pob3 mediates core-promoter repression through the cdc68 N-terminal domain. Genetics 150,1393-1405.
    Evans, P. (2006). Scaling and assessment of data quality. Acta crystallographica Section D, Biological crystallography 62,72-82.
    Fairman-Williams, M. E., Guenther, U. P., and Jankowsky, E. (2010). SF1 and SF2 helicases: family matters. Current opinion in structural biology 20,313-324.
    Ferguson, A. D., Sheth, P. R., Basso, A. D., Paliwal, S., Gray, K., Fischmann, T. O., and Le, H. V. (2011). Structural basis of CX-4945 binding to human protein kinase CK2. FEBS letters 585, 104-110.
    Ferguson, K. M., Kavran, J. M., Sankaran, V. G., Fournier, E., Isakoff, S. J., Skolnik, E. Y, and Lemmon, M. A. (2000). Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Molecular cell 6,373-384.
    Filhol, O., Martiel, J. L., and Cochet, C. (2004). Protein kinase CK2:a new view of an old molecular complex. EMBO reports 5,351-355.
    Filhol, O., Nueda, A., Martel, V., Gerber-Scokaert, D., Benitez, M. J., Souchier, C., Saoudi, Y., and Cochet, C. (2003). Live-cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits. Molecular and cellular biology 23,975-987.
    Fischer, E. H., and Krebs, E. G. (1955). Conversion of phosphorylase b to phosphorylase a in muscle extracts. The Journal of biological chemistry 216,121-132.
    Flanagan, J. F., Blus, B. J., Kim, D., Clines, K. L., Rastinejad, F., and Khorasanizadeh, S. (2007). Molecular implications of evolutionary differences in CHD double chromodomains. Journal of molecular biology 369,334-342.
    Flanagan, J. F., Mi, L. Z., Chruszcz, M., Cymborowski, M., Clines, K. L., Kim, Y, Minor, W., Rastinejad, F., and Khorasanizadeh, S. (2005). Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438,1181-1185.
    Flaus, A., Martin, D. M., Barton, G. J., and Owen-Hughes, T. (2006). Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic acids research 34,2887-2905.
    Formosa, T. (2008). FACT and the reorganized nucleosome. Molecular bioSystems 4,1085-1093.
    Formosa, T. (2012). The role of FACT in making and breaking nucleosomes. Biochimica et biophysica acta 1819,247-255.
    Formosa, T., Eriksson, P., Wittmeyer, J., Ginn, J., Yu, Y, and Stillman, D. J. (2001). Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. The EMBO journal 20,3506-3517.
    Formosa, T., Ruone, S., Adams, M. D., Olsen, A. E., Eriksson, P., Yu, Y, Rhoades, A. R., Kaufman, P. D., and Stillman, D. J. (2002). Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway:polymerase passage may degrade chromatin structure. Genetics 162,1557-1571.
    Fraser, A. G., Kamath, R. S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M., and Ahringer, J. (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408,325-330.
    Gietz, R. D., Graham, K. C., and Litchfield, D. W. (1995). Interactions between the subunits of casein kinase II. The Journal of biological chemistry 270,13017-13021.
    Glover, C. V. (1986). A filamentous form of Drosophila casein kinase Ⅱ. The Journal of biological chemistry 261,14349-14354.
    Glover, C. V.,3rd (1998). On the physiological role of casein kinase Ⅱ in Saccharomyces cerevisiae. Progress in nucleic acid research and molecular biology 59,95-133.
    Gonzalez, G. A., and Montminy, M. R. (1989). Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59,675-680.
    Gotz, C., Kartarius, S., Schetting, S., and Montenarh, M. (2005). Immunologically defined subclasses of the protein kinase CK2 beta-subunit in prostate carcinoma cell lines. Molecular and cellular biochemistry 274,181-187.
    Groenen, L. C., Walker, F., Burgess, A. W., and Treutlein, H. R. (1997). A model for the activation of the epidermal growth factor receptor kinase involvement of an asymmetric dimer? Biochemistry 36,3826-3836.
    Grune, T., Brzeski, J., Eberharter, A., Clapier, C. R., Corona, D. F., Becker, P. B., and Muller, C. W. (2003). Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Molecular cell 12,449-460.
    Guerra, B., Gotz, C., Wagner, P., Montenarh, M., and Issinger, O. G. (1997). The carboxy terminus of p53 mimics the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation. Oncogene 14,2683-2688.
    Guerra, B., and Issinger, O. G. (1999). Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis 20,391-408.
    Guerra, B., Issinger, O. G., and Wang, J. Y. (2003). Modulation of human checkpoint kinase Chkl by the regulatory beta-subunit of protein kinase CK2. Oncogene 22,4933-4942.
    Guerra, B., Siemer, S., Boldyreff, B., and Issinger, O. G. (1999). Protein kinase CK2:evidence for a protein kinase CK2beta subunit fraction, devoid of the catalytic CK2alpha subunit, in mouse brain and testicles. FEBS letters 462,353-357.
    Hainer, S. J., Charsar, B. A., Cohen, S. B., and Martens, J. A. (2012). Identification of Mutant Versions of the Spt16 Histone Chaperone That Are Defective for Transcription-Coupled Nucleosome Occupancy in Saccharomyces cerevisiae. G3 (Bethesda) 2,555-567.
