无机/有机纳米复合刺激响应水凝胶的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能凝胶因其独特的性能在生物医药、组织工程、物质识别、化学催化、萃取分离、微通道元件、形状记忆材料及响应性显示元件等领域被广泛应用。但传统有机交联凝胶存在明显缺陷,如机械性能差,响应速率慢等极大的限制了其应用及功能的发挥。因此,关于智能凝胶的研究仍集中于凝胶力学性能、响应速率的改善及功能化的进一步拓宽上。本论文以制备具有快速响应速率、优异力学性能的多响应水凝胶为目标,分别以纳米粘土、笼状硅倍半氧烷等为无机添加物,通过单体选择,结构设计,制备得到了一系列性能优异的多响应性纳米复合凝胶,并对凝胶的合成、结构与性能进行系统研究,取得了如下主要结果。
     首先,以粘土/PNIPA凝胶为基础制备得到高强度、超快速响应温敏水凝胶。
     (1)采用冷冻聚合制备了粘土交联PNIPA纳米复合凝胶,通过对冷冻时间的控制,得到了一系列具有不同力学性能与响应速率的凝胶。研究表明,聚合早期即开始冷冻将使凝胶内形成完全的互穿微孔结构,使凝胶具有超快解溶胀速率,可10s内失水90wt%,溶胀速率也大幅提高。但因冷冻而引起的凝胶内有效交联大分子减少导致凝胶强度下降严重。随冷冻时间推后,凝胶结构的完善导致响应速率降低而力学性能提高。
     (2)以TMOS为前驱体加入NIPA/粘土预聚液中,冷冻聚合得到互穿网络(IPN)凝胶,TMOS在凝胶中原位缩聚形成硅-氧第二网络。SEM和偏光显微镜均直接观测到具有互穿微孔的双网络结构。此IPN结构既保证了PNIPA/粘土网络因冷冻聚合而拥有的超快响应速率,又因第二网络存在而具备优异的机械强度。此外,此凝胶较未加入TMOS凝胶具有更佳的形态稳定性。但因网络密度增加,凝胶溶胀率降低。
     (3)以棉纤维为原料通过酸降解制备得到纳米纤维素晶须,并将其加入NIPA/粘土预聚液中以后期冷冻聚合法制备得到了纳米纤维素复合凝胶。纳米纤维晶须在凝胶内不同程度结合,对凝胶具有明显的增强效果且有利于响应速率的提高。同时,晶须的增强效果与凝胶溶胀程度有明显依赖关系,即溶胀率越小有利于纤维在凝胶内的结合而提高凝胶强度。
     其次,制备得到了性能优良的多响应性纳米粘土交联纳米复合凝胶。
     (1)分别以粘土L-G和粘土L-S为交联剂,以DMAEMA为单体通过自由基聚合制备了pH/温度双响应凝胶。研究表明粘土L-S为交联剂时分散良好,合成凝胶(S-NC凝胶)具有良好成形性和收率。S-NC凝胶拥有显著的双响应性,其性能仍决定于粘土用量。较有机交联凝胶,S-NC凝胶拥有更佳的力学性能和溶胀率,LCST低于40℃接近人体温度,更快的响应速率,且重复溶胀性良好,但其强度及回弹性仍需改善。
     (2)将羧甲基壳聚糖(CMCS)加入粘土L-S交联PDMAEMA凝胶中制备得到半互穿网络凝胶以改变凝胶的pH响应性并增加凝胶的药物结合点。研究证实CMCS的取代度及加入量对凝胶的pH响应性具有明显影响,尤其是在其等电点附近凝胶溶胀率明显降低,CMCS的聚集也被SEM观察到。以茶碱为目标药物研究了复合凝胶的药物负载及在人体胃、肠环境下的释放,结果表明凝胶对茶碱具有良好的负载及在胃环境下具有更好的药物缓释性。
     (3)合成了水溶性光响应单体2-[4-(丙烯酰氧基)苯基偶氮]苯甲酸,经紫外光谱表征证实该单体具有快速的紫外光致顺-反异构特性,且在可见光照射下可回复。将此单体作为共聚单体引入PNIPA纳米复合凝胶中,研究表明该凝胶在紫外光照下呈现出小幅溶胀响应性并保持了良好的温度响应性,但溶胀回复较慢,且力学性能下降严重。
     最后,制备了性能优良的POSS杂化无机纳米复合水凝胶。
     (1)以八乙烯基POSS(OvPOSS)和BIS为共交联剂,溶液聚合制备了POSS杂化P(NIPA-co-DMAEMA)凝胶。凝胶显示出明显温度/pH双响应性,性能依赖于OvPOSS加入量。经SEM及X衍射表征发现OvPOSS加入量大时将在凝胶中发生一定程度聚集,其与聚合物的相互作用导致凝胶具有更低的LCST及更好的压缩强度。由于POSS在凝胶中形成的微疏水区域导致了凝胶解溶胀速率的提高。但凝胶溶胀率下降且拉伸性能仍有待提高。
     (2)通过两步法合成了以粘土交联NIPA为第一网络,以OvPOSS交联NIPA为第二网络的互穿网络凝胶,成功实现将POSS引入纳米复合凝胶。此体系中OvPOSS对凝胶性能的影响与(1)中描述基本相似,如随POSS增加,溶胀率减小,解溶胀速率增加,压缩强度提高等。凝胶LCST随OvPOSS增加先降低后略微增加。值得注意的是,杂化凝胶仍保持了纳米复合凝胶较好的韧性,其拉伸强度随OvPOSS增加提高而断裂伸长率降低。
     (3)基于PDMAEMA粘土交联凝胶仍待提高的强度与回弹性,研究将水溶性POSS八氨基盐酸盐(OA-POSS)引入粘土交联PDMAEMA复合凝胶中,经TEM分析,OA-POSS在凝胶中聚集程度直接依赖于其加入量。较未加入前,凝胶的强度及拉伸回复性提高明显,且LCST略微降低至人体体温范围。凝胶溶胀率在解溶胀及干燥后重复溶胀时候区别明显,显示了此凝胶结构在干燥后的重排。
Smart hydrogels have became a hot topic of science research, which have been applied in many fields, like drug release, tissue engineering, special material recognition, chemical catalysis, substance separation, microchannel components, shape memory materials, and stimuli-responsive devices. However, due to the shortcomings of traditional chemical cross-linked hydrogels, such as slow responsive rate, weak mechanical properties etc, most of researches have focused on improving the mechanical properties, response rate and extending the function.
     In this thesis, the nanosized inorganic clay and POSS were used as additive, through choosing the monomers and designing the structure, a series of nanocomposite hydrogels with excellent properties, fast response rate and multi-responsiveness were prepared. Their synthesis, structure and properties have been systematically investigated. The results and conclusions are as follows:
     Firstly, the work focused on the further improvement of the response rate and mechanical properties based on PNIPA/clay nanocomposite hydrogels (NC gels).
