Pseudomonas putida DLL-E4对硝基苯酚代谢基因簇的克隆、功能分析和表达调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对硝基苯酚(p-Nitrophenol, PNP)是重要的环境污染物,进入环境的PNP会长期残留在深层土壤和地下水中,对动植物和人类的健康造成严重的危害。大量能够降解PNP的微生物已被分离,同时在微生物许多种属中PNP代谢途径已经得到相应的研究,但与PNP降解基因和调控机制相关的报道甚少,特别是在革兰氏阴性菌中。
     本研究以本实验室分离的PNP降解菌株Pseudomonas putida DLL-E4为材料,通过SEFA PCR扩增偏三苯酚1,2-双加氧酶基因(pnpC)的侧翼序列,获得12kb的片段。序列分析发现该片段中存在10个参与PNP代谢的ORF,并预测了每个ORF的功能。这10个ORF可以分为三个部分,第一部分是催化PNP脱硝基形成对苯二酚的相关基因,包括pnpA和pnpB,这一部分是整个PNP降解基因簇的关键部分;第二部分是与对苯二酚开环及催化开环产物进入TCA循环的相关基因,包括pnpC1、pnpC2、pnpD、 pnpE、pnpC、pnpX1和pnpX2;第三部分是调控PNP降解基因簇表达的基因,只有属于LysR家族的调控基因pnpR。因此我们认为克隆到的片段包含了P. putida DLL-E4代谢PNP的所有必需的功能基因,这些基因在基因组中成簇排列,因此把克隆得到的12kb的片段命名为对硝基苯酚基因簇(pnp基因簇)。
     与革兰氏阳性菌中双组分脱硝基单加氧酶不同,P. putida DLL-E4中的PNP4-单加氧酶(PnpA)是单组分酶,由基因pnpA编码。我们利用表达载体pET-29a将pnpA在大肠杆菌BL21中进行了表达。通过Ni-NTA亲和层析以及分子筛纯化了PnpA,在此基础上对PnpA6勺酶学特性进行了研究。PnpA催化PNP生成苯醌和亚硝酸根。PnpA的活性依赖于FAD和NADH。 PnpA催化PNP的最佳反应条件为pH8.0,温度20℃。PnpA对PNP的活力是2.57±0.04U·-mg-1, Km值为302μM。过渡金属离子(Cu2+、Ni2+、 Zn2+、Fe2+、Fe3+和Cr3+)对PnpA活性有明显抑制作用,金属螯合剂(EDTA, EGTA,1,10-phenanthrolin)对PnpA活性没有影响,结合文献报道,我们认为PnpA是非金属酶。构建了PnpA的系统发育树,PnpA在进化上和其它黄素单加氧酶相距较远,可能有不同的起源。通过同源重组,敲除了P. putida DLL-E4中pnpA,敲除菌株丧失了降解PNP能力,说明DLL-E4中只存在一个PNP单加氧酶即PnpA。
     P. putida DLL-E4中对苯二酚双加氧酶复合体是由a亚基(PnpC1)和β亚基(PnpC2)组成的。分别表达PnpCl和PnpC2,纯化后在体外重聚试验中未能获得具有对苯二酚开环活性的酶复合体。通过多顺反子表达载体成功获得了有活性的对苯二酚双加氧酶复合体(PnpC1C2BL21)。PnpC1C2BL21能够催化对苯二酚生成4-羟基粘康酸半醛(4-hydroxymuconic semialdehyde),但对其它酚类化合物没有催化能力。与来源于原始菌株DLL-E4的对苯二酚双加氧酶复合体(PnPC1C2DLL-E4)相比,PnpC1C2BL21存在活性不稳定,瞬间催化的问题。在排除大量因素后,结合PnpC1C2DLL-E4的催化对苯二酚不同的动力学行为和活性特性,我们推测造成该现象的原因是不同宿主表达的对苯二酚双加氧酶复合体在结构上存在差异。P. putida DLL-E4中的PnpC1C2DLL.E4催化对苯二酚的活性存在产物(4-羟基粘康酸半醛)抑制,该抑制能够在高浓度底物条件下被解除,此时催化反应的Vmax不变。因此认为该抑制为竞争性抑制。
     4-硝基儿茶酚只有在PNP存在的条件下,形成混合底物才能够被DLL-E4代谢。通过酶活分析和突变子降解试验,我们认为P. putida DLL-E4中pnp基因簇不仅参与PNP的代谢,同时也参与菌株降解和利用4-硝基儿茶酚的过程。P. putida DLL-E4中的pnp基因簇混合了菌株代谢不同物质(PNP和4-硝基儿茶酚)的基因,是一个杂合的代谢基因簇。
     pnp基因簇中的调控基因pnpR敲除突变子DLL-△pnpR丧失了对苯二酚降解能力,但是仍可以降解PNP,并积累对苯二酚。通过RT-PCR证明Pnp(?)(?)是在转录水平上调控pnp基因簇中的对苯二酚代谢相关基因(pnpC1C2DE),对pnp基因簇中的脱硝基相关基因(onpBA)无调控作用,PnpR调控方式为正调控。对PnpR氨基酸进行序列分析,发现PnpR在N端存在DNA结合保守域(HTH),在C端存在诱导物作用保守域。结合PnpR的序列分析信息和在P. putida DLL-E4中的生物学功能,把PnpR归类为LysR家族调控蛋白。
     pnpA替换为氨基糖苷磷酸转移酶Ⅱ基因(aph2II,卡那霉素抗性基因)的突变菌株DLL-A-aph,必须在PNP诱导条件下才能够在含有10mg/L的卡那霉素的无机盐培养基中生长,说明了pnpA的表达需要PNP的诱导。经RT-PCI(?)验证,该诱导是在转录水平上控制pnpA的表达。RT-PCR结果揭示了DLL-E4不能够单独降解4-硝基儿茶酚的原因是其不能够诱导pnpA的转录。
p-Nitrophenol (PNP) is widely used in the manufacture of pesticides,dyes, explosives, and drug intermediates. PNP can also accumulate in soil as a result of the hydrolysis of several organophosphorous insecticides, such as parathion or methyl parathion. Due to its potential toxicity and persistence in the environment, PNP was listed on the "Priority Pollutants List"by US EPA.
