钛酸钡(铅)系列纳米粉体的制备方法与相变机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸钡(铅)等纳米钛酸盐粉体及其固溶体是重要的电子陶瓷材料,近年来无论在理论上还是在技术应用上,都得到了广泛的关注。钛酸钡等电子陶瓷制备工艺中的一个基本特点就是以粉体为原料经成型和烧结而形成多晶陶瓷体,陶瓷粉体的质量直接影响最终产品的质量,所以研制钛酸钡等陶瓷电子器件的首要问题是制备出符合产品性能要求的粉体原料。因此,开展对钛酸钡(铅)等纳米粉体新的合成方法、制备反应机理、相转变规律等的研究仍然具有重要的理论与现实意义。
     论文详细评述了钛酸钡(铅)等电子陶瓷粉体的研究现状,并以BaTiO3、PbTiO3、Ba(ZrTi)O3、Pb(ZrTi)O3为研究对象,系统地开展了合成方法、相变及反应机理、掺杂改性等应用基础研究。
     1、研究并提出了过氧化物前驱体热分解法制备纳米钛酸钡新的可能反应过程(机理)。以H2TiO3、氨水、过氧化氢和水溶性钡盐为原料,采用过氧化物前驱体热分解法制备得到了纳米钛酸钡粉体,其中600℃煅烧1h得到立方相钛酸钡,粉体粒径在20-40nm,1000℃煅烧lh得到四方相钛酸钡,粉体粒径在60-100nm。同时,加热该钛酸钡(钙、锶)过氧化物前驱体会有氧气产生,结合TG-DSC、电子能谱等实验分析,证实过氧化物前驱体热分解法制备纳米钛酸钡的反应过程(机理)为:
     H2TiO3+2H2O2+2NH3→(NH4)2Ti(H2O2)2O3
     (NH4)2Ti(H2O2)2O3+Ba2+→BaTi(H2O2)2O3↓+2NH4+
     BaTi(H2O2)2O3→(BaTiO5+2H2O)→BaTiO3↓+2H2OT+O2↑
     2、研究了掺杂(锶)诱导钛酸钡的相变规律。利用过氧化物前驱体热分解法可以制备得到纳米钛酸钡粉体,制备过程中掺入少量的锶,使得锶离子均匀进入母体晶格,会使相变温度明显下降,当加入摩尔比2%以内的锶离子后,相变温度由原来的900℃-1000℃降低到了800℃-900℃之间。当加入摩尔比5%以上的锶离子时,即使升高温度也难以发生相变,且高温下粉体还会发生分解。这与其晶体结构中钛离子的空间位阻有关系。当半径小的离子对钡离子进行部分取代,会使得晶体结构发生变化,钛离子空间位阻变小,振动容易,钛酸钡晶体由立方相转变为四方相的相变温度会降低;但当更多的钡离子被半径小的离子取代以后,钛离子的空间位阻将变得更小,钛离子上下振动均十分容易,此时反而难以实现其四方相的转化。当温度改变时,钛酸钡晶体TiO6八面体结构中Ti离子可能发生中心偏移,可形成一个具有稳定的Ti-O键的长五配位重排结构,此结构中Ti-O键长比六配位结构中更长,从而使Ti离子可以稳定存在,最终导致钛酸钡由稳定的立方相逐步转变为亚稳态的四方相。
     同时,掺入适量锶离子可以明显降低钛酸钡发生相变的晶粒尺寸,钛酸钡由立方相转化为四方相的晶粒尺寸在33nm附近(实验计算值)。
     3、采用凝胶燃烧法制备了BaTiO3、BaZr0.1Ti0.9O3纳米粉体。以偏钛酸、双氧水、氨水、硝酸钡等为原料,采用凝胶燃烧法制备得到了纳米BaTiO3粉体,并且通过控制前驱体的煅烧温度可以分别制得立方相或四方相的钛酸钡纳米粉体。在800℃煅烧钛酸钡前躯体4h,得到含有少量BaCO3杂质的立方相纳米BaTiO3粉体;当煅烧温度升高至1000℃时,可制得四方相纳米BaTiO3粉体,所得四方相BaTiO3纳米粉体的粒径在60-120nm。改变原料,同样方法制备得到了锆钛酸钡(BaZr0.1Ti0.9O3)纳米粉体,该粉体的粒径在30-80nm。
     4、研究并提出了PbTiO3、PbZr0.52Ti0.48O3粉体新的燃烧制备方法。以H2TiO3、H2O2、Pb(CH3COO)2·3H2O等为原料,EDTA、柠檬酸为配位剂和燃烧剂,先制备PbTiO3前驱体粉体,再在700℃煅烧该粉体1h,可制得PbTiO3纳米粉体,该粉体粒径为50-80nm。改变原料,同样方法制备得到了立方相PZT(PbZr0.52Ti0.48O3)粉体,该粉体粒径在100-200nm。该方法原料易得,成本低廉,工艺简单,生产条件容易控制,可为其它钛酸盐粉体的制备提供参考。
     5、以偏钛酸、双氧水、氨水、乙酸铅、乙酸锌和硝酸镁为原料,EDTA、柠檬酸为配位剂和燃烧剂,采用凝胶-燃烧法制备得到了PZNT和PMNT粉体。实验结果表明:PZNT约在488-527℃形成稳定化合物,在700℃煅烧其胶状前躯体2h后所得到的PZNT粉体的粒径在50-150nm;PMNT约在514-545℃形成稳定化合物,在800℃煅烧其胶状前躯体2h后所得到的PMNT粉体的粒径在100-300nm。
     6、以偏钛酸、双氧水、氨水、硝酸锂为原料,柠檬酸为络合剂和燃烧剂,采用凝胶燃烧法制备得到了Li4Ti5O12(LTO)亚微米粉体。首先,按摩尔比将H2TiO3溶于H2O2和NH3·H2O的混合溶液中,再加入适量柠檬酸,得到棕红色透明溶液,然后向该溶液中加入等摩尔的Li+溶液,再将此混合溶液加热浓缩成胶状物后在高温下煅烧,可以制得Li4Ti5O12亚微米粉体。研究结果表明:Li4Ti5O12约在450℃反应形成,将所得胶状物(前躯体)在800℃煅烧2h,制得的Li4Ti5O12粉体的粒径在200-300nm。
Nano-titanate powder of barium (lead) titanate and its solid solution is an important electronic ceramic material. It has been focused on the theory and technical application in recent years. During the preparation processes of barium titanate, the fundamental characteristic is that polycrystalline ceramics were prepared from powder, followed by molding and sintering. The quality of ceramic powder has direct influence on the resultant products. So the preparation of powder which meets the requirements of product' properties is the key problem for preparing electronic ceramic devices such as barium titanate. Therefore, it has great theoretical and practical significance in studying the problems such as new method of synthesizing, the mechanism of reaction, and the rule of phase transformation for nano-powder of barium titanate.