     (1) The PNIPA NC gels were prepared by freezing polymerization for improving the response rate. Through the control of the freezing time, the gels with various properties were gotten. Freezing the pre-polymerization solution before the formation of clay-polymer brush makes the gels own absolute interconnect porous structure, and thereby resulting in an ultrarapid deswelling rate, such as losing90wt%of water within10s, while the mechanical strength decreases significantly due to the decrease of the effective crosslinked polymer chains between the clay. With the delay of freezing time, the response rate decreases while the mechanical properties enhances.
     (2) Based on the results above, the tetramethoxysilane (TMOS) solution were added into the freezing polymerized PNIPA NC gels to form the second-Si-O-network by polycondensation, which was confirmed by SEM, polarizing microscope and TGA analysis. This kind of IPN hydrogels exhibits excellent mechanical properties with very fast response rate. Meantime, comparing the normal NC gels, this IPN gels own better dimensional stability in deswelling process.
     (3) The cellulose nano-whisker prepared by acid decomposing cotton cellulose was added into the freezing polymerized PNIPA NC gels for reinforcement, the effect of cellulose whisker on the properties of hydrogels with various swelling ratio was investigated detailedly. The results showed that the cellulose interacts in gels, which causes the obvious enhancement and faster response rate, the effect of reinforcement is determined by the swelling ratio of gels and the amount of cellulose directly, the smaller swelling ratio makes the cellulose whisker be closer so as to interact strongly, which results in the significant enhancement of the strength of gels.
     Secondly, preparing the multi-responsiveness clay cross-linked nanocomposite hydro gels for extending the application of NC gels.
     (1) The monomer dimethylaminoethyl methacrylate (DMAEMA) was cross-linked by clay L-G and L-S respectively in situ free radical polymerization to prepare nanocomposite gels (named as G-NC gels and S-NC gels). From the analysis of yield, FTIR, X-Ray and SEM, it was proved that the clay L-S is an appropriate crosslinker for preparing PDMAEMA NC gels with better homogeneous and higher yield due to the uniform dispersion of clay in gels. The resulting S-NC gels show obvious temperature and pH double-sensitiveness. Comparing to traditional chemically crosslinked gels, S-NC gels own better mechanical properties and swelling properties, lower LCST than40℃, faster response rate and better repetitive swelling properties.
     (2) Linear carboxymethyl chistosan (CMCS) was introduced into the PDMAEMA NC gels as semi-IPN gels (C-NC gels) for adding the bonding point of drug. The amount and substitution degree of CMCS makes a significant impact on the pH responsiveness of gels, especially, the swelling ratio decreases considerabley around the isoelectric point of system. In the drug load and release test in simulated human intestinal and stomachic condition by using theophylline as target, the C-NC gels exhibits an excellent load ability and controlled-release in stomachic condition.