     Pseudomonas putida DLL-E4has the ability to grow on PNP as the sole source of carbon, nitrogen, and energy, and hydroquinone was detected as the key intermediate in PNP degradation. In this study, we cloned a pnp gene cluster involved in the catabolism of PNP from DLL-E4. The functions of five genes in the cluster were verified by expression in E. coli and gene deletion in DLL-E4.
     A12,540bp DNA fragment around the conserved region was obtained after several rounds of SEFA PCR. Ten open reading frames (ORFs) were found in the fragment and they were annotated on the basis of BLAST analysis. The10ORFs can be divided into three groups by functional analysis. The pnpC1C2DE genes were proposed to be involved in hydroquinone catabolism by DLL-E4. pnpA and pnpB were determined to encode PNP4-monooxygenase and p-benzoquinone reductase, they could oxidatively remove the nitro group from PNP. pnpR was located at the beginning of the hydroquinone degradation gene cluster of DLL-E4and proposed to be encode a LysR regulatory protein. The12kb fragment named as pnp gene cluster, contained all essential genes involved in PNP degradation.
     PnpA was overexpressed in E. coli and purified to apparent homogeneity by Ni-NTA affinity chromatography and size exclusion Sephadex G-200column. PnpA is a flavin adenine dinucleotide-dependent single-component PNP4-monooxygenase that converts PNP to para-benzoquinone. The optimal reaction temperature of PnpA is20℃The optimal reaction pH of PnpA is8.0. Purified PnpA had a specific activity of2.57±0.04U mg-1for PNP. The Km value of PnpA for PNP was302μM. PnpA activity is NADH and FAD dependent. NADH can be replaced by NADPH with the lower efficiency. PnpA transformed4-NC with a lower specific activity (1.17±0.032U·mg-1) than that of PNP transformation. No activity was observed by PnpA on o-nitrophenol,m-nitrophenoland2,4-Dinitrophenol. Transition metal (Cu2+、Ni2+、Zn2+、Fe2+、Fe3+and Cr3+)inhibit the activity of PnpA and metal chelators(EDTA, EGTA,1,10-phenanthrolin)has no effect on PnpA activity, these results indicate that PnpA is non-metallic enzyme. To elucidate the phylogenetic relationships among the functionally identified nitroarene monooxygenases, PnpA and other flavoprotein monooxygenases were used to construct the distance neighbor-joining tree. The results indicated that PnpA belongs to a different group of flavin monooxygenases.
