低噪声负压吸附爬壁机器人系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内安全形式严峻,安全保障工作得到了国家政府的高度重视,安全部门对适用于城市楼宇危险环境中执行反恐侦察的爬壁机器人提出了紧迫需求。爬壁机器人具有在竖直壁面和倒立天花板上的运动、并携带工具执行任务的能力,可通过城市建筑物外墙壁潜行到事发点窗户附近,通过搭载的侦察系统进行侦察工作,将事发地点的信息发送到安全指挥中心,为形势判断提供现场依据,可显著提高任务执行的成功率,有效保障反恐人员的安全。本课题得到国家863计划项目“面向反恐侦察的微声爬壁机器人的研究”(项目编号:2005AA4202302)支持,其研究目标是研制一种应用于城市楼宇侦察的小型无线、低噪声负压吸附的轮式移动爬壁机器人系统。
     本文首先对爬壁机器人系统进行建模,机器人运动学问题是机器人运动控制的基础,吸附过程及稳定性分析是影响机器人能否正常工作的重要因素之一。在分析墙壁表面与运动轮接触应力对爬壁机器人运动影响因素的基础上,确定机器人运动机构的结构形式。通过爬壁机器人吸附条件的理论分析,推导出在竖直墙壁任意位姿下的机器人最小安全负压工作条件。
     低噪声负压吸附系统的研究是负压吸附爬壁机器人的研究重点,要求其具有噪声低、吸附可靠的特点。在分析爬壁机器人噪声产生机理的基础上,从噪声源降噪入手,通过对负压吸附系统的气动热力学过程分析,运用CFD方法研制了低噪声、低转速、流量-压差特性接近平直规律的高效率离心风扇。为了适应不同缝隙的墙壁,研制了具有自动密封功能、对墙壁摩擦力小的密封装置,运用流体动力学相关理论对密封性能进行分析,推导出密封机构泄漏流体的流动状态、压力和流速分布、气流泄漏量的计算公式。良好的密封能力确保离心风扇工作在低流量、低噪声的稳定压力场和速度场输出状态。通过降噪原理分析,采取相应的隔音和吸音措施,进一步减小了负压吸附系统的噪声,提高了机器人的隐蔽性。
     基于位姿的负压控制系统是低噪声负压吸附爬壁机器人研究的重要内容,本文建立了爬壁机器人的位姿模型,在分析机器人负压和重力对位姿误差影响的基础上,设计了带前馈的位姿复合控制系统,提高了位姿控制的精度;针对爬壁机器人负压吸附系统的特点,在合理假设的基础上,运用键图理论建立了负压吸附系统键图模型,在研究泄漏量变化引起负压控制系统状态变化规律的基础上,为提高控制性能,采用模糊控制的方法,设计了以电流环为内环、负压环为外环的双环负压控制系统,以ATmega128为处理器的嵌入式控制系统实现了传感器信号采集、位姿和负压控制及无线通讯功能,使负压吸附系统工作在最小安全负压,从而达到减小爬壁机器人噪声的目的。
     最后搭建了试验系统,对爬壁机器人负压吸附系统性能、综合系统性能进行了评估实验,试验结果表明了理论研究和系统设计的正确性,爬壁机器人移动灵活、吸附可靠,噪音控制在70分贝以内,满足城市楼宇的侦察工作要求,本文的研究为爬壁机器人性能的进一步改进和提高提供了理论基础和技术依据。
Wall climbing robots, being able to move on the vertical wall, can carry tools to clean a wall, spray shell structure of ships, detecting oil storage, aircraft and bridge where it is hard to reach or dangerous for mankind. Advanced special devices for reconnaissance purpose in dangerous area are demanded by security department. Carrying camera and mike, wall climbing robot as a scout can sneak to guilty place from wall surface and then transmit pictures and voice to control center, which plays an important role in anti-terror, reducing the danger and protecting the security force efficiently.