     The research status of electronic ceramic powder such as barium (lead) titanate etc. was reviewed detailedly in this study. And the applied fundamental researches of the synthesis method, phase transformation & reaction mechanism and doping modification etc. were carried out systematacially with BaTiO3, PbTiO3, Ba(ZrTi)O3 and Pb(ZrTi)O3 as the research objects.
     1. The reaction process (mechanism) of preparing nano-barium titanate by using peroxide precursor thermal decomposition method was studied and presented. Taking H2TiO3, ammonia water, hydrogen peroxide and water-soluble barium salts as raw materials, nano-barium titanate powder was prepared using peroxide precursor thermal decomposition method, in which cubic phase barium titanate with grain sizes between 20 and 40 nm were obtained by calcining at 600℃for 1 hour, and tetragonal phase barium titanate with grain sizes between 60 and 100 nm was obtained by calcining at 1000℃for 1 hour. Meanwhile, oxygen was produced when heating the peroxide precursors of barium (calcium and strontium) titanate. By combining experimental analysis of TG-DSC and electron spectrum etc., the reaction process (mechanism) of preparing nano-barium titanate using peroxide precursor thermal decomposition method was proved to be:
     H2TiO3+2H2O+2NH3→(NH4)2Ti(H2O2)2O3
     (NH4)2Ti(H2O2)2O3+Ba2+→BaTi(H2O2)2O3↓+2NH4+
     BaTi(H2O2)2O3→(BaTiO5+2H2O)→BaTiO3↓+2H2O↑+O2↑
     2. The phase transformation law of (strontium) doping induced barium titanate was studied. Nano-barium titanate powder was prepared by using peroxide precursor thermal decomposition method. A small amount of strontium was added during preparation process, and the strontium ions were allowed to enter into the crystal lattice of mother substance evenly which obviously caused the phase transformation temperature to be reduced. After adding molar ratio of strontium ions less than 2% among the total cation, the phase transformation temperature was changed from 900℃-1000℃to 800℃-900℃. After adding molar ratio of strontium ions more than 5%, phase transformation was hard to occur even if the temperature was increased, and the powder would be decomposed at high temperature. This was related to the steric hindrance of titanium ions in the crystal structure. When the barium ions were replaced partially by ions with smaller radius, the crystal structure of the barium titanate would change, and the steric hindrance of titanium ion became smaller, the vibration became easier, and the phase transformation temperature of barium titanate crystal from cubic phase to tetragonal phase would be reduced; However, when more barium ions were replaced by ions with smaller radius, the steric hindrance of titanium ion became even smaller, and the up & down vibration of titanium ion was very easy. Therefore, the transformation of tetragonal phase was hard to occur. When the calcination temperature was changed, the structure of barium titanate crystal was transformed. Therefore, the Ti ions in the octahedral structure became eccentric (off-centering) and formed a pentacoordinate rearranged structure with stable Ti-O bond, where Ti-O bond length was longer than that in hexacoordinate structure, and so that the Ti ions would exist stably. Eventually, barium titanate would transform from the stable cubic structure to the metastable tetragonal structure.
     Meanwhile, the grain sizes that phase transformation of barium titanate occurred were reduced greatly by mixing an amount of strontium ions. The experiment results indicated that, the grain sizes which barium titanate transformed from cubic phase to tetragonal phase were around 33nm (calculated value from experiments).
     3. This study explored and proposed a preparation method of nano powder of BaTiO3 and BaZr0.1Ti0.9O3 by a gel-combustion method for the first time. Nano-BaTiO3 powder was prepared by taking the metatitanic acid, hydrogen peroxide, ammonia water and barium nitrate etc. as raw materials and using organic coordination compound combustion method. And nano-barium titanate powder with cubic phase or tetragonal phase was prepared respectively by controlling the calcining temperature of the precursor. Cubic phase nano-BaTiO3 powder with little BaCO3 impurity was prepared by calcining the precursor of barium titanate at 800℃for 4 hours; while calcining temperature increased to 1000℃, tetragonal phase nano-BaTiO3 powder would be prepared. The grain sizes of the prepared tetragonal phase nano-powder of BaTiO3 were between 60 and 120 nm with average grain size of approx.80nm. By changing the raw materials, nano-powder of barium zirconate titanate (BaZr0.1Ti0.9O3) was prepared by using the same method, with the grain sizes between 30 and 80 nm and the average grain size at approx 50 nm.
     4. A new combustion preparation method for nano-powder of PbTiO3 and PbZr0.52Ti0.48O3 was studied and presented for the first time. Taking the H2TiO3, H2O2 and Pb(CH3COO)2·3H2O etc. as raw materials, and EDTA and citric acid as complexing agent and fuel agent, precursor powder of PbTiO3 was prepared firstly, then by calcining the powder at 700℃for 1 hour, nano-powder of PbTiO3 was prepared with the grain sizes between 50 and 80 nm and average grain size at approx.70 nm. By changing raw materials, cubic phase powder of PZT (PbZr0.52Ti0.48O3) was prepared by using the same method, with the grain sizes between 100 and 200 nm and average grain size at approx.100 nm. This method, with extensive sources of raw materials, simple process, low cost and easy control of production conditions, is a good reference for preparation of other titanates nano-powder.
     5. PZNT and PMNT nano-powders were prapared by a gel-combustion method using meta-titanic acid, hydrogen peroxide, ammonia, zinc acetate, lead acetate and magnesium nitrate as raw materials, EDTA and citric acid as complexing agent and incendiary agent seprarately. The results showed that PZNT and PMNT were prapared through the obtained jelly being calcined at 488-527℃and 514-545℃, and the obtained jelly being calcined at 700℃for 2h, the grain sizes of obtained nano-powder of PZNT was 50-150nm, the average diameter of the particles was about 100nm, and the obtained jelly being calcined at 800℃for 2h, the grain sizes of obtained nano-powder of PMNT was 100-300nm, the average diameter of the particles was about 200nm.
     6. Li4Ti5O12 submicron-powders were prepared through Gel-combustion method with Citric acid as Complexing and fueling agent, and Titanic hydroxide, hydrogen peroxide, ammonia and lithium nitrate as the starting materials. Firstly, H2Ti03 was dissolved in the mixture of H2O2 and NH3·H2O at certain molar ratio, and some citric acid was added to obtain a orange-red transparent solution which then was added with identical mole of Li+solution.The obtained mixture was heated and condensed into jelly before calcined at different temperatures, and micro-powder of Li4Ti5O12 was fabricated. Investigations based on XRD, TG-DTA, TEM and IR show that LTO was fabricated at about 450℃. With the obtained jelly being calcined at 800℃for 2h, the grain sizes of obtained submicro-powder of Li4Ti5O12 was in the range of 200-300nm, respectively.