    Hanks, S. K., and Hunter, T. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB journal:official publication of the Federation of American Societies for Experimental Biology 9,576-596.
    Hanks, S. K., and Quinn, A. M. (1991). Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods in enzymology 200,38-62.
    Hanks, S. K., Quinn, A. M., and Hunter, T. (1988). The protein kinase family:conserved features and deduced phylogeny of the catalytic domains. Science 241,42-52.
    Hanna, D. E., Rethinaswamy, A., and Glover, C. V. (1995). Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. The Journal of biological chemistry 270,25905-25914.
    Hargreaves, D. C., and Crabtree, G. R. (2011). ATP-dependent chromatin remodeling:genetics, genomics and mechanisms. Cell research 21,396-420.
    Hathaway, G. M., and Traugh, J. A. (1979). Cyclic nucleotide-independent protein kinases from rabbit reticulocytes. Purification of casein kinases. The Journal of biological chemistry 254, 762-768.
    Hauk, G., McKnight, J. N., Nodelman, I. M., and Bowman, G. D. (2010). The chromodomains of the Chdl chromatin remodeler regulate DNA access to the ATPase motor. Molecular cell 39, 711-723.
    Heller-Harrison, R. A., Meisner, H., and Czech, M. P. (1989). Cloning and characterization of a cDNA encoding the beta subunit of human casein kinase Ⅱ. Biochemistry 28,9053-9058.
    Hilgard, P., Czaja, M. J., Gerken, G., and Stockert, R. J. (2004). Proapoptotic function of protein kinase CK2alpha" is mediated by a JNK signaling cascade. American journal of physiology Gastrointestinal and liver physiology 287, G192-201.
    Hu, E., and Rubin, C. S. (1991). Casein kinase Ⅱ from Caenorhabditis elegans. Cloning, characterization, and developmental regulation of the gene encoding the beta subunit. The Journal of biological chemistry 266,19796-19802.
    Hunter, T. (2000). Signaling--2000 and beyond. Cell 100,113-127.
    Hunter, T., and Sefton, B. M. (1980). Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proceedings of the National Academy of Sciences of the United States of America 77,1311-1315.
    Huse, M., and Kuriyan, J. (2002). The conformational plasticity of protein kinases. Cell 109, 275-282.
    Jacobs, D. M., Lipton, A. S., Isern, N. G., Daughdrill, G. W., Lowry, D. F., Gomes, X., and Wold, M. S. (1999). Human replication protein A:global fold of the N-terminal RPA-70 domain reveals a basic cleft and flexible C-terminal linker. Journal of biomolecular NMR 14,321-331.
    Jakobi, R., and Traugh, J. A. (1992). Characterization of the phosphotransferase domain of casein kinase Ⅱ by site-directed mutagenesis and expression in Escherichia coli. The Journal of biological chemistry 267,23894-23902.
    Jakobi, R., and Traugh, J. A. (1995). Site-directed mutagenesis and structure/function studies of casein kinase Ⅱ correlate stimulation of activity by the beta subunit with changes in conformation and ATP/GTP utilization. European journal of biochemistry/FEBS 230,1111-1117.
    Jamai, A., Puglisi, A., and Strubin, M. (2009). Histone chaperone spt16 promotes redeposition of the original h3-h4 histones evicted by elongating RNA polymerase. Molecular cell 35,377-383.
    Jeffrey, P. D., Russo, A. A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., and Pavletich, N. P. (1995). Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376,313-320.
    Johnson, J. M., French, S. L., Osheim, Y. N., Li, M., Hall, L., Beyer, A. L., and Smith, J. S. (2013). Rpd3- and spt16-mediated nucleosome assembly and transcriptional regulation on yeast ribosomal DNA genes. Molecular and cellular biology 33,2748-2759.
    Jura, N., Endres, N. F., Engel, K., Deindl, S., Das, R., Lamers, M. H., Wemmer, D. E., Zhang, X., and Kuriyan, J. (2009). Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137,1293-1307.
    Kannan, N., and Neuwald, A. F. (2005). Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component? Journal of molecular biology 351,956-972.
    Keck, J. M., Jones, M. H., Wong, C. C., Binkley, J., Chen, D., Jaspersen, S. L., Holinger, E. P., Xu, T., Niepel, M., Rout, M. P., et al. (2011). A cell cycle phosphoproteome of the yeast centrosome. Science 332,1557-1561.
    Keller, D. M., and Lu, H. (2002). p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. The Journal of biological chemistry 277,50206-50213.
    Keller, D. M., Zeng, X., Wang, Y., Zhang, Q. H., Kapoor, M., Shu, H., Goodman, R., Lozano, G., Zhao, Y, and Lu, H. (2001). A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Molecular cell 7,283-292.
    Kelley, D. E., Stokes, D. G., and Perry, R. P. (1999). CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma 108,10-25.
    Kemble, D. J., Whitby, F. G., Robinson, H., McCullough, L. L., Formosa, T., and Hill, C. P. (2013). Structure of the Spt16 middle domain reveals functional features of the histone chaperone FACT. The Journal of biological chemistry 288,10188-10194.