     Due to the special application circumstance, good adaptability on wall for guaranteeing the safety of the robot, high moving speed to reduce time moving to the goal place, low voice are specially demanded to prevent from detecting by criminals. A wireless portable wall climbing robotic system for reconnaissance purpose was developed to meet the specification of the project, which size is 320x280x150mm, the weight is less than 5kg, the locomotion speed is more than 10m/min, the working duration is 45-70min, the noise in 1m is less than 70dB. Based on analysis of safety attraction, the least negative pressure value is deduced while the robot is static and dynamic moving on the wall. Since negative absorbing process model is the base of negative pressure adhesion system design and negative pressure control, A mathematical model of the transient sucking process was made with bond graph theory by reasonable assumptions, and simulations were made by 20sim software. Since the locomotion system model is the base of locomotion control, it was made after analyzing the stress impacting on the locomotion system between the wall and wheels.
     Low noise and high efficiency suction equipment and sealing mechanical part of small fiction and good adaptability on wall were carefully studied as key technical problem of the wall climbing robotic system for reconnaissance purpose. After analyzing the mechanics of noise, a stable pressure generating radical fan of high efficiency was designed with the Computational Fluid Dynamics (CFD) tool keeping in mind of requirements of a wall climbing robot after pneumatic thermodynamics analysis. The sealing system should automatically prevent leakage between the robot and the wall and reduce the flow mass to keep the fan working under the expecting condition based on fluid dynamics. The sealing system has advantages of low friction and efficient seal performance. To reducing noise further, sound insulating and noise deadening ways were taken after analyzing the noise reducing principle.
     The control system of wall climbing robot is based on ATmega128 processor which implementing sensors data fusion, motor control and wireless communication. Pressure and posture control are important content of research on wall climbing robot. This paper proposed a two loop pressure fuzzy control system which inner loop is current loop and the outer loop is pressure loop after studying the fluid flow leakage influence on the state of the control system. A composite posture control system was designed after analyzing the pressure and weight influencing on the posture. Simulations and experiments were conducted and the result was presented to confirm the control system satisfaction on the application.
     At last, the experiment setup was built to evaluate the performance of negative pressure suction system, general abilities of wall climbing robot. Experiment results show valid analysis and design of robot. Wall climbing robot can move at a high speed, stably attract on wall and accomplish reconnaissance mission successfully. The theoretical and experimental result of research on wall climbing robot will contribute to further perfect the performance of robot design. At the same time, a wall climbing robotic system for reconnaissance purpose can be used as a novel equipment for secure department in urban area.
引文
1 施拉夫特.服务机器人.机器人技术与应用.1997(1):3-5
    2 佐藤多秀,森田弘文.極限作業ロボットの壁面移動技術.日本ロボット学会誌.Sept. 1992, Vol.10(5):25-33
    3 L. Briones, P.Bustanmante, M.A.Serna. Wall Climbing robot for inspection in nuclear power plants. IEEE ICRA1994:1409-1414
    4 刘海波,武学民.国外建筑业的机器人化—国外建筑机器人发展概述.机器人.1994,16(2):119-128
    5 本田忠義.建設現場における壁面作業ニーズ.日本ロボット学会誌.Sept. 1992, 10(5): 2-6
    6 後藤健二.外壁自動調査機.ロッボト.1983,38:67-73
    7 伐谋.世界服务机器人市场前景.机器人技术与应用.1995,52(4):27-28