引文
[1]徐政,倪宏伟.现代功能陶瓷[M],第一版.北京:国防工业出版社,1998.
    [2]颜学敏,雷家珩,张安富等.电子陶瓷钛酸钡粉体的液相合成[J].化学通报,2005,68:W138
    [3]Andrew J. B. Ferroelectrics:The role of ceramic science and engineering[J]. Journal of the European Ceramic Society, 2008,28 (7):1307-1317
    [4]Haertling G.H. Ferroelectric Ceramics[J] J.Am.Ceram.Soc.,1999,82:797-818
    [5]晏伯武.大功率铅基压电陶瓷材料的研究进展[J].佛山陶瓷,2007,(5):34-39
    [6]时刻,黄英,廖梓君.纳米功能陶瓷的研究与应用[J].中国陶瓷,2005,41(1):20-23.
    [7]Jurgen R, Alain BNK, Marion W E, et al. Development of a roadmap for advanced ceramics:2010-2025 [J]. Journal of the European Ceramic Society, 2009,29 (9):1549-1560
    [8]高濂,李蔚.纳米陶瓷.第一版.北京:化学工业出版社,2002.
    [9]李晓娟,李全禄,谢妙霞等.国内外压电陶瓷的新进展及新应用[J].硅酸盐通报,2006,25(4):101-107.
    [10]Chen T Y, Chu S Y, Chang R C,et al. The characteristics of low-temperature sintered PbTiO3 based ceramics and its applications [J]. Sensors and ActuatorsA:Phys.,2007,134:452-456.
    [11]Simon-Seveyrat L, Hajjaji A, Emziane Y. Re-investigation of synthesis of BaTiO3 by conventional solid-state reaction and oxalate coprecipitation route for piezoelectric applications[J]. Ceram. Inter.,2007,33:35-40
    [12]Buscaglia V, Viviani M, Buscaglia M T.,et al. Nanostructured barium titanate ceramics[J]. Powder Technology,2004,148:24-27
    [13]杨飞宇.电子陶瓷用优质钛酸钡粉体的研究:[硕士学位论文],太原:太原理工大学,2004.
    [14]侯博.水(溶剂)热法制备纳米钛酸钡的尺寸与形貌控制及性能研究.[博士学位论文].太原:中国科学院山西煤炭化学研究所,2005.
    [15]Anthony R W, Timothy B A, Finlay D M, Derek C S. Novel high capacitance materials:BaTiO3:La and CaCu3Ti4O12 [J]. J. Euro. Ceram. Soc.,2004,24(6), 1439-1448
    [16]Park K, Seo D J. Gas sensing characteristics of BaTiO3-based ceramics[J]. Mater. Chem. Phys.,2004,85 (1),47-51.
    [17]Yoon D H, Lee B I. Processing of barium titanate tapes with different binders for MLCC applications-Part Ⅰ:Optimization using design of experiments [J]. J. Euro. Ceram. Soc.,2004,24,739.
    [18]Almeida A F L, Fechine P B A, Sasaki J. M, et al. Optical and electrical properties of barium titanate-hydroxyapatite composite screen-printed thick films[J]. Solid State Sci.,2004,6 (3),267.
    [19]Luan W L, Gao L, Kawaoka H, et al. Fabrication and characteristics of fine-grained BaTiO3 ceramics by spark plasma sintering[J]. Ceramics International,2004,30,405.
    [20]李坷,张德,周飞.钛酸钡系无铅压电陶瓷的研究进展[J].中国陶瓷,2007,43(12): 17-20
    [21]Singh A, Guptaa V, Sreenivas K, et al. Influence of Ca additives on the optical and dielectric studies of sol-gel derived PbTiO3 ceramics [J]. Journal of Physics and Chemistry of Solids,2007,68:119-123.
    [22]Sorli B, Podlecki J, Combette P, et al. PbTiO3 thin films grown by mixed reactive thermal co-evaporation[J]. Journal of Crystal Growth,2007,304: 383-387.
    [23]Kenji M, Daisuke M, Takahiro K, et al. Effect of adding various metal oxides on low-temperature sintered Pb(Zr,Ti)O3 ceramics[J]. Jpn J Phys,1996, 35(9B):5188-5191
    [24]张福学,孙康.压电学[M].北京:国防工业出版社,1984
    [25]Du H L, Qu S B, Che J, et al. The effect of composition on microstructure and properties of PNW-PMS-PZT ceramics for high-power piezoelectric transformer [J]. Materials Science and Engineering A,2005,393:36-41
    [26]Fasasi A.Y, Balogun F A, Fasasi M K, et al. Thermo luminescence properties of barium titanate prepared by solid-state reaction[J]. Sensors and Actuators A,2007,135:598-604
    [27]Won H I, Nersisyan H H, Won C W. Low temperature solid-phase synthesis of tetragonal BaTiO3 powders and its characterization [J]. Materials Letters, 2007,61:1492-1496
    [28]Simon-Seveyrat L, Hajjaji A, Emziane Y, et al. Re-investigation of synthesis of BaTiO3 by conventional solid-state reaction and oxalate coprecipitation route for piezoelectric applications [J]. Ceramics International,2007,33:35-40
    [29]Jung W S, Kim J H, Kim H T, et al. Effect of temperature schedule on the particle size of barium titanate during solid-state reaction[J]. Materials Letters, 2010,64 (2):170-172
    [30]Patil D R, Lokare S A, Devan R S, et al. Studies on electrical and dielectric properties of Ba1-xSrxTiO3[J]. Materials Chemistry and Physics,2007,104: 254-257
    [31]Kong L B, Zhang T S, Ma J, et al. Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique[J]. Progress in Materials Science,2008,53:207-322
    [32]Stojanovic B D, Simoes A Z, Paiva-Santos C O. Mechanochemical synthesis of barium titanate[J]. Journal of the European Ceramic Society.2005 25:1985-1989
    [33]Yuji H, Cihangir D, Kimiyasu S, et al. Densification and grain growth in BaTiO3 ceramics fabricated from nanopowders synthesized by ball-milling assisted hydrothermal reaction[J]. Journal of the European Ceramic Society, 2008,28:599-604
    [34]Kong L B, Zhu W, Tan O K, Preparation and characterization of Pb(Zro.52Tio.48)03 ceramics from high-energy ball milling powders[J]. Mater. Lett.,2000,42 (4),232-239
    [35]Kong L B, Ma J, Huang H, et al. Barium titanate derived from mechanochemically activated powders[J]. J. Alloy Compd.,2002,337:226.
    [36]吴其胜,高树军,张少明等.BaTiO3纳米晶机械力化学合成[J].无机材料学报,2002,17(4):719-725
    [37]Yanez C G, Benitez C, Balmori-Ramirez H. Mechanical activation of the synthesis reaction of BaTiO3 from a mixture of BaCO3 and TiO2 powders[J]. Ceram. Int.,2000,26,271.