    Kim, M., Ahn, S. H., Krogan, N. J., Greenblatt, J. F., and Buratowski, S. (2004). Transitions in RNA polymerase Ⅱ elongation complexes at the 3'ends of genes. The EMBO journal 23,354-364.
    Klopffleisch, K., Issinger, O. G., and Niefind, K. (2012). Low-density crystal packing of human protein kinase CK2 catalytic subunit in complex with resorufin or other ligands:a tool to study the unique hinge-region plasticity of the enzyme without packing bias. Acta crystallographica Section D, Biological crystallography 68,883-892.
    Klumpp, S., and Krieglstein, J. (2002). Phosphorylation and dephosphorylation of histidine residues in proteins. European journal of biochemistry/FEBS 269,1067-1071.
    Knighton, D. R., Zheng, J. H., Ten Eyck, L. F., Ashford, V. A., Xuong, N. H., Taylor, S. S., and Sowadski, J. M. (1991). Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253,407-414.
    Kobe, B., Kampmann, T., Forwood, J. K., Listwan, P., and Brinkworth, R. I. (2005). Substrate specificity of protein kinases and computational prediction of substrates. Biochimica et biophysica acta 1754,200-209.
    Kolodrubetz, D., and Burgum, A. (1990). Duplicated NHP6 genes of Saccharomyces cerevisiae encode proteins homologous to bovine high mobility group protein 1. The Journal of biological chemistry 265,3234-3239.
    Kolodrubetz, D., Kruppa, M., and Burgum, A. (2001). Gene dosage affects the expression of the duplicated NHP6 genes of Saccharomyces cerevisiae. Gene 272,93-101.
    Konev, A. Y., Tribus, M., Park, S. Y., Podhraski, V, Lim, C. Y., Emelyanov, A. V, Vershilova, E., Pirrotta, V., Kadonaga, J. T., Lusser, A., and Fyodorov, D. V. (2007). CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317,1087-1090.
    Kornev, A. P., and Taylor, S. S. (2010). Defining the conserved internal architecture of a protein kinase. Biochimica et biophysica acta 1804,440-444.
    Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128,693-705.
    Krebs, E. G., and Fischer, E. H. (1956). The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochimica et biophysica acta 20,150-157.
    Krebs, E. G., Kent, A. B., and Fischer, E. H. (1958). The muscle phosphorylase b kinase reaction. The Journal of biological chemistry 231,73-83.
    Kristensen, L. P., Larsen, M. R., Hojrup, P., Issinger, O. G., and Guerra, B. (2004). Phosphorylation of the regulatory beta-subunit of protein kinase CK2 by checkpoint kinase Chkl: identification of the in vitro CK2beta phosphorylation site. FEBS letters 569,217-223.
    Krogan, N. J., Kim, M., Ahn, S. H., Zhong, G., Kobor, M. S., Cagney, G., Emili, A., Shilatifard, A., Buratowski, S., and Greenblatt, J. F. (2002). RNA polymerase Ⅱ elongation factors of Saccharomyces cerevisiae:a targeted proteomics approach. Molecular and cellular biology 22, 6979-6992.
    Kubinski, K., Domanska, K., Sajnaga, E., Mazur, E., Zielinski, R., and Szyszka, R. (2007). Yeast holoenzyme of protein kinase CK2 requires both beta and beta' regulatory subunits for its activity. Molecular and cellular biochemistry 295,229-236.
    Kuenzel, E. A., Mulligan, J. A., Sommercorn, J., and Krebs, E. G. (1987). Substrate specificity determinants for casein kinase Ⅱ as deduced from studies with synthetic peptides. J Biol Chem 262,9136-9140.
    Langst, G., Bonte, E. J., Corona, D. F., and Becker, P. B. (1999). Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843-852.
    Lemmon, M. A. (2004). Pleckstrin homology domains:not just for phosphoinositides. Biochemical Society transactions 32,707-711.
    Lew, J., Taylor, S. S., and Adams, J. A. (1997). Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase:a transient kinetic study using stopped-flow fluorescence spectroscopy. Biochemistry 36,6717-6724.
    Li, Y., Keller, D. M., Scott, J. D., and Lu, H. (2005). CK2 phosphorylates SSRP1 and inhibits its DNA-binding activity. The Journal of biological chemistry 280,11869-11875.
    Litchfield, D. W. (2003). Protein kinase CK2:structure, regulation and role in cellular decisions of life and death. The Biochemical journal 369,1-15.
    Litchfield, D. W., Lozeman, F. J., Cicirelli, M. F., Harrylock, M., Ericsson, L. H., Piening, C. J., and Krebs, E. G. (1991). Phosphorylation of the beta subunit of casein kinase Ⅱ in human A431 cells. Identification of the autophosphorylation site and a site phosphorylated by p34cdc2. The Journal of biological chemistry 266,20380-20389.
    Liu, H., Wang, H., Teng, M., and Li, X. (2014). The multiple nucleotide-divalent cation binding modes of Saccharomyces cerevisiae CK2alpha indicate a possible co-substrate hydrolysis product (ADP/GDP) release pathway. Acta crystallographica Section D, Biological crystallography 70, 501-513.