    8 N. Elkmann, T. Felsch, M. Sack. Modular Climbing Robot for Service-Sector Applications, Industrial Robot. 1999(6):460-465
    9 O YANO, S NUMAO, Y KITAMURA. Development of a Self-Contained Wall Climbing Robot with Scanning Type Suction Cups. Proceedings of the 1998 IEEE ICIRS. 249-254
    10 Climbed up the Water Spout, http://www.mitsubishi.or.jp/
    11 蒋志坚,徐殿国.交流伺服清洗爬壁机器人的姿态控制. 哈尔滨工业大学学报. 2002,34(4):581-584
    12 徐芸,刘宝生. 自动扫查爬壁机器人系统及调整运动. 上海交通大学学报. 2005,39(6):884-887
    13 徐祯祥,刘荣. 面向复杂曲面的爬壁机器人机构及运动学分析. 北京航空航天大学学报. 2005,31(7):718-721
    14 闫国荣, 张海兵. 一种新型轮式全方位运动机构. 哈尔滨工业大学学报. 2001,33(6);854-858
    15 潘焕焕, 赵言正. 多功能履带式磁吸附爬壁机器人的姿态控制研究. 哈尔滨工业大学学报. 2000,32(2):5-9
    16 王军波, 陈强. 爬壁机器人变磁力吸附单元的优化设计. 清华大学学报(自然科学版). 2003,43(2):214-217
    17 徐泽亮, 马培荪. 永磁吸附履带式爬壁机器人转向运动灵活性分析. 上海交通大学学报. 2003,37(11):58-61
    18 刘金国,李斌. 链式可重构机器人单模块结构设计与运动实验. 机械设计与制造.2005(8):94-98
    19 张俊强, 张华, 万伟民. 履带式爬壁机器人磁吸附单元的磁场及运动分析. 机器人. 2006,28(2):218-222
    20 Armada, M., Gonzalez de Santos, P., Prieto, M., and Grieco, J.C. REST. A Six legged Climbing Robot. European Mechanics Colloquium, Euromech 375, Biology and Technology of Walking. 1998:159-164
    21 Armada. M, Gonzalez de Santos. P, Nieto. J, and Araujo. D. On the Design and Control of a Self-Propelling Robot for Hazardous Environments. Proc. 21st Int. Symposium on Industrial Robots:159-166
    22 Armada. M. Tele -presence and Intelligent Control for a Legged Locomotion Robot. in Jordanides. T. and Torby. B. (Ed.), Expert Systems and Robotics, Springer Verlag: 377-396
    23 Armada. M, and Gonzalez de Santos. P. Climbing Walking and Intervention Robots. Industrial Robot.24(2):158-163
    24 Armada. M, and Prieto. M. CLAWAR Yr1: Technical Task 5:Man-Machine Interface-Requirements and Specs. 2nd International Conference on Climbing and Walking Robots,CLAWAR 99:151-162
    25 Federle W, Riehle M, Curtis A S G,et al. An integrative study of insect adhesion: Mechanics and wet adhesion of pretarsal pads in ants [J]. Integrative and Comparative Biology, 2002 ,42 (6) :1100.
    26 S. Kim, M. Spenko, S. Trujillo, B. Heyneman, V. Mattoli, M.R. Cutkosky, "Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot," IEEE ICRA07, April 2007.
    27 D. Santos, S. Kim, M. Spenko, A. Parness, M.R. Cutkosky , "Directional Adhesive Structures for Controlled Climbing on Smooth Vertical Surfaces," IEEE ICRA07, April 2007.
    28 Y-L Park, K. Chau, R.J. Black, and M.R. Cutkosky. Force Sensing Smart Robot Fingers using Embedded Fiber Bragg Grating Sensors and Shape Deposition Manufacturing. IEEE ICRA07, April 2007.
    29 K. Autumn, A. Dittmore, D. Santos, M. Spenko and M. Cutkosky, Frictionaladhesion: a new angle on gecko attachment, Journal of Experimental Biology, 209, 3569-3579, 2006
    30 Asbeck, A.T., Kim, S., McClung, A., Parness, A., and Cutkosky, M.R., Climbing Walls with Microspines, IEEE ICRA, May 2006, Orlando, Fla.
    31 Kim, S., Asbeck, A., Provancher, W., and Cutkosky, M.R., SpinybotII: Climbing Hard Walls with Compliant Microspines, IEEE ICAR, Seattle, WA, July, 18-20, 2005.
    32 Asbeck, A., Kim, S., Provancher, W.R., Cutkosky, M.R. and Lanzetta, M., Scaling Hard Surfaces With Microspine Arrays, Robotics: Science and Systems, MIT, June 8-10, 2005.
    33 Provancher, W., Clark J.E., Geisler, B. and Cutkosky, M.R., Towards Penetration-Based Clawed Climbing, Proc. CLAWAR, Madrid, Spain, Sept. 22-24, 2004.
    34 M. Murphy, M. Sitti, "Waalbot: An Agile Small-Scale Wall Climbing Robot Utilizing Dry Elastomer Adhesives", IEEE/ASME Transactions on Mechatronics, June 2007
    35 M. Murphy, W. Tso, M. Tanzini, M. Sitti. Waalbot: An Agile Semi-Autonomous Wall Climbing Robot. IROS 2006
    36 C. Menon, M. Murphy, M. Sitti. Gecko Inspired Surface Climbing Robots. IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenyang, China, Aug 2004.