    [38]VanHal H A M, Groen W A, Maassen S, et al. Mechanochemical synthesis of BaTiO3, Bi0.5Na0.5TiO3 and Ba2NaNb5O15 dielectric ceramics[J]. J. Euro. Ceram. Soc.,2001,21,1689.
    [39]蒲永平,段卫东,吴建鹏.机械力化学法制备钛酸钡粉体[J].陶瓷科学与技术,2004, (1):20-22
    [40]许红娅,王芬,解宇星.机械力化学法合成无机材料的研究进展[J].化工新型材料,2009,37(6):7-9
    [41]Srimala S, Ahmad F M N, Zainal A A, et al. Structural and electrical characteristic of crystalline barium titanate synthesized by low temperature aqueous method[J]. Journal of materials processing technology.2008, 195:171-177
    [42]Yu P F, Wang X,Cui B. Preparation and characterization of BaTiO3 powders and ceramics by the sol-gel process using organic monoacid as surfactant [J]. Scripta Materialia.2007,57:623-626
    [43]Wang L Q, Liu L, Xue D F. Wet routes of high purity BaTiO3 nanopowders[J]. Journal of Alloys and Compounds.2007,440:78-83
    [44]Mandal T K. Characterization of tetragonal BaTiO3 nanopowders prepared with a new soft chemistry route[J]. Materials Letters.2007,61:850-854
    [45]Fan G N, Huang L X, He X G. Synthesis of single-crystal BaTiO3 nanoparticles via a one-step sol-precipitation route[J]. J. Cryst. Growth,2005, 279:489.
    [46]Jiang B, Peng J L, Bursill L A, et al. Defect structure and physical properties of barium titanate ultra-fine particles[J]. Physica B,2000,291:203-212
    [47]Mao C L, Dong X L, Zeng T. Synthesis and characterization of nanocrystalline barium strontium titanate powders prepared by citrate precursor method[J]. Materials Letters,2007,61:1633-1636
    [48]Wang X Y, Lee B I, Hu M. Nanocrystalline BaTiO3 powder via a sol process ambient conditions[J]. Journal of the European Ceramic Society,2006,26(12): 2319-2326
    [49]Pramanik N C, Seok S I, Ahn B Y. Wet-chemical synthesis of crystalline BaTiO3 from stable chelated titanium complex:Formation mechanism and dispersibility in organic solvents[J]. Journal of Colloid and Interface Science, 2006,300:569-576
    [50]Sushmita G, Subrata D, Amarnath S. Synthesis of barium titanate nanopowder by a soft chemical process[J]. Materials Letters.2007, 61:538-541
    [51]Gissibl B, Wilhelm D, Wurschum R, et al. Electron microscopy of nanocrystalline BaTiO3[J]. Nano Structured Mater.,1997,9:619.
    [52]Khollam Y B, Deshpande A S, Potdar H S, et al. A self-sustaining acid-base reaction in semi-aqueous media for synthesis of barium titanyl oxalate leading to BaTiO3 powders[J]. Mater. Lett.,2002,55(3):175-181.
    [53]朱启安,宋方平,陈万平等.反相微乳液法合成钛酸钡纳米棒[J].高等学校化学学报,2006,27(9):1612-1614
    [54]孙旭峰,朱启安,赵蓉芳等.微乳液-共沉淀-煅烧法制备不同形貌的钛酸钡纳米粒子[J].硅酸盐学报,2008,36(6):751-756
    [55]Chen W P, Zhu Q A. Synthesis of barium strontium titanate nanorods in reverse microemulsion[J]. Materials Letters,2007,61:3378-3380
    [56]Lu W, Quilitz M, Schmidt H. Nanoscaled BaTiO3 powders with a large surface area synthesized by precipitation from aqueous solutions:Preparation, characterization and sintering[J]. Journal of the European Ceramic Society. 2007,27:3149-3159
    [57]Ramajo L, Parra R, Reboredo M, Zaghete M, et al. Heating rate and temperature effects on the BaTiO3 formation by thermal decomposition of (Ba, Ti) organic precursors during the Pechini process [J]. Materials Chemistry and Physics,2008,107:110-114
    [58]Pramanik N C, Seok S I, Ahn B Y. Wet-chemical synthesis of crystalline BaTiO3 from stable chelated titanium complex:Formation mechanism and dispersibility in organic solvents[J]. Journal of Colloid and Interface Science, 2006,300:569-576
    [59]Gaikwad A B, Navale S C, Samuel V, et al. A co-precipitation technique to prepare BiNbO4,MgTiO3 and Mg4Ta2O9 powders [J]. Materials Research Bulletin,2006,41:347-353
    [60]Hwu J M, Yu W H, Yang W C, et al. Characterization of dielectric barium titanate powders prepared by homogeneous precipitation chemical reaction for embedded capacitor applications [J]. Materials Research Bulletin,2005,40: 1662-1679
    [61]Wada S, Chikamori H, Noma T, et al. Synthesis of nm-sized barium titanate crystallites using a new LTDS method and their characterization[J]. J. Mater. Sci.,2000,35:4857.
    [62]Srimala S, Ahmad F M N. Structural and electrical characteristic of crystalline barium titanate synthesized by low temperature aqueous method[J]. Journal of materials processing technology,2008,195:171-177
    [63]Viviani M, Buscaglia M T, Testino A, et al. The influence of concentration on the formation of BaTiO3 by direct reaction of TiCl4 with Ba(OH)2 in aqueous solution[J]. J. Eur. Ceram. Soc.,2003,23(9):1383-1390.
    [64]Mao C L, Dong X L, Zeng T. Synthesis and characterization of nanocrystalline barium strontium titanate powders prepared by citrate precursor method[J]. Materials Letters.2007,61:1633-1636
    [65]Jayanthi S, Kutty T R N. Extended phase homogeneity and electrical properties of barium calcium titanate prepared by the wet chemical methods [J]. Materials Science and Engineering B,2004,110:202-212
    [66]Hou R Z, Ferreira P, Vilarinho P M. A facile route for synthesis of mesoporous barium titanate crystallites [J]. Microporous and Mesoporous Materials,2008,110:392-396
    [67]Lee B I, Wang X, Kwon S J, et al. Synthesis of high tetragonality nanoparticle BaTiO3[J]. Microelectronic Engineering,2006,83:463-470
    [68]Gao L J, Liu X L, Chen J F. Grain-controlled barium titanate ceramics prepared from high-gravity reactive precipitation process powder[J]. Materials Chemistry and Physics.2004,88:27-31
    [69]Shen Z G, Chen J F, Yun J. Preparation and characterizations of uniform nanosized BaTiO3 crystallites by the high-gravity reactive precipitation method[J]. Journal of Crystal Growth,2004,267:325-335
    [70]Chen J F, Shen Z G, Liu F T, et al. Preparation and properties of barium titanate nanopowder by conventional and high-gravity reactive recipitation methods[J]. Scripta Materialia,2003,49:509-514
    [71]丁士文,王静,秦江雷,李希茂.纳米钦酸钡基介电材料的水热合成、结构与性能[J].中国科学,2001,31(6):525-529
    [72]Chen K Y, Chen Y W. Preparation of barium titanate ultrafine particles from rutile titania by a hydrothermal conversion[J]. Powder Technology,2004, 141(1-2):69-74.