    Liu, Y., Huang, H., Zhou, B. O., Wang, S. S., Hu, Y, Li, X., Liu, J., Zang, J., Niu, L., Wu, J., et al. (2010). Structural analysis of Rtt106p reveals a DNA binding role required for heterochromatin silencing. The Journal of biological chemistry 285,4251-4262.
    Lolli, G., Pinna, L. A., and Battistutta, R. (2012). Structural determinants of protein kinase CK2 regulation by autoinhibitory polymerization. ACS chemical biology 7,1158-1163.
    Lolli, G., Ranchio, A., and Battistutta, R. (2014). Active Form of the Protein Kinase CK2 alpha2beta2 Holoenzyme Is a Strong Complex with Symmetric Architecture. ACS chemical biology 9,366-371.
    Lorch, Y, Zhang, M., and Kornberg, R. D. (1999). Histone octamer transfer by a chromatin-remodeling complex. Cell 96,389-392.
    Lozeman, F. J., Litchfield, D. W., Piening, C., Takio, K., Walsh, K. A., and Krebs, E. G. (1990). Isolation and characterization of human cDNA clones encoding the alpha and the alpha' subunits of casein kinase II. Biochemistry 29,8436-8447.
    Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389,251-260.
    Lusser, A., Urwin, D. L., and Kadonaga, J. T. (2005). Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nature structural & molecular biology 12,160-166.
    Malone, E. A., Clark, C. D., Chiang, A., and Winston, F. (1991). Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Molecular and cellular biology 11,5710-5717.
    Mann, M., and Jensen, O. N. (2003). Proteomic analysis of post-translational modifications. Nature biotechnology 21,255-261.
    Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298,1912-1934.
    Marchler-Bauer, A., Anderson, J. B., Cherukuri, P. F., DeWeese-Scott, C., Geer, L. Y, Gwadz, M., He, S., Hurwitz, D. I., Jackson, J. D., Ke, Z., et al. (2005). CDD:a Conserved Domain Database for protein classification. Nucleic acids research 33, D192-196.
    Marchler-Bauer, A., and Bryant, S. H. (2004). CD-Search:protein domain annotations on the fly. Nucleic acids research 32, W327-331.
    Martel, V, Filhol, O., Nueda, A., and Cochet, C. (2002). Dynamic localization/association of protein kinase CK2 subunits in living cells:a role in its cellular regulation? Annals of the New York Academy of Sciences 973,272-277.
    Mason, P. B., and Struhl, K. (2003). The FACT complex travels with elongating RNA polymerase Ⅱ and is important for the fidelity of transcriptional initiation in vivo. Molecular and cellular biology 23,8323-8333.
    Mayr, B., and Montminy, M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature reviews Molecular cell biology 2,599-609.
    Meggio, F., and Pinna, L. A. (2003). One-thousand-and-one substrates of protein kinase CK2? FASEB journal:official publication of the Federation of American Societies for Experimental Biology 17,349-368.
    Mizuguchi, G., Shen, X., Landry, J., Wu, W. H., Sen, S., and Wu, C. (2004). ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343-348.
    Montenarh, M. (2010). Cellular regulators of protein kinase CK2. Cell and tissue research 342, 139-146.
    Mukherjee, K., Sharma, M., Jahn, R., Wahl, M. C., and Sudhof, T. C. (2010). Evolution of CASK into a Mg2+-sensitive kinase. Science signaling 3, ra33.
    Mukherjee, K., Sharma, M., Urlaub, H., Bourenkov, G. P., Jahn, R., Sudhof, T. C., and Wahl, M. C. (2008). CASK Functions as a Mg2+-independent neurexin kinase. Cell 133,328-339.
    Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53,240-255.
    Nagar, B., Hantschel, O., Young, M. A., Scheffzek, K., Veach, D., Bornmann, W., Clarkson, B., Superti-Furga, G., and Kuriyan, J. (2003). Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112,859-871.
    Niefind, K., Guerra, B., Ermakowa, I., and Issinger, O. G. (2001). Crystal structure of human protein kinase CK2:insights into basic properties of the CK2 holoenzyme. The EMBO journal 20, 5320-5331.
    Niefind, K., Guerra, B., Pinna, L. A., Issinger, O. G., and Schomburg, D. (1998). Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution. The EMBO journal 17,2451-2462.
    Niefind, K., and Issinger, O. G. (2010). Conformational plasticity of the catalytic subunit of protein kinase CK2 and its consequences for regulation and drug design. Biochimica et biophysica acta 1804,484-492.
    Niefind, K., Putter, M., Guerra, B., Issinger, O. G., and Schomburg, D. (1999). GTP plus water mimic ATP in the active site of protein kinase CK2. Nature structural biology 6,1100-1103.
    Niefind, K., Yde, C. W., Ermakova, I., and Issinger, O. G. (2007). Evolved to be active:sulfate ions define substrate recognition sites of CK2alpha and emphasise its exceptional role within the CMGC family of eukaryotic protein kinases. Journal of molecular biology 370,427-438.
    Nooren, I. M., and Thornton, J. M. (2003). Diversity of protein-protein interactions. The EMBO journal 22,3486-3492.
    O'Donnell, A. F., Brewster, N. K., Kurniawan, J., Minard, L. V, Johnston, G. C., and Singer, R. A. (2004). Domain organization of the yeast histone chaperone FACT:the conserved N-terminal domain of FACT subunit Spt16 mediates recovery from replication stress. Nucleic acids research 32,5894-5906.