     (3) Water soluble azo monomers [4-(4'-carboxyphenylazo) phenoxy] acrylate (CPA), exhibiting fast UV responsiveness and the recoverability under visible light, was synthesized and used to prepare temperature/UV responsive P(NIPA-co-CPA) NC gels. The gels with high content of CPA exhibit obvious volume shrink under the UV-light, while the temperature responsiveness still is kept well. Meantime, the mechanical properties of gels decrease significantly with the increase of CPA.
     Thirdly, the POSS hybrid hydrogels were prepared for developing new organic-inorganic hydrogels systems with excellent properties.
     (1) POSS hybrid P(NIPA-co-DMAEMA) hydrogels with organic-inorganic co-crosslinked networks were synthesized by using both organic cross-linker BIS (N,N'-methylenebis(acrylamide)) and inorganic cross-linker OvPOSS (octavinyl polyhedral oligomeric silsesquioxane). The resulting gels display obvious temperature and pH double responsiveness, OvPOSS particles dispersed in polymer make a dominant effect on the properties of gels. With the increase of OvPOSS, the aggregation of particles on nano or micro-scale happens, which is proved by SEM and X-ray analysis. The increase of OvPOSS leads to the change of gels'properties, such as the lower LCST and better compression strength. Specially, the interconnected microporous structure of gels ascribed to the micro-phase separation results in faster deswelling rate, which makes the gel become attractive. Meanwhile, the swelling ratio and tensile behavior of gels is still need to be improved.
     (2) OvPOSS particles were incorporated into PNIPA NC gels via a two-step technique. The second PNIPA network crosslinked by OvPOSS was polymerized in the presence of the first clay-PNIPA network. The OvPOSS makes a similar effect on the properties of gels, which is described in (1). In brief, with the increased OvPOSS, the gels show lower swelling ratio, faster deswelling rate and better compression strength, the LCST of gels rise first and then decline slightly. Most importantly, the gels keep the good toughness of NC gels with a higher tensile strength, despite that the elongation at break decreases.
     (3) For improving the properties of PDMAEMA NC gels, the water-soluble octaammonium-POSS was added into the gels by in situ polymerization. The aggregation of POSS is directly dependent on its content in gels. Comparing to the POSS-free gels, the tensile strength and resilience of gels is improved obviously. Meantime, the gels show lower LCST being closer to the temperature of human body, and higher deswelling rate. Most interestingly, the gels exhibit discriminative reswelling behavior after deswelling and thoroughly drying, which may be attributed to the rearrangement of structure of gels.
引文
[1]Scarpa J S, Mueller D D, Klotz L M. Slow hydrogen-deuterium exchange in non-alpha-helical polyamide. Journal of the American Chemical Society,1967, 89(24):6024-6030.
    [2]Tanaka T. Collapse of gels and the critical endpoint. Physical Review Letters, 1978,40(12):820-823.
    [3]Tanaka T, Fillmore D, Sun S-T, et al. Phase transitions in ionic gels. Physical Review Letters,1980,45(20):1636-1639.
    [4]Yang H, Zhang Y F, Zhu Z Q, et al. Synthesis of PNIPA/NVP hydrogel by radiation polymerization and its drug controlled release. Journal of Henan University (Natural Science),2001,31(1):67-70.
    [5]DeMoura M R, Aouada F A, Guilherme M R, et al. Thermo-sensitive IPN hydrogels composed of PNIPAAm gels supported on alginate-Ca2+ with LCST tailored close t o human body temperature. Polymer Test,2006,25(7):961-969.
    [6]Salmaso S, Bersani S, Sivanand S, et al. Avidin bioconjugate with a thermoresponsive polymer for biological and pharmaceutical applications. International Journal of Pharmaceutics,2007,340(1-2):20-28.
    [7]Lee K K, Cussler E L, Marehetti M, et al. Pressure-dependent phase transitions in hydrogels. Chemical Engineering Science,1990,45:766-767.
    [8]Qiu Y, Park K. Environment-sensitive hydrogels for drug delivers. Advanced Drug Delivery Review,2001,53:321-339.
    [9]陈延峰.含DMAEMA的响应性水凝胶的紫外合成与性能研究[D].北京:北京大学,2001:12-40.
    [10]Katchalsky A. Rapid swelling and deswelling of reversible gels of polymeric acids by ionization. Experientia,1949,5(8):319-320.
    [11]Dai S, Ravi P, Tam K C, et al. Novel pH-responsive amphiphilic diblock copolymers with reversible micellization properties.Langmuir 2003,19(12): 5175-5177.
    [12]Liang H E, Hong M H, Ho R M, et al. Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules,2004,5:1917-1925.