    [73]Xu H R, Gao L, Guo J K. Preparation and characterizations of tetragonal barium titanate powders by hydrothermal method[J]. J. Eur. Ceram. Soc.,2002, 22(7):1163-1170.
    [74]Xu H R, Gao L. Hydrothermal synthesis of high-purity BaTiO3 powders: control of powder phase and size, sintering density, and dielectric properties [J]. Materials Letters,2004,58(10):1582-1586.
    [75]Yuji H, Cihangir D, Kimiyasu S, et al. Densification and grain growth in BaTiO3 ceramics fabricated from nanopowders synthesized by ball-milling assisted hydrothermal reaction[J]. Journal of the European Ceramic Society. 2008,28:599-604
    [76]Razak K A, Asadov A, Gao W. Properties of BST ceramics prepared by high temperature hydrothermal process[J]. Ceramics International.2007,33(8): 1495-1502
    [77]Hou B, Xu Y, Wu D, et al. Preparation and characterization of single-crystalline barium strontium titanate nanocubes via solvothermal method[J]. Powder Technology.2006,170:26-30
    [78]Bocquet J F, Chhor K, Pommier C. Barium titanate powders synthesis from solvothermal reaction and supercritical treatment[J]. Materials Chemistry and Physics,1999,5757:273-280
    [79]Sahoo, Tripathy S K, Mohapatra M, Anand S, et al. X-ray diffraction and microstructural studies on hydrothermally synthesized cubic barium titanate from TiO2-Ba(OH)2-H2O system[J]. Materials Letters,2007,61: 1323-1327
    [80]Yan T, Liu X L, Wang N R, et al. Synthesis of monodispersed barium titanate nanocrytals-hydrothermal recrystallization of BaTiO3 nanospheres[J]. Journal of Crystal Growth,2005,281:669-677
    [81]Choi G J, Kim H S, Cho Y S. BaTiO3 particles prepared by microwave-assisted hydrothermal reaction using titanium acylate precursors [J]. Mater. Lett.,1999,41(3):122.
    [82]Newalkar B L, Komarneni S, Katsuki H. Microwave hydrothermal synthesis and characterization of barium titanate powders[J]. Materials Research Bulletin.2001,36 (13-14):2347-2355.
    [83]Khollam Y B, Deshpande A S, Patil A J, et al. Microwave-hydrothermal synthesis of equi-axed and submicron-sized BaTiO3 powders[J]. Mater. Chem. Phys.,2001,71(9):304-308.
    [84]Fang C Y, Wang C P, Anton V. et al. Microwave synthesis of nano-sized barium titanate[J]. Materials Letters,2008,62(17-18):2551-2553
    [85]郭立童,罗宏杰,郭立芝.钛酸钡粉体的微波水热合成[J].中国陶瓷,2005,41(1):12-16
    [86]Anuradha T V, Ranganathan S, Mimani T. et al. Combustion synthesis of nanostructured barium titanate[J], Scripta Mater.,2001,44(8-9):2237.
    [87]Vinothini V, Paramanand S, Balasubramanian M. Synthesis of barium titanate nanopowder using polymeric precursor method[J]. Ceramics International, 2006,32:99-103
    [88]罗绍华,唐子龙,尧巍华等.低温燃烧合成钛酸钡及其陶瓷介电性能研究[J].硅酸盐学报,2003,31(6),560.
    [89]Lee S J, Son T W, Yun J D, et al. Preparation of BaTiO3 nanoparticles by combustion spray pyrolysis[J]. Mater. Lett.2004,58:2932-2936.
    [90]Sushmita G, Subrata D, Amarnath S, et al. Synthesis of barium titanate nanopowder by a soft chemical process[J]. Materials Letters,2007,61: 538-541
    [91]Jiang W Q, Gong X Q, Chen Z Y, et al. Preparation of barium strontium titanate Ba1-xSrxTiO3 (x:0-0.2) single-crystal nanorods by a novel combined method[J]. Ultrasonics Sonochemistry,2007,14:208-212
    [92]Poth J, Haberkorn R, Beck H P. Combustion-synthesis of SrTiO3 Part Ⅱ. Sintering behaviour and surface characterization[J]. Journal of the European Ceramic Society,2000,20:715-723
    [93]Licheri R, Fadda S, Orr R. Self-propagating high-temperature synthesis of barium titanate and subsequent densification by spark plasma sintering (SPS) [J]. Journal of the European Ceramic Society.2007,27:2245-2253
    [94]Mandal T K. Characterization of tetragonal BaTiO3 nanopowders prepared with a new soft chemistry route[J]. Materials Letters,2007,61:850-854
    [95]Mao C L, Dong X L, Zeng T, et al. Formation and control of mechanism for the preparation of ultra-fine barium strontium titanate powders by the citrate precursor method[J]. Materials Research Bulletin,2007,42:1602-1610
    [96]Markovic S, Mitric M, Starcevic G, et al. Ultrasonic de-agglomeration of barium titanate powder[J]. Ultrasonics Sonochemistry 2008,15:16-20
    [97]Kwon S W, Yoon D H. Tetragonality of nano-sized barium titanate powder prepared with growth inhibitors upon heat treatment[J]. J. Eur. Ceram.Soc., 2007,27:247-252.
    [98]Jung D S, Hong S K, Cho J S, et al. Nano-sized barium titanate powders with tetragonal crystal structure prepared by flame spray pyrolysis[J]. Journal of the European Ceramic Society.2008,28:109-115
    [99]Purwanto A, Wang W N, Wuled L I, et al. Formation of BaTiO3 nanoparticles from an aqueous precursor by flame-assisted spray pyrolysis[J]. Journal of the European Ceramic Society,2007,27:4489-4497
    [100]Tao J T, Ma J F, Wang Y G, et al. Synthesis of barium titanate nanoparticles via a novel electrochemical route[J]. Materials Research Bulletin,2008,43 (3):639-644
    [101]Suzuki K, Kijima K. Preparation and dielectric properties of polycrystalline films with dense nano-structured BaTiO3 by chemical vapor deposition using inductively coupled plasma[J]. Vacuum,2006,80:519-529
    [102]Suzuki K, Kijima K. Well-crystallized barium titanate nanoparticles prepared by plasma chemical vapor deposition[J]. Materials Letters,2004,58:1650-1654
    [103]Suzuki K, Kijima K. Phase transformation of BaTiO3 nanoparticles synthesized by RF-plasma CVD[J]. Journal of Alloys and Compounds.2006, 419:234-242
    [104]张中太,罗绍华,唐子龙等.制备四方相钛酸钡纳米粉体的方法.中国,02123922.3[P].2003-01-15.