    Okada, M., Okawa, K., Isobe, T., and Fukagawa, T. (2009). CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1. Molecular biology of the cell 20,3986-3995.
    Okuhara, K., Ohta, K., Seo, H., Shioda, M., Yamada, T., Tanaka, Y, Dohmae, N., Seyama, Y, Shibata, T., and Murofushi, H. (1999). A DNA unwinding factor involved in DNA replication in cell-free extracts of Xenopus eggs. Current biology:CB 9,341-350.
    Olsen, B. B., Boldyreff, B., Niefind, K., and Issinger, O. G. (2006a). Purification and characterization of the CK2alpha'-based holoenzyme, an isozyme of CK2a1pha:a comparative analysis. Protein expression and purification 47,651-661.
    Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006b). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-648.
    Olsen, J. V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M. L., Jensen, L. J., Gnad, F., Cox, J., Jensen, T. S., Nigg, E. A., et al. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science signaling 3, ra3.
    Orphanides, G., LeRoy, G., Chang, C. H., Luse, D. S., and Reinberg, D. (1998). FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92,105-116.
    Orphanides, G., Wu, W. H., Lane, W. S., Hampsey, M., and Reinberg, D. (1999). The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400,284-288.
    Ospina, B., Nunez, A., and Fernandez-Renart, M. (1992). Purification of a soluble casein kinase Ⅱ from Dictyostelium discoideum lacking the beta subunit:regulation during proliferation and differentiation. Molecular and cellular biochemistry 118,49-60.
    Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, Pt A 276,307-326.
    Padmanabha R, C.-W. J., Hanna DE, Glover CV. (1990). Isolation, sequencing, and disruption of the yeast CKA2 gene:casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol Aug;10(8),4089-4099.
    Pagano, M. A., Sarno, S., Poletto, G., Cozza, G., Pinna, L. A., and Meggio, F. (2005). Autophosphorylation at the regulatory beta subunit reflects the supramolecular organization of protein kinase CK2. Molecular and cellular biochemistry 274,23-29.
    Paull, T. T., Carey, M., and Johnson, R. C. (1996). Yeast HMG proteins NHP6A/B potentiate promoter-specific transcriptional activation in vivo and assembly of preinitiation complexes in vitro. Genes & development 10,2769-2781.
    Paull, T. T., and Johnson, R. C. (1995). DNA looping by Saccharomyces cerevisiae high mobility group proteins NHP6A/B. Consequences for nucleoprotein complex assembly and chromatin condensation. The Journal of biological chemistry 270,8744-8754.
    Pearson, M. A., Reczek, D., Bretscher, A., and Karplus, P. A. (2000). Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259-270.
    Pechkova, E., and Nicolini, C. (2002). Protein nucleation and crystallization by homologous protein thin film template. Journal of cellular biochemistry 85,243-251.
    Pechkova, E., and Nicolini, C. (2004a). Atomic structure of a CK2alpha human kinase by microfocus diffraction of extra-small microcrystals grown with nanobiofilm template. Journal of cellular biochemistry 91,1010-1020.
    Pechkova, E., and Nicolini, C. (2004b). Protein nanocrystallography:a new approach to structural proteomics. Trends in biotechnology 22,117-122.
    Pechkova, E., Zanotti, G., and Nicolini, C. (2003). Three-dimensional atomic structure of a catalytic subunit mutant of human protein kinase CK2. Acta crystallographica Section D, Biological crystallography 59,2133-2139.
    Penner, C. G., Wang, Z., and Litchfield, D. W. (1997). Expression and localization of epitope-tagged protein kinase CK2. Journal of cellular biochemistry 64,525-537.
    Peracchia, G., Jensen, A. B., Culianez-Macia, F. A., Grosset, J., Goday, A., Issinger, O. G., and Pages, M. (1999). Characterization, subcellular localization and nuclear targeting of casein kinase 2 from Zea mays. Plant molecular biology 40,199-211.
    Perkins, J. R., Diboun, I., Dessailly, B. H., Lees, J. G., and Orengo, C. (2010). Transient protein-protein interactions:structural, functional, and network properties. Structure 18, 1233-1243.
    Peterson, C. L., and Laniel, M. A. (2004). Histones and histone modifications. Current biology: CB 14, R546-551.
    Pinna, L. A. Protein kinase CK2).
    Pinna, L. A. (2002). Protein kinase CK2:a challenge to canons. Journal of cell science 115, 3873-3878.
    Pinna, L. A., and Meggio, F. (1997). Protein kinase CK2 ("casein kinase-2") and its implication in cell division and proliferation. Progress in cell cycle research 3,77-97.
    Pinna, L. A., and Ruzzene, M. (1996). How do protein kinases recognize their substrates? Biochimica et biophysica acta 1314,191-225.
    Ponting, C. P. (2002). Novel domains and orthologues of eukaryotic transcription elongation factors. Nucleic acids research 30,3643-3652.
    Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R.,3rd, and Grant, P. A. (2005). Chd1 chromodomain links histone H3 methylation with SAGA-and SLIK-dependent acetylation. Nature 433,434-438.