    [13]Choi H S, Yamamoto K, Ooya T, et al. Synthesis of poly(epsilon-lysine)-grafted dextrans and their pH-and thermosensitive hydrogelation with cyclodextrins. ChemPhysChem,2005,6:1081-1086.
    [14]Liang H F, Chang C K, Chen M C, et al. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterial,2005,26:2105-2113.
    [15]Win, P P, Shin-Ya Y, Hong K J, et al. Formulation and characterization of pH sensitive drug carrier Based on Phosphorylated Chitosan. Carbohydrate Polymers, 2003,53:305-310.
    [16]Lin W C, Yu D G, Yang M C. pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties. Colloids and Surfaces B: Biointerfaces,2005,44:143-151.
    [17]Chiu Y, Chen, S.C, Su, C, et al. pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan:In vitro characteristics and in vivo biocompatibility. Biomaterials,2009,30:4877-4888.
    [18]Osada Y, Okuzaki H, Hori H. A polymer gel with electrically driven motility. Nature,1992,355:242-244.
    [19]Suzuki A, Tanaka T. Phase transition in polymer gels induced by visible light. Nature,1990,346(26):345-347.
    [20]Pourjavadi A, Mirjalili B F, Entezami A A, et al. Novel azo-containing polymethacrylates bearing spiroacetal-norbornene moiety and methylene spacers: synthesis and characterization. European Polymer Journal,2001,37(10): 2111-2121.
    [21]成昊,度新林,高巍伟,等.新型侧链偶氮聚电解质的合成及性能研究.高分子学报,2002,1:96-101.
    [22]Desponds A, Freitag R. Light-responsive bioconjugates as novel tools for specific capture of biologicals by photoaffinity precipitation. Biotechnology and Bioengineering,2005,91(5):583-591.
    [23]Desponds, A, Freitag R. Synthesis and characterization of photo-responsive (N-isopropylacrylamide)-cotelomers. Langmuir,2003,19:6261-6270.
    [24]刘建伟,林琳,聂俊,等.4-[4-(丙烯酰氧基)苯基偶氮]苯磺酸光异构化反应及光聚合水凝胶制备.辐射研究与辐射工艺学报,2011,29(2):84-88.
    [25]Zhao Y L, Fraser Stoddart J. Azobenzene-based light-responsive hydrogel system. Langmuir,2009,25(15):8442-8446.
    [26]Zhong X, Wang Y X, Wang S C. Pressure dependence of the volume phase transition of temperature sensitive gels. Chemical Engeneeing Science,1996,51: 3235-3239.
    [27]相梅,贺昌城,汪辉亮.磁性高强度聚丙烯酰胺/Fe304纳米复合水凝胶,Acta Physico-Chimica Sinica,2011,27 (5):1267-1272.
    [28]Kitano S, kataoka K, Koyama Y, et al. A novel drug delivery system utilizing a glucose responsive polymer complex between poly(vinyl alcohol) and poly(N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety. Journal of Controlled Release,1992,19:162-170.
    [29]Yamamoto N, Kunsawa M, Yui N. Double-stimuli-responsive degradable hydrogels:interpenetrating polymer networks consisting of gelatin and dextran with different phase separation. Macromolecular Rapid Communication,1996, 17:313-318.
    [30]Shibayama M, Motonaga T. Studies on pH and temperature dependence of the dynamics and heterogeneities in poly(N-isopropylacrylamide-co-sodiumacrylate) gels. Polymer,2001,42 (21):8925-8932.
    [31]高青雨,张玉娟,俞贤达.温度及pH敏感性N-乙烯基吡咯烷酮与丙烯酸p-羟基丙酯共聚物/聚(丙烯酸)互穿网络水凝胶的合成及其性能研究.高分子学报,2001,3:329-332.
    [32]Chen G H, Hoffman A S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature,1995,373 (5):49-52.
    [33]Andre X, Zhang M F, Muller A H E. Thermo-and pH-responsive micelles of poly(acrylic acid)-block-poly(N,N-diethylacrylamide). Macromolecular Rapid Communication,2005,26:558
    [34]吉静,黄明智,梁皮.生物温敏性水凝胶的研究.北京化工大学学报(自然科学版),2001,28(2):43-45.
    [35]Zhang G Q, Zha L S, Zhou M H, et al. Preparation and characterization of pH-and temperature-responsive semi-interpenetrating polymer network hydrogels based on linear sodium alginate and crosslinked poly(N-isopropylacrylamide). Journal of Apply Polymer Science,2005,97(5):1931-1940.
    [36]Irie M. Properties and applications of photoresponsive polymers. Pure Appl. Chem,1990,62(8):1495-1502.
    [37]陈莉,赵义平,李世赓,等.pH和光响应共聚高分子的合成及性能研究.南开大学学报,2006,39(1):19-23.