    [105]高濂,徐华蕊,刘会冲等.纳米级四方相钛酸钡粉体的制备方法.中国,01113299.Ⅹ[P].2003-10-08.
    [106]丁士文,柴佳,冯春燕等.低温固态反应制备纳米钛酸钡及掺杂固溶体的方法.中国,200610012645.2[P].2006-11-22.
    [107]陈建峰,刘晓林.一种制备四方相钛酸钡粉体的方法.中国,200410062206.3[P].2006-11-08.
    [108]史江平,刘建睿,刘胜绪.电子功能材料—高纯钛酸钡超细粉的湿法制备.中国,01131782.5[P].2003-05-14.
    [109]Lee K K, Kang Y C, Jung K Y, et al. Preparation of nano-sized BaTiO3 particle by citric acid-assisted spray pyrolysis[J]. Journal of Alloys and Compounds,2005,395:280-285
    [110]Chang S J, Liao W S, Ciou C J, et al. An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability [J]. Journal of Colloid and Interface Science, 2009,329(2):300-305
    [111]Guo Z, Lee S E, Kim H,et al. Fabrication, characterization and microwave properties of polyurethane nanocomposites reinforced with iron oxide and barium titanate nanoparticles [J]. Acta Materialia,2009,57(1):267-277
    [112]Chaisan W, Yimnirun R, Ananta S. Preparation and characterization of ceramic nanocomposites in the PZT-BT system[J]. Ceramics International, 2009,35(1):121-124
    [113]Habiba A, Haubner R, Stelzer N. Effect of temperature, time and particle size of Ti precursor on hydrothermal synthesis of barium titanate[J]. Materials Science and Engineering B,2008,152(1-3):60-65
    [114]Cruz D, Pfeiffer H, Bulbulian S. Synthesis of Li2MO3 (M=Ti or Zr) by the combustion method[J]. Solid State Sciences.2006,8:470-475
    [115]Jung Y J, Lim D Y, Nho J S, et al. Glycothermal synthesis and characterization of tetragonal barium titanate. Journal of Crystal Growth,2005, 274:638-652
    [116]Shrabanee S, Choudhary R N P, Pramanik P. Synthesis and characterization of nanostructured ferroelectric compounds [J]. Materials Letters,2004,58: 3486-3490
    [117]Mullens J, Van W K, Vanhoyland G, et al. The use of TG-MS, TG-FTIR, HT-XRD and HT-DRIFT for the preparation and characterization of PbTiO3 and BaTiO3[J]. Thermochimica Acta,2002,392-393:29-35
    [118]Liu L F, Ning T Y, Ren Y, et al. Synthesis, characterization, photoluminescence and ferroelectric properties of PbTiO3 nanotube arrays [J]. Materials Science and Engineering:B,2008,149(1):41-46
    [119]Chen T Y, Chu S Y, Chang R C, et al. The characteristics of low-temperature sintered PbTiO3based ceramics and its applications[J]. Sensors and Actuators A,2007,134134:452-456
    [120]Udomporn A, Ananta S. Effect of calcination condition on phase formation and particle size of lead titanate powders synthesized by the solid-state reaction[J]. Materials Letters,2004,58 (7-8):1154-1159
    [121]Jennifer S F, Jennifer S Z, David P, et al. Synthesis of PbTiO3 Ceramics Using Mechanical Alloying and Solid State Sintering[J]. Journal of Solid State Chemistry,2004,177:3553-3559.
    [122]Biljana D S. Mechanochemical synthesis of ceramic powders with perovskite structure[J]. Journal of Materials Processing Technology,2003,143-144: 78-81
    [123]Hsu M C, Leu I C, Sun Y M, et al. Template Synthesis and Characterization of PbTiO3 Nano-wire Arrays from Aqueous Solution[J]. Journal of Solid State Chemistry,2006,179:1421-1425.
    [124]Rujiwatra A, Jongphiphan J, Ananta S. Stoichiometric synthesis of tetragonal phase pure lead titanate under mild chemical conditions employing NaOH and KOH[J]. Materials Letters,2005,59(14-15):1871-1875
    [125]Lu H H, Wu Y P. Synthesis of submicron PbTiO3 particles by the water-in-oil emulsion process[J]. Materials Letters,1996,27 (1-2):13-16
    [126]Chen X L, Fan H Q, Liu L J. Synthesis and crystallization behavior of lead titanate from oxide precursors by a hydrothermal route[J]. Journal of Crystal Growth,2005,284:434-439.
    [127]Gelabert M C, Gersten B L, Riman R E. Hydrothermal Synthesis of Lead Titanate from Complexed Precursor Solutions[J]. Journal of Crystal Growth, 2000,211(1-4):497-500
    [128]Cho S B, Noh J S, Malgorzata M L, et al. Low temperature hydrothermal synthesis and formation mechanisms of lead titanate (PbTiO3) particles using tetramethylammonium hydroxide:thermodynamic modelling and experimental verification[J]. Journal of the European Ceramic Society,2003, 23 (13):2323-2335
    [129]Tapala S, Thammajak N, Laorattanakul P, et al. Effects of microwave heating on sonocatalyzed hydrothermal preparation of lead titanate nanopowders[J]. Materials Letters,2008,62(21-22):3685-3687
    [130]Lee C Y, Tai N H, Sheu H S, et al. The Formation of Perovskite PbTiO3 Powders by Sol-gel Process[J]. Materials Chemistry and Physics,2006,97: 468-471.
    [131]Deng Y, Wang J L, Zhu K R, et al. Synthesis and Characterization of Single-crystal PbTiO3 Nanorods[J]. Materials Letters,2005,59:3272-3275.