    37 O. Unver, A. Uneri, A. Aydemir, M. Sitti. Geckobot: A Gecko Inspired Climbing Robot Using Elastomer Adhesives. IEEE International Conference on Robotics and Automation, Orlando, Florida May 2006.
    38 O. Unver, M. Murphy, M. Sitti. Geckobot and Waalbot: Small-Scale Wall Climbing Robots. AIAA 5th Aviation, Technology, Integration, and Operations Conference (ATIO) , Arlington, Virginia Sept. 2005.
    39 C. Menon, M. Murphy, M. Sitti. Gecko Inspired Surface Climbing Robots. IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenyang, China, Aug 2004.
    40 K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and R. J. Full, Adhesive force of a single gecko foothair, Nature, vol. 405, pp. 681-685, 2000.
    41 Daltorio K A, Gorb S, Peressadko A, et al. A robot that climbs walls using micro2structured polymer feet [A]. Proceedings of the 8 th International Conference on Climbing andWalking Robots[C]. Berlin, Germany: Sp ringer2Verlag, 2006. 131 - 138.
    42 T Bohme, Dr. U Schmucker, N Elkmann, M Sack. Service Robots for Facade Cleaning. 1998 IEEE:204-1207
    43 J.J. Kerley, E. May, W. Ecklund. The Climbing Crawling Robot. Industrial Robots. 1992,19(4):31-35
    44 Saridis D. R. Toward the Realization of Intelligent Control. Proceedings of the IEEE, 1999, 67(8):1115-1120
    45 王巍. 灵巧擦窗机器人相关问题研究. 北京航空航天大学博士学位论文, 2001:10-32
    46 于波,刘荣,张厚祥,宗光华. 超高层吊篮式擦窗机器人控制系统的开发. 计算机工程与设计. 2003(4):21-24
    47 Luk, B. L. Collie, A. A.; Billingsley, J. Robug II: An Intelligent Wall Climbing Robot. Proceedings - IEEE International Conference on Robotics and Automation, v 3, Sacramento, CA, USA, 1991:2342-2347
    48 Stone, T.J. Cooke, D.S.; Luk, B.L. Robug III - The Design of An Eight Legged Teleoperated Walking and Climbing Robot for Disordered Hazardous Environments. Mechanical Incorporated Engineer. 1995(4):37-41
    49 Luk, B.L.; Collie, A.A.; Piefort, V.; Virk, G.S. Robug III: A Tele-operated Climbing and Walking Robot. Proceedings of the 1996 UKACC International Conference on Control. Exeter, UK, Sep 2-5 1996: 347-352
    50 Luk, Bing L. Cooke, David S. Intelligent Legged Climbing Service Robot for Remote Maintenance Applications in Hazardous Environments. Robotics and Autonomous Systems. 2005,53(11):142-152
    51 Luk, B.L. Galt, S.; Chen, S. Using Genetic Algorithms to Establish Efficient Walking Gaits for An Eight-Legged Robot. International Journal of Systems Science. 2001,32(6):703-713
    52 Jun X, X Ning. Fuzzy System Approach for Task Planning and Control of Micro Wall Climbing Robots. IEEE International Conference on Robotics and Automation. 2004: 5033-5038.
    53 X J. Design of Mobile Robots with Wall Climbing Capability. IEEE/ASMEInternational Conference on Advanced Intelligent Mechatronics. 2005:438-443
    54 X Jun. X Ning. Fuzzy Controller for Wall-Climbing Microrobots. IEEE Transactions on Fuzzy Systems. 2004,12(8):466-480
    55 Xiao J, Xiao J. Modeling,Control, and Motion Planning of a Climbing Microrobot. Integrated Computer-Aided Engineering. 2004,11(4): 289-307
    56 M-T Li, W Guo and L Sun. Study of an Inchworm-like Micro-robot. HIGH TECHNOLOGY LETTERS. 2006,12(2):74-78
    57 M-T Li, L-N Sun,Y Li, Yang.Workspace and Passable Environment Analyse of a Underactuated Inchworm-like Micro-robot. IEEE International Conference on Mechatronics and Automation, ICMA 2005, 2005: 1741-1744
    58 L-N Sun, M-T Li, Y-Y Chu. Control System of Mobile Micro-robot Based on DSP. Proceedings Of The Sixth International Conference On Electrical Machines And Systems, 2003,2: 495-497
    59 李满天, 褚彦彦, 孙立宁. 基于 DSP 的小型双足移动机器人控制系统的研究.微特电机.2003,(4):17-21
    60 Kang, Taehum, Kim, Hyungseok. Realtime Perception with Infrared Scanner for Navigation of Quadruped Walking and Climbing Robot. IEEE IROS2004:2550-2555
    61 www.clarifyingtech.com
    62 G. Muscato and G. Trovato, Motion control of a pneumatic climbing robot by means of a fuzzy processor, in Proc. 1st Int. Symp. Climbing and Walking Robots (CLAWAR 98), Brussels, Nov. 26-28, 1998, pp. 113-118.