    [38]Basan H, Gumusderelioglu M, Orbey T. Diclofenac sodium releasing pH-sensitive monolithic devices. International Journal of Pharmaceutics,2002, 245(1-2):191-198.
    [39]Ramkisson-Ganorkar C, Liu F, Kim S W, et al. Modulating insulin-release profile from pH/thermosensitive polymeric beads through polymer molecular weight. J. Control. Release,1999; 59:287-298.
    [40]Hsiue G H, Hsu S H, Yang C C, et al. Preparation of controlled release ophthalmic drops, for glaueoma therapy using thermosensitive poly(N-isopropylaerylamide). Biomaterials,2002,23:457-62.
    [41]马敬红,石抱丽,李珍,等.含5-氟尿嘧啶的羧甲基纤维素钠/聚(N-异丙基丙烯酰胺)半互穿网络水凝胶的药物释放性能.功能高分子学报,2007,19-20:220-224.
    [42]Xiong, Z C, Chen, H C, Huang, X C, et al. Preparation and properties of thermo-sensitive hydrogels of konjac glucomannan grafted N-isopropylacrylamide for controlled drug delivery. Iranian Polymer Journal, 2007,16:425-431.
    [43]Gaharwar A K, Schexnailder P J. Jin Q, et al. Addition of chitosan to silicate cross-linked PEO for tuning osteoblast cell adhesion and mineralization. Applied Materials and Interfaces,2010,2:3119-3127.
    [44]Gaharwar A K, Schexnailder P J. Jin Q, et al. Assessment of using Laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization Acta Biomaterialia,2011,7:568-577
    [45]Cho E C, Kim J W, Hyun D C, et al. Regulating volume transitions of highly responsive hydrogel scaffolds by adjusting the network properties of microgel building block colloids, Langmuir,2010,26:3854-3859.
    [46]Zhang H, Patel A, Gaharwar A K, et al. Hyperbranched polyester hydrogels with controlled drug release and cell adhesion properties. Biomacromolecules,2013, 14:1299-310.
    [47]Gaharwar A K, Kishore V, Rivera C, et al. Physically crosslinked nanocomposites from silicate-crosslinked PEO:Mechanical properties and osteogenic differentiation of human mesenchymal stem cells, Macromolecular Bioscience, 2012,12:779-793..
    [48]Okumura Y, Ito K. The polyrotaxane gel:A topological gel by figure-of-eight cross-links. Advanced Materials,2001,13:485-487.
    [49]Oku T, Furusho Y, Takata T. A concept for recyclable cross-linked polymers: Topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angewandte Chemie,2004,116:984-987.
    [50]Haraguchi K, Takehisa T, Fan S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules,2002,35:10162-10171.
    [51]Gong J P, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength. Advanced Materials,2003,15:1155-1158.
    [52]Huang T, Xu H G, Jiao K X, et al. A novel hydrogel with high mechanical strength:A macromolecular microsphere composite hydrogel, Advanced Materials.2007,19:1622-1626.
    [53]Sakai T, Matsunaga T, Yamamoto Y J, et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules,2008,41:5379-5384.
    [54]Haraguchi K, Farnworth R, Ohbayashi A, et al. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide). Macromolecules,2003,36:5732-5741.
    [55]Haraguchi K, Li J H. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angewandte Chemie,2005,44:6500-6504.
    [56]Haraguchi K, Song L. Y. Microstructures formed in co-cross-linked networks and their relationships to the optical and mechanical properties of PNIPA/clay nanocomposite gels. Macromolecules,2007,40,5526-5533.
    [57]Haraguchi K, Li H J, Matsuda K, et al. Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules,2005,38,3482-3490.
    [58]Haraguchi K, Takada T. Synthesis and characteristics of nanocomposite gels prepared by in situ photopolymerization in an aqueous system. Macromolecules, 2010,43:4294-4299.
    [59]Endo H, Miyazaki S, Haraguchi K, Shibayama M. Structure of nanocomposite hydrogel investigated by means of contrast variation small-angle neutron scattering. Macromolecules,2008,41,5406-5411.
    [60]Haraguchi K, Li H J, Okumura N. Hydrogels with hydrophobic surfaces: abnormally high contact angles for water on PNIPA nanocomposite hydrogels. Macromolecules,2007,40:2299-2302
    [61]Miyazaki S, Karino T, Endo H, et al. Clay concentration dependence of microstructure in deformed poly(N-isopropylacrylamide)-clay nanocomposite gels. Macromolecules,2006,39:8112-8120.
    [62]Haraguchi K, Li H J, Song L. Unusually high hydrophobicity and its changes observed on the newly-created surfaces of pnipa/clay nanocomposite hydrogels. J. Colloid. Interface. Sci.2008,326:41-50.