    Puttick, J., Baker, E. N., and Delbaere, L. T. (2008). Histidine phosphorylation in biological systems. Biochimica et biophysica acta 1784,100-105.
    Raaf, J., Issinger, O. G., and Niefind, K. (2009). First inactive conformation of CK2 alpha, the catalytic subunit of protein kinase CK2. Journal of molecular biology 386,1212-1221.
    Raisner, R. M., Hartley, P. D., Meneghini, M. D., Bao, M. Z., Liu, C. L., Schreiber, S. L., Rando, O. J., and Madhani, H. D. (2005). Histone variant H2A.Z marks the 5'ends of both active and inactive genes in euchromatin. Cell 123,233-248.
    Reed, J. C., Bidwai, A. P., and Glover, C. V. (1994). Cloning and disruption of CKB2, the gene encoding the 32-kDa regulatory beta'-subunit of Saccharomyces cerevisiae casein kinase Ⅱ. The Journal of biological chemistry 269,18192-18200.
    Reinke, H., and Horz, W. (2003). Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Molecular cell 11,1599-1607.
    Rethinaswamy, A., Birnbaum, M. J., and Glover, C. V. (1998). Temperature-sensitive mutations of the CKA1 gene reveal a role for casein kinase II in maintenance of cell polarity in Saccharomyces cerevisiae. The Journal of biological chemistry 273,5869-5877.
    Rhoades, A. R., Ruone, S., and Formosa, T. (2004). Structural features of nucleosomes reorganized by yeast FACT and its HMG box component, Nhp6. Molecular and cellular biology 24,3907-3917.
    Riera, M., Peracchia, G., de Nadal, E., Arino, J., and Pages, M. (2001). Maize protein kinase CK2: regulation and functionality of three beta regulatory subunits. The Plant journal:for cell and molecular biology 25,365-374.
    Robinson, K. M., and Schultz, M. C. (2003). Replication-independent assembly of nucleosome arrays in a novel yeast chromatin reconstitution system involves antisilencing factor Asf1p and chromodomain protein Chd1p. Molecular and cellular biology 23,7937-7946.
    Ross, E. D., Hardwidge, P. R., and Maher, L. J.,3rd (2001). HMG proteins and DNA flexibility in transcription activation. Molecular and cellular biology 21,6598-6605.
    Rowley, A., Singer, R. A., and Johnston, G. C. (1991). CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Molecular and cellular biology 11,5718-5726.
    Ruone, S., Rhoades, A. R., and Formosa, T. (2003). Multiple Nhp6 molecules are required to recruit Sptl6-Pob3 to form yFACT complexes and to reorganize nucleosomes. The Journal of biological chemistry 278,45288-45295.
    Ryan, D. P., and Owen-Hughes, T. (2011). Snf2-family proteins:chromatin remodellers for any occasion. Current opinion in chemical biology 15,649-656.
    Ryan, D. P., Sundaramoorthy, R., Martin, D., Singh, V., and Owen-Hughes, T. (2011). The DNA-binding domain of the Chdl chromatin-remodelling enzyme contains SANT and SLIDE domains. The EMBO journal 30,2596-2609.
    Sajnaga, E., Kubinski, K., and Szyszka, R. (2008). Catalytic activity of mutants of yeast protein kinase CK2alpha. Acta biochimica Polonica 55,767-776.
    Salvi, M., Raiborg, C., Hanson, P. I., Campsteijn, C., Stenmark, H., and Pinna, L. A. (2014). CK2 involvement in ESCRT-Ⅲ complex phosphorylation. Archives of biochemistry and biophysics 545C,83-91.
    Salvi, M., Sarno, S., Cesaro, L., Nakamura, H., and Pinna, L. A. (2009). Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochimica et biophysica acta 1793,847-859.
    Saunders, A., Werner, J., Andrulis, E. D., Nakayama, T., Hirose, S., Reinberg, D., and Lis, J. T. (2003). Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 301,1094-1096.
    Saxena, A., Padmanabha, R., and Glover, C. V. (1987). Isolation and sequencing of cDNA clones encoding alpha and beta subunits of Drosophila melanogaster casein kinase Ⅱ. Molecular and cellular biology 7,3409-3417.
    Schlesinger, M. B., and Formosa, T. (2000). POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics 155,1593-1606.
    Schwartz, P. A., and Murray, B. W. (2011). Protein kinase biochemistry and drug discovery. Bioorganic chemistry 39,192-210.
    Shaffer, J., and Adams, J. A. (1999). Detection of conformational changes along the kinetic pathway of protein kinase A using a catalytic trapping technique. Biochemistry 38,12072-12079.
    Shaffer, J., Sun, G., and Adams, J. A. (2001). Nucleotide release and associated conformational changes regulate function in the COOH-terminal Src kinase, Csk. Biochemistry 40,11149-11155.
    Shan, Y., Seeliger, M. A., Eastwood, M. P., Frank, F., Xu, H., Jensen, M. O., Dror, R. O., Kuriyan, J., and Shaw, D. E. (2009). A conserved protonation-dependent switch controls drug binding in the Abl kinase. Proceedings of the National Academy of Sciences of the United States of America 106, 139-144.