    63 G. La Rosa, M. Messina, G. Muscato, and R. Sinatra. A low cost lightweight climbing robot for the inspection of vertical surfaces. Mechatronics, vol. 1. New York: Pergamon, 2002, pp. 71-96.
    64 Longo D., Muscato G., The Alicia3 climbing robot. IEEE Robotics and Automation Magazine,2006, pp:42-50
    65 D. Longo and G. Muscato, A modular approach for the design of the Alicia3 climbing robot for industrial inspection, Indust. Robot., vol. 31, no. 2, pp. 148–158, 2004.
    66 D. Longo, G. Nunnari, and G. Muscato, Neural network system identification for a low pressure non-linear dynamical subsystem onboardthe Alicia II climbing robot, in Proc. 13th IFAC Symp. System Identification, Rotterdam, The Netherlands, Aug. 27-29, 2003, pp. 383-388.
    67 L. Fortuna, A. Gallo, G. Giudice, and G. Muscato. ROBINSPEC: A mobile walking robot for the semi-autonomous inspection of industrial plants. Robotics and Manufacturing: Recent Trends in Research and Applications, vol 6. New York: ASME Press, 1996, pp. 223-228.
    68 M Elliot, W Morris, J Xiao, City-Climber, a new generation of wall-climbing robots. in video Proceeding of 2006 IEEE International Conference on Robotics and Automation, May 15-19, 2006, to appear.
    69 Jizhong X, A Sadegh, M Elliot, A Calle, A Persad, Ho M-C. Design of Mobile Robots with Wall Climbing Capability. Proc. of the 2005 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp438-443, July 24-28, 2005.
    70 Jizhong Xiao, Angel Calle, Ali Sadegh, Matthew Elliot. Modular Wall Climbing Robots with Transition Capability. Proc. 2005 IEEE International Conference on Robotics and Biomimetics (IEEE ROBIO), pp246-250, 2005.
    71 Y-Z Z, Hao, S, Yan W. Wall-climbing robot with negative pressure suction cup used for cleaning work. High Technology Letter 5(2):85-88
    72 Zhao Yan, Fu Z, Cao Q et al Development and applications of wall-climbing robots with a single suction cup. Robotica, in press
    73 Z.-Y. Qian, Y.-Z. Zhao, Z. Fu and Q.-X. Cao. Design and realization of a non-actuated glass-curtain wall-cleaning robot prototype with dual suction cups. The International Journal of Advanced Manufacturing Technology, in press.
    74 Y-Z Zhao, Z Fu, Q-X. Cao and Y Wang. Development and applications of wall-climbing robots with a single suction cup. Robotica, vol.22, pp.643-648, 2004.
    75 Y Wang, S-L Liu and D-G Xu. Development and application of wall-climbing robots. Proc. of IEEE Internat. Conf on Robotics and Automation, pp. 1207-1212, 1999.
    76 Xueshan Gao and Koki Kikuchi. Study on a Kind of Wall Cleaning Robot. IEEE ROBIO, Shenyang, China, pp.391-394,2004
    77 H Yang, H Shao, S Liu and Y Wang. The Control System Research on theWall Climbing Robot Used For Cleaning. ROBOT pp.90-94,1998
    78 S-X Liu, Y-Z Zhao and Y Wang. Design on Wall-climbing Robot for High Building Cleaning and the Relatively Technology. Automation Panorama, 1999,PP 22-25
    79 H-H Pan, Y-Z Zhao, X-S Gao and Y WANG. Structure Design of Climbing Robot Used in Water-cooling Wall of Boiler. Machine Design and Manufacturing Engineering, 2000, 29(5)pp.PP7-10.