    [63]Haraguchi K, Li H J, Song L. The unique optical and physical properties of soft, transparent, stimulus-sensitive nanocomposite gels. Proceedings of SPIE 2007, 6654:665400-1-11.
    [64]Zhou Y M, Mizuno T, Takehisa T, et al. Nanocomposite hydrogels:a novel wound dressings.2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI 2010) 978-1-4244-6498-2/10/2010 IEEE
    [65]Xu K, Wang J H, Xiang S, et al. Study on the synthesis and performance of hydrogels with ionic monomers and montmorillonite. Applied Clay Science, 2007,1-2:139-145.
    [66]Liu Y, Zhu M F, Liu X L, et al. High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics. Polymer, 2006,47:1-5.
    [67]Zhu M F, Liu Y, Sun B, et al. A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation. Macromolecular Rapid Communication,2006,27:1023-1028.
    [68]Haraguchi K, Takada T. Synthesis and characteristics of nanocomposite gels prepared by in situ photopolymerization in an aqueous system. Macromolecules, 2010,43:4294-4299.
    [69]Wang J F, Ling L, Cheng Q F, et al. A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel. Angewandte Chemie International Edition,2012,51: 4676-4680.
    [70]张晶晶,李文迪,容建华.聚乙烯毗咯烷酮/黏土纳米复合水凝胶的制备及表征.高等学校化学学报,2010,10:2081-2087.
    [71]Wu C J, Gaharwar A K, Chan B K, et al. Mechanically tough pluronic F127/Laponite nanocomposite hydrogels from covalently and physically cross-linked networks. Macromolecules,2011,44:8215-8224.
    [72]Zheng J P, Li P, Ma Y L, et al. Gelatin/montmorillonite hybrid nanocomposit. Ⅰ. Preparation and properties. Journal of Applied Polymer Science,2002,86: 1189-1194.
    [73]Li P, Zhang J P, Ma Y L, et al. Gelatin/montmorillonite hybrid nanocomposite. Ⅱ. Swelling behavior. Journal of Applied Polymer Science,2003,88:322-326.
    [74]Zhang Y T, Fan L H, Zhi T T, et al. Synthesis and characterization of poly(acrylic acid-co-acrylamide)/hydrotalcite nanocomposite hydrogels for carbonic anhydrase immobilization. Journal of Polymer Science Part A:Polymer Chemistry,2009,47:3232-3240.
    [75]Gaharwar A K, Dammu S A, Canter J M, et al. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules,2011,12:1641-1650.
    [76]Sarvestani A S, He X Z, Jabbari E. Effect of composition on gelation kinetics of unfilled and poly(lactide-ethylene oxide-fumarate) hydrogels, Mater. Lett.,2007, 61:5278-5281
    [77]Sarvestani A S, He X., Jabbari E. Osteonectin-derived peptide increases the modulus of a bone-mimetic nanocomposite. European Biophysics Journal: Biophysics Letter,2007,37:229-234.
    [78]Wang Y, Chen D J. Preparation and characterization of a novel stimuli-responsive nanocomposite hydrogel with improved mechanical properties. Journal of Colloid and Interface Science,2012,372:245-251.
    [79]Bhattacharyya S, Guillot S, Dabboue H, et al. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules,2008,9: 505-509.
    [80]Tong X, Zheng J J, Lu Y C, et al. Swelling and mechanical behaviors of carbon nanotube/poly (vinyl alcohol) hybrid hydrogels. Materials Letters,2007,61: 1704-1706.
    [81]Wu L L. Effect of silica sol content on the properties of poly(acrylamide)/silica composite hydrogel. Polymer Bulletin,2011,8:1-8.
    [82]Loos W, Verbrugghe S, Goethals E J, et al. Thermo responsive organic/inorganic hybrid hydrogels based on poly(N-vinylcaprolactam). Macromolecular Chemistry and Physics,2003,204:98-103.
    [83]Wu J, Ge Q, Mather R T. PEG-POSS multiblock polyurethanes:Synthesis, characterization, and hydrogel formation. Macromolecules,2010,43:7637-7649.
    [84]Shanmuganathan K, Capadona J, Rowan S, et al. Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whishers. Journal of Materials Chemistry,2010,20:180-186.
    [85]Abitbol T, Johnstone T, Quinn T M, et al. Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter,2011,7:2373-2379.
    [86]Jeffrey R, Capadona J R, Shanmuganathan K, et al. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science,2008,319: 1370-1373.
    [87]Eyholzer C, Couraca A B, Duc F, et al. Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules,2011,12:1419-1427.
    [88]Tanaka T. Collapse of gels and the critical endpoint. Physical Review Letters, 1978,40:820-823.
    [89]Zhang X Z, Zhuo R X. Preparation of fast responsive, thermally sensitive poly(N-isopropylacrylamide) gel. European Polymer Journal,2000,36: 2301-2303.