    Sharma, A., Jenkins, K. R., Heroux, A., and Bowman, G. D. (2011). Crystal structure of the chromodomain helicase DNA-binding protein 1 (Chdl) DNA-binding domain in complex with DNA. The Journal of biological chemistry 286,42099-42104.
    Shi, X., Potvin, B., Huang, T., Hilgard, P., Spray, D. C, Suadicani, S. O., Wolkoff, A. W., Stanley, P., and Stockert, R. J. (2001). A novel casein kinase 2 alpha-subunit regulates membrane protein traffic in the human hepatoma cell line HuH-7. The Journal of biological chemistry 276, 2075-2082.
    Shimojima, T., Okada, M., Nakayama, T., Ueda, H., Okawa, K., Iwamatsu, A., Handa, H., and Hirose, S. (2003). Drosophila FACT contributes to Hox gene expression through physical and functional interactions with GAGA factor. Genes & development 17,1605-1616.
    Simic, R., Lindstrom, D. L., Tran, H. G., Roinick, K. L., Costa, P. J., Johnson, A. D., Hartzog, G. A., and Arndt, K. M. (2003). Chromatin remodeling protein Chdl interacts with transcription elongation factors and localizes to transcribed genes. The EMBO journal 22,1846-1856.
    Singleton, M. R., Dillingham, M. S., and Wigley, D. B. (2007). Structure and mechanism of helicases and nucleic acid translocases. Annual review of biochemistry 76,23-50.
    Squazzo, S. L., Costa, P. J., Lindstrom, D. L., Kumer, K. E., Simic, R., Jennings, J. L., Link, A. J., Arndt, K. M., and Hartzog, G. A. (2002). The Pafl complex physically and functionally associates with transcription elongation factors in vivo. The EMBO journal 21,1764-1774.
    Stalter, G., Siemer, S., Becht, E., Ziegler, M., Remberger, K., and Issinger, O. G. (1994). Asymmetric expression of protein kinase CK2 subunits in human kidney tumors. Biochemical and biophysical research communications 202,141-147.
    Stigare, J., Buddelmeijer, N., Pigon, A., and Egyhazi, E. (1993). A majority of casein kinase Ⅱ alpha subunit is tightly bound to intranuclear components but not to the beta subunit. Molecular and cellular biochemistry 129,77-85.
    Stockdale, C., Flaus, A., Ferreira, H., and Owen-Hughes, T. (2006). Analysis of nucleosome repositioning by yeast ISWI and Chdl chromatin remodeling complexes. The Journal of biological chemistry 281,16279-16288.
    Stokes, D. G., and Perry, R. P. (1995). DNA-binding and chromatin localization properties of CHD1. Molecular and cellular biology 15,2745-2753.
    Strahl, B. D., and Allis, C. D. (2000). The language of covalent histone modifications. Nature 403, 41-45.
    Thomas, J. O., and Travers, A. A. (2001). HMG1 and 2, and related 'architectural' DNA-binding proteins. Trends in biochemical sciences 26,167-174.
    Thompson, E. E., Kornev, A. P., Kannan, N., Kim, C., Ten Eyck, L. F., and Taylor, S. S. (2009). Comparative surface geometry of the protein kinase family. Protein science:a publication of the Protein Society 18,2016-2026.
    Thornburg, W., and Lindell, T. J. (1977). Purification of rat liver nuclear protein kinase NIL The Journal of biological chemistry 252,6660-6665.
    Tran, H. G., Steger, D. J., Iyer, V. R., and Johnson, A. D. (2000). The chromo domain protein chdlp from budding yeast is an ATP-dependent chromatin-modifying factor. The EMBO journal 19,2323-2331.
    Travers, A. A., Ner, S. S., and Churchill, M. E. (1994). DNA chaperones:a solution to a persistence problem? Cell 77,167-169.
    Tripodi, F., Cirulli, C., Reghellin, V., Marin, O., Brambilla, L., Schiappelli, M. P., Porro, D., Vanoni, M., Alberghina, L., and Coccetti, P. (2010). CK2 activity is modulated by growth rate in Saccharomyces cerevisiae. Biochemical and biophysical research communications 398,44-50.
    Tsukiyama, T., Palmer, J., Landel, C. C., Shiloach, J., and Wu, C. (1999). Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes & development 13,686-697.
    Utley, R. T., Lacoste, N., Jobin-Robitaille, O., Allard, S., and Cote, J. (2005). Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Molecular and cellular biology 25,8179-8190.
    Vagin, A., and Teplyakov, A. (2010). Molecular replacement with MOLREP. Acta crystallographica Section D, Biological crystallography 66,22-25.
    Vaguine, A. A., Richelle, J., and Wodak, S. J. (1999). SFCHECK:a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr D Biol Crystallogr 55,191-205.
    Valero, E., De Bonis, S., Filhol, O., Wade, R. H., Langowski, J., Chambaz, E. M., and Cochet, C. (1995). Quaternary structure of casein kinase 2. Characterization of multiple oligomeric states and relation with its catalytic activity. The Journal of biological chemistry 270,8345-8352.
    VanDemark, A. P., Blanksma, M., Ferris, E., Heroux, A., Hill, C. P., and Formosa, T. (2006). The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. Molecular cell 22,363-374.