    [132]Tartaj J, Ferna'ndez J F, Villafuerte-Castrejon M E. Preparation of PbTiO3 by seeding-assisted chemical sol-gel[J]. Materials Research Bulletin,2001, 36:479-486
    [133]Bao D H, Yao X, Naoki W, et al. Structural, dielectric, arid ferroelectric properties of PbTiO3 thin films by a simple sol-gel technique[J]. Materials Science and Engineering B,2002,94:269-274
    [134]Zeng X H, Liu Y, Wang X Y, et al. Preparation of nanocrystalline PbTiO3 by accelerated sol-gel process[J]. Materials Chemistry and Physics,2002,77: 209-214
    [135]Giridharan N V, Jayavel R. Fabrication of ferroelectric (Pb,Ba)TiO3 thin films by sol-gel technique and their characterization[J]. Materials Letters,2002,52 (1-2):57-61
    [136]阮圣平,王兢,张力,等.纳米晶钛酸铅的合成及其介电性能的研究[J].功能材料与器件学报,2003,9(2):139-142
    [137]Fang J, Wang J, Gan L M, et al. Comparative study on phase development of lead titanate powders[J]. Materials Letters,2002,52(4-5):304-312
    [138]Xia Z G, Wang L, Yan W X, et al. Comparative investigation of structure and dielectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) and 10% PbZrO3-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (65/35) ceramics prepared by a modified precursor method[J]. Materials Research Bulletin,2007,42(9): 1715-1722
    [139]Lam K H, Li K, Chan H L W. Lead magnesium niobate-lead titanate fibres by a modified sol-gel method[J]. Materials Research Bulletin,2005,40(11): 1955-1967
    [140]Cheng J R, Zhu W Y, Li N, Cross L E. Fabrication and characterization of xBiGaO3-(1-x)PbTiO3:a high temperature reduced Pb-content piezoelectric ceramic[J]. Materials Letters,2003,57(13-14):2090-2094
    [141]Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics [M]. London and New York:Academic Press,1971:135-183.
    [142]Scott J F. Ferroelectric memories [J]. Science,1989,246:1400-1405.
    [143]Chandatreya S S, Fulrath R M, Pask J A. Reaction mechanisms in the formation of PZT solid solutions [J]. J Am Ceram Soc,1981,64(7):422-425.
    [144]Kakegawa K, Mohri J, Takahashi T, et al, A compositional fluctuation and properties of Pb(Zr, Ti)O3 [J]. Solid State Commun,1977,24(11):769-772.
    [145]Xu G, Weng W, Yao J, et al. Low temperature synthesis of lead zirconate titanate powder by hydroxide co-precipitation [J]. Microelectron Eng,2003, 66:566-568.
    [146]Guoa L, Lyashchenkob A, Dong X L. Synthesis of zirconium-rich PZT ceramics by hydroxide co-precipitation under hot-press[J]. Mater. Lett.,2002, 56:849-855
    [147]Mu G H, Yang S Y, Li J F, et al. Synthesis of PZT nanocrystalline powder by a modified sol-gel process using water as primary solvent source [J]. Journal
    of Materials Processing Technology,2007,182(1-3):382-386
    [148]Sangsubun C, Watcharapasorn A, Jiansirisomboon S. Densification and microstructure of lead zirconate titanate ceramics fabricated from a triol sol-gel powder[J]. Curr. Appl. Phys.,2008,8:61-65
    [149]Linardos S, Zhang Q, Alcock J R. Preparation of sub-micron PZT particles with the sol-gel technique[J]. J.Eur. Ceram. Soc.,2006,26:117-123
    [150]Tahar R B H, Tahar N B H, Salah A B. Preparation and characterization of PZT solid solutions via sol-gel process[J]. J.Cryst. Growth,2007,307:40-43
    [151]Kakegawa K, Arai K, Sasaki Y, et al. Homogeneity and properties of lead zirconate titanate prepared by a combination of thermal spray decomposition method with solid-phase reaction [J]. J Am Ceram Soc,1988,71(1):49-52.
    [152]Leite E R, Cerqueira M, Perazoli L A, et al, Mechanism of phase formation in Pb(ZrxTi1-x)O3 synthesized by a partial oxalate method [J]. J Am Ceram Soc, 1996,7(6):1563-1568.
    [153]Xu G, Ren Z, Weng W, et al. Synthesis of perovskite Pb(Zr0.52Ti0.48)O3(PZT) powders by a modifies coprecipitation method [J]. Key Eng Mater,2005, 280-283:627-630.
    [154]徐刚,韩高荣,翁文剑,等.两步沉淀法合成钙钛矿相锆钛酸铅粉体及其相形成机制[J].硅酸盐学报,2007,35(1):26-30.
    [155]Tipakontitikul R, Ananta S. A modified two-stage mixed oxide synthetic route to lead zirconate titanate powders[J]. Materials Letters,2004,58(3-4): 449-454
    [156]Kong L B, Zhu W, Tan O K. Preparation and characterization of Pb(Zr0.52Ti0.48)O3 ceramics from high-energy ball milling powders[J]. Materials Letters,2000,42(4):232-239
    [157]Praveenkumar B, Sreenivasalu G, Kumar H H, et al. Size effect studies on nanocrystalline Pb(Zr0.53Ti0.47)O3 synthesized by mechanical activation route[J]. Materials Chemistry and Physics,2009,117(2-3):338-342
    [158]Traianidis M, Courtois C, Leriche A. Mechanism of PZT crystallisation under hydrothermal conditions:Development of a new synthesis route[J]. Journal of the European Ceramic Society,2000,20(16):2713-2720
    [159]Mazumder R, Sen A.'Ultra'-low-temperature sintering of PZT:A synergy of nano-powder synthesis and addition of a sintering aid [J]. Journal of the European Ceramic Society,2008,28(14):2731-2737
    [160]Deng Y, Liu L, Cheng Y, et al. Hydrothermal synthesis and characterization of nanocrystalline PZT powders[J]. Materials Letters,2003,57(11):1675-1678
    [161]Deng Y, Li L, Cheng Y, Nan C W, et al. Hydrothermal synthesis and characterization of nanocrystalline PZT powders [J]. Materials Letters,2003, 57(11):1675-1678
    [162]Yang X Q, Zhao Y N, Yang Y, et al. Facile hydrothermal preparation of furcated PZT nanowhiskers[J]. Materials Letters,2007,61(16):3462-3465
    [163]Pan Q T, Jia J F, Huang K, et al. Polymer-assistant hydrothermal synthesis of lead zirconate titanate nanorolls and their strong blue-light emission[J]. Materials Science and Engineering:B,2006,133(1-3):226-230
    [164]Harada S, Dunn S. Low temperature hydrothermal routes to various PZT stoichiometries[J]. J Electro ceram,2008,20:65-71