    [90]Zhang X Z, Yang Y Y, Chung T S, et al. Preparation and charaeterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels. Langmuir,2001, 17:6094-6099.
    [91]Serizawa T,Wakita K, Kaneko T, et al.Thermoresponsive properties of porous poly(N-isopropylacrylamide) hydrogels prepared in the presence of nanosized silica partieles and subsequent acid treatment. Journal of Polymer Science A: Polymer.Chemistry,2002,40:4228-4235.
    [92]Zhang X Z, Xu X D, Cheng S X, et al. Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter,2008,4:385-391.
    [93]Zhang X Z, Zhuo R X, Yang Y Y. Using mixed solvent to synthesize temperature sensitive poly(N-isopropylacrylamide) gel with rapid dynamies properties. Biomaterials,2002,23:1313-1318.
    [94]Zhang X Z, Chu C C. Dynamics studies on thermoresponsive poly(N-isopropylacrylamide) hydrogel in tetrahydrofuran/water mixtures. Colloid and Polymer Science,2004,282:589-595.
    [95]Wu X S, Hoffman A S, Yager P. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. Journal of Polymer Science Part A:Polymer Chemistry.1992,30:2121-2129.
    [96]Tokuyama H, Kanehara A. A novel synthesis of macroporous poly(N-isopropylacrylamide) hydrogels using oil-in-water emulsions. Langmuir, 2007,23:11246-11251.
    [97]Xue W, Hamleya I W, Huglin M B, Rapid swelling and deswelling of thermoreversible hydrophobically modified poly(N-isopropylacrylamide) hydrogels prepared by freezing polymerisation. Polymer,2002,43:5181-5186.
    [98]Ozmen M M, Okay, O. Superfast responsive ionic hydrogels with controllable pore size. Polymer,2005,46:8119-8127.
    [99]Dinu M V, Ozmen M M, Dragan E S, et al. Freezing as a path to build macroporous structures:Superfast responsive polyacrylamide hydrogels. Polymer,2007,48:195-204.
    [100]Ozmen M M, Dragan E S, Okay, O. Formation of macroporous poly(acylamide) hydrogels in DMSO/water mixture:Transition from cryogelation to phase seperation copolymerization. Reactive and Function Polymer,2008,68: 1467-1475.
    [101]Xue W, Champ S, Huglin M B, Jones T G J. Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic acid). European Polymer Journal,2004,40:467-476.
    [102]Dorkoosh F A, Brussee J, Verhoef J C, et al. Preparation and NMR characterization of superporous hydrogels (SPH) and SPH composites. Polymer, 2000,41:8213-8220.
    [103]Kaneko Y, Sakai K, Kikuchi A, et al. Fast swelling/deswelling kinetics of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecular Symposia,1996,109:41-53.
    [104]Kaneko Y, Sakaim K, Kikuchim A, et al. Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly (N-isopropy lacrylamide) hydrogels. Macromolecules,1995,28:2717-1723.
    [105]Yoshida R, Uchida K, Kaneko Y, et al. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature,1995,374:240-242.
    [106]Matsuura T, Sugiyama M, Annaka M. Microscopic implication of rapid shrinking of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Polymer, 2003,44:4405-4409.
    [107]Yoshinari E, Furukawa H, Horie K. Fluorescence study on the mechanism of rapid shrinking of grafted poly(N-isopropylacrylamide) gels and semi-IPN gels. Polymer,2005,46:7741-7748.
    [108]Lutecki M, Strachotova B, Uchman M, et al. Thermosensitive PNIPA-based organic-inorganic hydrogels. Polymer Journal,2006,38:527-541.
    [109]Strachotova B. Strachota A, Uchman M, Slouf M, Brus J, Plestil J, Matejka L. Super porous organice-inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response. Polymer,2007,48:1471-1482.
    [110]Tobolsky A V, Carlson D W, Indictor N. Rubber elasticity and chain configuration. Journal of Polymer Science,1961,54:175-192.
    [111]Nielsen L E. Mechanical properties of polymers and composites. Mercel Dekker. Inc. New York,1974,1:23-30.
    [112]Ricciardi R, D'Errico G, Auriemma F, et al. Short time dynamics of solvent molecules and supramolecular organization of poly(vinyl alcohol) hydrogels obtained by freeze/thaw techniques. Macromolecules 2005,38,6629-6639.
    [113]王岳,李凤艳,赵天波,等.具有双孔结构的硅胶整体柱的研究,石油冶炼与化工,2006,5:53-56.
    [114]Loos W, Verbrugghe S, Goethals E J, et al. Thermo-responsive ognanic/inorganic hybrid hydrogels based on poly(N-vinyl caprolactam). Macromolecular Chemistry and Physics,2003,204:98-103.
    [115]Mihranyan A, Esmaeili M, Razaq A, et al. Lindstrum Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes, Journal of Materials Science,2012,47: 4463-4472.