    80 S-L Liu, Y-Z Zhao, X-S Gao, D-G Xu and Y Wang. A Wall Climbing Robot with Magnetic Crawlers for Sandblasting Spray-painting and Measurement. High Technology Letters, 2000, pp.86-88.
    81 Z-J Zhang. Research on Mechanical Problems of High Building Cleaning Robot System. PhD thesis, Beijing University of Aeronautics & Astronautics, China, 2004.
    82 Abderrahim M., et al. ROMA: A climbing robot for inspection operations. In Proc.IEEE International Conference on Robotics and Automation, 1999, pp: 2303-2308
    83 Balaguer C., Gimenez A., Abderrahim M., ROMA robots for inspection of steelbased infrastructures. The Industrial Robot, 2002, 29(3), ABI/INFORM Global.pp:246-251.
    84 Yano T., Suwa T., Murakami M., Yamamoto T., Development of a semiself-contained wall climbing robot with scanning type suction cups. Proc. IEEE Int.Conf. Intelligent Robots and Systems 2,1997, pp:900-905
    85 Nagakubo A., Hirose S., Walking and running of the quadruped wall-climbing robot.Proceedings, IEEE International Conference on Robotics and Automation 2,1994, pp:1005-1012
    86 Hirose S., Nagakubo A., Toyama R. Machine that can walk and climb on floors,walls and ceilings. Fifth International Conference on Advanced Robotics, ICAR,Vol.1, Italy, IEEE ,Pisa, Italy, 1991,pp:753-75
    87 Backes P.G., Bar-Cohen, Y., Joffe B., Multifunction automated crawling system(MACS), Proceedings of IEEE International Conference on Robotics andAutomation, USA , IEEE ,Albuquerque, NM, 1997, Vol.1, pp.335-340
    88 Schraft R.D., Simons F., Schafer T., et al. Concept of a low-cost, window-cleaning robot. Proceedings of the 6th International Conference on Climbingand Walking Robots CLAWAR. Muscato G, Longo D, Professional Engineering Publishers, Italy, September, Catania,2003, pp:785-792
    89 Berns K., Hillenbrand C., Luksch T. Climbing Robots for Commercial Applications a Survey,Clawar 2003,Catania, Italy.
    90 Hillenbrand C., Berns K., A Climbing Robot based on under Pressure Adhesion for the Inspection of Concrete Walls. 35th International Symposium on Robotics (ISR), March, 2004
    91 Jiang H.Y., Li S.S., Pan P.L., et al. Research on alternatively moving vacuum absorbing wall-climbing robot,Journal of Harbin Institute of Technology (NewSeries),1999, 6(1), pp:8-13
    92 孟宪超,王祖温,包钢等,一种多吸盘爬壁机器人原型的研制,机械设计,208),2003,pp:30-33
    93 Bahr B. and Wu F., Design and Safety analysis of a portable climbing robot. International Journal of Robotics and Automation, 1992, 9(4). pp:160-166
    94 赵言正,全方位壁面移动机器人系统的研究,哈尔滨工业大学博士论文,1999
    95 张海洪,机器人壁面自动清洗系统的工程研究,上海大学博士论文,2001
    96 潘雷,赵言正等. 具有双负压吸盘的爬壁机器人吸附特性. 上海交通大学学报. 2005, 39(6):873-876
    97 De Francisci, S., Longo, D., Muscato, G.. A Direction Dependent Parametric Model for the Vacuum Adhesion System of the Alicia II Robot. Control and Automation, 2006. MED '06. 14th Mediterranean Conference on Digital Object Identifier
    98 罗志昌. 流体网络理论. 机械工业出版社. 1988,10-58
    99 陈文义,张伟. 流体力学.天津大学出版社.2004, pp:53-66
    100 刘淑霞. 壁面清洗爬壁机器人控制技术的研究. 哈尔滨工业大学博士论文.2000
    101 商景泰. 通风机实用技术手册. 机械工业出版社. 2005 年 4 月
    102 彭玉才. 低噪声离心风机的研制与试验研究. 哈尔滨工业大学硕士论文.1996
    103 韩占忠. 流体工程仿真计算实例与应用. 北京理工大学出版社.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700