    [165]Mandal T K, Ram S. Synthesis of PbZr0.7Ti0.3O3 nanoparticles in a new tetragonal crystal structure with a polymer precursor[J]. Materials Letters, 2003,57(16-17):2432-2442
    [166]Nersisyan H H, Yang B S, Kim B B, et al. Combustion synthesis and characterization of spherical PZT powder[J].Materials Letters,2005, 59(8-9):1066-1070
    [167]Smitha P, Pandey P K,Gajbhiye N S. Polyol based auto-combustion synthesis of nanostructured PZT and its characterization [J]. Materials Chemistry and Physics,2008,109(2-3):500-505
    [168]Jha P, Arya P R, Ganguli A K. Dielectric properties of lead zirconium titanates with nanometer size grains synthesized by the citrate precursor route [J]. Materials Chemistry and Physics,2003,82 (2):355-361
    [169]Chaisan W, Yimnirun R, Ananta S, et al. Dielectric properties of solid solutions in the lead zirconate titanate-barium titanate system prepared by a modified mixed-oxide method[J]. Materials Letters,2005,59 (28):3732-3737
    [170]Ee L S, Wang J, Ng S C, et al. Low temperature synthesis of PZT powders via microemulsion processing[J]. Materials Research Bulletin,1998,33(7): 1045-1055
    [171]Xu Z J, Chu R Q, Li G R, et al. Preparation of PZT powders and ceramics via a hybrid method of sol-gel and ultrasonic atomization[J]. Materials Science and Engineering B,2005,117(2):113-118
    [172]Sahoo B, Jaleel V A, Panda P K. Development of PZT powders by wet chemical method and fabrication of multilayered stacks/actuators [J]. Materials Science and Engineering:B,2006,126(1):80-85
    [173]Das R N, Pathak A, Saha S K, et al. Preparation, characterization and property of fine PZT powders from the poly vinyl alcohol evaporation route[J]. Materials Research Bulletin,2001,36(9):1539-1549
    [174]Emerson R C, Edson R L, Elson L. Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method[J]. Journal of Alloys and Compounds,2009,469(1-2):523-528
    [175]Han Y H, Ishii M, Uekawa N, et al. Preparation of homogeneous Pb(ZrxTi1-x)O3 by a rapid-quenching technique and its compositional fluctuation[J]. Scripta Materialia,2007,56:9-12
    [176]Rabindra N D, Ranjan K P, Panchanan P. A novel chemical route for the preparation of nanocrystalline PZT powder[J]. Materials Letters,2000,45(6): 350-355
    [177]Suzuki K, Kijima K. Phase transformation of BaTiO3 nanoparticles synthesized by RF-plasma CVD[J]. Journal of Alloys and Compounds,2006, 419:234-242
    [178]Chen W P, Shen Z J, Guo S S, et al. A strong correlation of crystal structure and Curie point of barium titanate ceramics with Ba/Ti ratio of precursor composition[J]. Physica B,2008,403:660-663
    [179]Viswanath R N, Ramasamy S. Preparation and Ferroelectric Phase Transition Studies of Nanocrystalline BaTiO3[J]. Nano-Structured Materials.1997,8(2): 155-162.
    [180]武汉大学主编.分析化学(第四版),北京:高等教育出版社,2004,185
    [181]Yan T, Shen Z G, Zhang W W, Chen J F. Size dependence on the ferroelectric transition of nanosized BaTiO3 particles[J]. Materials Chemistry and Physics, 2006,98:450-455
    [182]Badheka P, Qi L, Lee B I. Phase transition in barium titanate nanocrystals by chemical treatment[J]. Journal of the European Ceramic Society,2006,26: 1393-1400
    [183]Kwon S W, Yoon D H. Effects of heat treatment and particle size on the tetragonality of nano-sized barium titanate powder[J]. Ceramics International, 2007,33:1357-1362
    [184]钟维烈,艾树涛,姜斌.钛酸钡和钛酸铅的两个临界尺寸[J].无机材料学报,2002,17(5):1010-1012
    [185]Rudiger A, Waser R. Size effects in nanoscale ferroelectrics[J]. Journal of Alloys and Compounds,2008,449 (1):2-6 (Jan)
    [186]苏毅,杨亚玲,李国斌.钛酸钡陶瓷粉体的合成技术[J].化工进展,2001,(2):48-51
    [187]Peng Z F, Chen Y. Preparation of BaTiO3 nanoparticles in aqueous solutions[J]. Microelectronic Engineering,2003,66 (1-4):102-106
    [188]Yan T, Shen Z G, Chen J F, et al. Size dependence on the ferroelectric transition of nanosized BaTiO3 particles[J]. Materials Chemistry and Physics. 2006,98:450-455
    [189]岳振星,周济,张洪国,等.柠檬酸盐凝胶的自燃烧与铁氧体纳米粉合成[J].硅酸盐学报,1999,27(4):466-470
    [190]汪奇林,黄志良,梁邦兵.钛酸铅(PT)粉体的快速合成与表征[J].武汉化工学院学报,2005,27(4):41-43
    [191]Zuo R H, Li L T, Ji C X, et al. A new type of dielectric composite with X7R characteristic and high dielectric constant[J]. Materials Letters, 2001,48(1):26-30
    [192]邸云萍,夏雯,徐利华等,碱熔Nb2O5湿化学法合成Pb(Mg1/3Nb2/3)O3纳米粉体[J].稀有金属材料与工程,2007,36(S1):102-104
    [193]陈克丕,张孝文,PMN-PNN-PT单晶的固相法生长研究[J].稀有金属材料与工程,2007,36(S1):439-441
    [194]朱超锋,郝虎在,田玉明等,PZN-PMN-BF电陶瓷及压电变压器的研究[J]. 太原理工大学报,2006,37(3):302-305
    [195]王歆,庄志强,齐雪君,PMN-PT驰豫铁电粉体的熔胶-凝胶法制备及其性质[J].无机材料学报,2002,(2):306-310
    [196]徐家跃,驰豫铁电晶体PZNT生长的几个关键问题[J].硅酸盐学报,2004,32(3):378-383
    [197]王歆,庄志强,PMN-PT驰豫铁电粉体和薄膜的无机盐-凝胶法制备[J].硅酸盐学报,2002,30(S1):68-71
    [198]Nn Ohzuku T,Ueda A,Yamamoto N,et al. Factor affecting the capacity retention of lithium-ion cells[J].Power Sources,1995,142(5):1431-1435
    [199]Wang G X, Bradhurst D H, Dou S X, et al. Spinel Li[Li1/3/Ti5/3]O4 for lithium-ion batteries[J]. Journal of Power Sources,1999,83(12):156-161
    [200]Nn Zaghib K, Simoneau M, Armand M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries [J]. Journal of Power Sources,1999(81/82):300-305
    [201]Jansen A N, Kahaian A J, Kepler K D, et al. Development of a high-power lithium-ion battery [J]. Power Sources,1999,81-82:902-905
    [202]唐志远,武鹏,杨景雁,等.电极材料Li4Ti5O12的研究进展[J].电池,2007,37(1):73-75
    [203]Nn Prosini P P, Petruci L. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications [J]. J Solid State Ionics,2001,144:185-192
    [204]Nn Hao Y J, Lai Q Y, Lu J Z, et al. Synthesis and characterization of spinel Li4Ti5O12anode material by oxalic acid-assisted sol-gel method [J]. Jouranl of Power Sources,2006,158:1358-1364
    [205]刘东强,赖琼钰,郝艳静,等.Li4Ti5O12溶胶-凝胶法合成及其机理研究[J].无机化学学报,2004,7:829-834

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700