    VanDemark, A. P., Xin, H., McCullough, L., Rawlins, R., Bentley, S., Heroux, A., Stillman, D. J., Hill, C. P., and Formosa, T. (2008). Structural and functional analysis of the Spt16p N-terminal domain reveals overlapping roles of yFACT subunits. The Journal of biological chemistry 283, 5058-5068.
    Walfridsson, J., Khorosjutina, O., Matikainen, P., Gustafsson, C. M., and Ekwall, K. (2007). A genome-wide role for CHD remodelling factors and Nap1 in nucleosome disassembly. The EMBO journal 26,2868-2879.
    Walsh, C. T., Garneau-Tsodikova, S., and Gatto, G. J., Jr. (2005). Protein posttranslational modifications:the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44, 7342-7372.
    Whitehouse, I., Flaus, A., Cairns, B. R., White, M. F., Workman, J. L., and Owen-Hughes, T. (1999). Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature 400,784-787.
    Winkler, D. D., Muthurajan, U. M., Hieb, A. R., and Luger, K. (2011). Histone chaperone FACT coordinates nucleosome interaction through multiple synergistic binding events. The Journal of biological chemistry 286,41883-41892.
    Wittmeyer, J., and Formosa, T. (1997). The Saccharomyces cerevisiae DNA polymerase alpha catalytic subunit interacts with Cdc68/Spt16 and with Pob3, a protein similar to an HMG1-like protein. Molecular and cellular biology 17,4178-4190.
    Wittmeyer, J., Joss, L., and Formosa, T. (1999). Sptl6 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha. Biochemistry 38,8961-8971.
    Woodage, T., Basrai, M. A., Baxevanis, A. D., Hieter, P., and Collins, F. S. (1997). Characterization of the CHD family of proteins. Proceedings of the National Academy of Sciences of the United States of America 94,11472-11477.
    Xella, B., Goding, C., Agricola, E., Di Mauro, E., and Caserta, M. (2006). The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization. Molecular microbiology 59,1531-1541.
    Xin, H., Takahata, S., Blanksma, M., McCullough, L., Stillman, D. J., and Formosa, T. (2009). yFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement. Molecular cell 35,365-376.
    Xu, Q., Singer, R. A., and Johnston, G. C. (1995). Sugl modulates yeast transcription activation by Cdc68. Molecular and cellular biology 15,6025-6035.
    Yamada, K., Frouws, T. D., Angst, B., Fitzgerald, D. J., DeLuca, C., Schimmele, K., Sargent, D. F., and Richmond, T. J. (2011). Structure and mechanism of the chromatin remodelling factor ISWla. Nature 472,448-453.
    Yan, T. F., and Tao, M. (1982). Purification and characterization of a wheat germ protein kinase. The Journal of biological chemistry 257,7037-7043.
    Yang, X., Zaurin, R., Beato, M., and Peterson, C. L. (2007). Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement. Nature structural & molecular biology 14,540-547.
    Yen, Y. M., Wong, B., and Johnson, R. C. (1998). Determinants of DNA binding and bending by the Saccharomyces cerevisiae high mobility group protein NHP6A that are important for its biological activities. Role of the unique N terminus and putative intercalating methionine. The Journal of biological chemistry 273,4424-4435.
    Young, M. A., Shah, N. P., Chao, L. H., Seeliger, M., Milanov, Z. V., Biggs, W. H.,3rd, Treiber, D. K., Patel, H. K., Zarrinkar, P. P., Lockhart, D. J., et al. (2006). Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680. Cancer research 66,1007-1014.
    Yu, J. W., Mendrola, J. M., Audhya, A., Singh, S., Keleti, D., DeWald, D. B., Murray, D., Emr, S. D., and Lemmon, M. A. (2004). Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Molecular cell 13,677-688.
    Yu, Y, Eriksson, P., and Stillman, D. J. (2000). Architectural transcription factors and the SAGA complex function in parallel pathways to activate transcription. Molecular and cellular biology 20, 2350-2357.
    Zeqiraj, E., Filippi, B. M., Goldie, S., Navratilova, I., Boudeau, J., Deak, M., Alessi, D. R., and van Aalten, D. M. (2009). ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor. PLoS biology 7, e1000126.
    Zhang, C., Vilk, G., Canton, D. A., and Litchfield, D. W. (2002). Phosphorylation regulates the stability of the regulatory CK2beta subunit. Oncogene 21,3754-3764.
    Zhang, X., Gureasko, J., Shen, K., Cole, P. A., and Kuriyan, J. (2006). An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125,1137-1149.
    Zheng, J., Knighton, D. R., ten Eyck, L. F., Karlsson, R., Xuong, N., Taylor, S. S., and Sowadski, J. M. (1993). Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry 32,2154-2161.
    Zhou, Y, and Wang, T. S. (2004). A coordinated temporal interplay of nucleosome reorganization factor, sister chromatin cohesion factor, and DNA polymerase alpha facilitates DNA replication. Molecular and cellular biology 24,9568-9579.
    Zunder, R. M., Antczak, A. J., Berger, J. M., and Rine, J. (2012). Two surfaces on the histone chaperone Rtt106 mediate histone binding, replication, and silencing. Proceedings of the National Academy of Sciences of the United States of America 109, E144-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700