    [116]Peng B L, Dhar N, Liu H L, et al. Chemistry and applications of nanocrystalline cellulose and its derivatives:A nanotechnology perspective. The canadian Journal of chemical engineering,2011,9999,1-14.
    [117]Eichhorn S J. Cellulose nanowhiskers:promising materials for advanced applications. Soft Matter,2011,7,303-315.
    [118]Henriksson M, Henriksson G, Berglund L A, et al. Cellulose nanopaper structures of high toughness. Biomacromolecules,2008,9:1579-1585.
    [119]Shanmuganathan K, Capadona J, Rowan S, et al. Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whishers. Journal of Materials Chemistry,2010,20:180-186.
    [120]Eyholzer C, Bordeanu N, Lopez-Suevos F, et al. Preparation and characterization of water-redispersable nanofibrillated cellulose in powder form. Cellulose,2010,17:19-30.
    [121]Borges A C, Eyholzer C, Duc F, et al. Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus. Acta Biomater.2011,7: 3412-3421.
    [122]Song L, Zhu M, Chen Y, et al. Temperature and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networks. Macromol. Chem. Phys.2008,209:1564.
    [123]Mujumdar S K. Siegel R A. Introduction of pH-sensitivity into mechanically strong nanoclay composite hydrogels based on N-isopropylacrylamide. Journal of Polymer Science Part A:Polymer Chemistry,2008,46:6630-.
    [124]Lin J, Xu S M, Shi X M, et al. Synthesis and properties of a novel double network nanocomposite hydrogel. Polymer Advanced Techology,2009,20: 645-648.
    [125]Zhu M N, Xiong L J. Wang T, et al. High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable 2-(dimethylamino)ethyl methacrylate monomer. Reactive and Functional Polymers,2010,70:267-271.
    [126]Joshi G B, Hemant KSY, Singh M N, et al. Development of pH sensitive hydrogel for intestinal delivery of methyl prednisolone using novel chitosan derivative. International Journal of Pharmacy and Pharmaceutical Sciences,2011, 3:200-203.
    [127]Dai Y N, Li P, Zhang J P, et al. A novel pH sensitive N-succinyl chitosan/alginate hydrogel bead for nifedipine delivery. Biopharmaceutics & Drug Disposition,2008,29:173-184.
    [128]Liu Z H, Jiao Y P, Zhang Z Y. Calcium-carboxymethyl chitosan hydrogel beads for protein drug delivery system. Journal of Applied Polymer Science,2007,103: 3164-3168.
    [129]蒋挺大.壳聚糖[M].北京:化学工业出版社.2002:8-22.
    [130]赵宇飞.偶氮苯化合物的合成及光致变色性能的研究[D],北京化工大学,北京,2000:35-105.
    [131]Kaddami H, Pascault J P, Gerard J F. Influence of the initiation rate on the polymerization kinetics of hydroxy ethyl methacrylate (HEMA) filled with HEMA grafted silica preformed nanoparticles. Polymer Engineering and Science, 2004,44:1231-1239.
    [132]Zheng L, Hong S, Cardoen G, et al. Polymer nanocomposites through controlled self-assembly of cubic silsesquioxane scaffolds. Macromolecules,2004,37: 8606-8611.
    [133]Kuo S W, Hong J L, Huang Y C, et al. Star poly(N-isopropylacrylamide) tethered to polyhedral oligomeric silsesquioxane (POSS) nanoparticles by a combination of ATRP and click chemistry. Journal of Nanomaterials,2012,2012 (http://dx.doi.org/10.1155/2012/749732)
    [134]Zeng K, Fang Y, Zheng S X. Origanic-inorganic hybrid hydrogels involving poly(N-isopropylacrylamide) and polyhedral oligomeric silsequioxane: Preparation and rapid thermoresponsive properties. Joural of Polymer Science Part B:Polymer Physics,2011,47,504-516.
    [135]Mu J F, Zheng S X. Poly(N-isopropylacrylamide) nanocrosslinked by polyhedral oligoneric silsesquioxane:Temperature-responsive behavior of hydrogels. Journal of Colloid and Interface Science,2007,307:377-385.
    [136]Xu Z Q, Ni C H, Yao B L, et al. The preparation and properties of hybridized hybridized hydrogels based on cubic thiol-functionalized silsequioxane covalently linked with poly(N-isopropylacrylamide). Colloid and Polymer Science,2011,289:1777-1782.
    [137]Wang J, Sntti A, Wang X Q et al. Fast responsive and morphologically robust thermo-responsive hydrogel nanofibers from poly(N-isopropylacrylamide) and POSS crosslinker. Soft Matter,2011,7:4364-4369.
    [138]Choi J, Yee A F, Laine R M. Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane, Macromolecules,2003,36,5666-5682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700