     PnpCl and PnpC2from the pnp gene cluster in DLL-E4are the oc-(PnpCl) and P-subunits (PnpC2) of hydroquinone dioxygenase. Purified PnpC1and PnpC2failed to reconstitute into active complex in vitro. Most of separately expressed PnpC2existed as inclusion bodies, and a mixture of separately expressed and purified PnpC1and PnpC2showed no activity on hydroquinone. A poly-cistronic plasmid pET-pnpC1C2containing pnpCl and pnpC2was constructed to express the dual component hydroquinone dioxygenase complex (PnpC1C2BL21)-Size-exclusion spectrometry revealed that hydroquinone dioxygenase is a α2and β2heterotetramer of112.4kDa. The reconstitution of a hydroquinone dioxygenase complex in vitro failed. Most of separately expressed PnpC2existed as inclusion bodies, and a mixture of separately expressed and purified PnpC1and PnpC2showed no activity on hydroquinone. A poly-cistronic plasmid pET-pnpC1C2containing pnpCl and pnpC2was constructed to express the dual component hydroquinone dioxygenase complex (PnpC1C2BL21).Hydroquinone is transformed to4-hydroxymuconic semialdehyde by PnpC1C2BL21under aerobic conditions. The expressed PnpC1C2BL21seemed to be unstable when acting on hydroquinone since complete conversion of hydroquinone was only possible by repeated addition of fresh PnpC1C2BL21.This phenomenon had not been observed from PnpC1C2DLL-E4of P. putida DLL-E4. Since a large number of factors have been studied, we believe that different behavior of the two complexes is caused by differences in protein structure. The activity of PnpC1C2DLL-E4is greatly inhibited by the product (4-hydroxymuconic semialdehyde). The inhibition can be overcome by increasing the substrate (hydroquinone) concentration, and the maximum velocity (Vmax) of the reaction is unchanged. These results suggest that the product inhibit the activity of PnpC1C2DLL-E4by competitive inhibition.
     In an attempt to identify the function of pnpR, a pnpR deletion mutant, strain DLL-ApnpR was constructed by homologous recombination in DLL-E4. Activity assay showed that DLL-△pnpR could still degradate PNP with nitrite release, but lost the ability to degrade hydroquinone. The accumulated product was determined by HPLC analysis to be hydroquinone. RT-PCR analysis showed that the pnpCl can be transcripted under the presence of PnpR. These results indicated that PnpR positively controls the transcription of hydroquinone catabolic genes but not pnpA in pnp gene cluster. The analysis of amino acid sequence shows that PnpR contains a conserved helix-turn-helix DNA binding motif, as well as a LysR substrate-binding domain.
     Since PnpA can transform4-nitrocatechol to1,2,4-trihydroxybenzene, and PnpC converted1,2,4-trihydroxybenzene to maleylacetate, the pnp gene cluster from DLL-E4must contain the essential genes to catalyze the degradation of4-nitrocatechol; however, DLL-E4did not degrade4-nitrocatechol when it was used as the single substrate, but degraded up to92%of4-nitrocatechol when mixed with PNP. The RT-PCR analysis showed that4-nitrocatechol cannot act as an inductor for inducible transcription of the pnp gene cluster in DLL-E4.
引文
1. 何强,井文涌,王翊亭.环境学导论[M].北京:清华大学出版社,2004.
    2. 李顺鹏.环境生物学[M].北京:中国农业出版社,2002.
    3. Toxicological profile for nitrophenols:2-nitrophenol and 4-nitrophenol[M]. Agency for Toxic Substances and Disease Registry, U. S. Public Health Service,1992.
    4. 中国环境年鉴[M].中国环境年鉴社,1990-1995.
    5. Spain, J. C., J. B. Hughes, H.-J. Knackmuss. Biodegradation Nitroaromatic Compounds and Explosives[M]. New York:LEWIS PUBLISHERS,2000.
    6. Rieger, D., H.-J. Knackmuss. Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil[M]. New York: Plenum Publishing Corp,1995.
    7. Karim, K., S. K. Gupta. Effects of alternative carbon sources on biological transformation of nitrophenols[J]. Biodegradation,12(5):353-360.
    8. 王竞,周集体,张劲松等.假单胞菌JX165及其完整细胞对硝基苯的好氧降解[J].中国环境科学,2001,21(2):144-147.
    9. 张锦,李圭白,马军.含酚废水的危害及处理方法的应用特点[J].化学工程师,2001,83(23):36-37.
    10. Spain, J. C., D. T. Gibson. Pathway for Biodegradation of p-Nitrophenol in a Moraxella sp.[J]. Appl Environ Microbiol,1991,57(3):812-819.
    11. Schmidt, S. K, K. M. Scow, M. Alexander. Kinetics ofp-nitrophenol mineralization by a Pseudo-monas sp.:effects of second substrates[J]. Appl Environ Microbiol,1987,53(11):2617-2623.
    12.卢涛.短乳杆菌(Lactobacillus brevis LT-3)降解邻硝基苯酚的特性研究[D].成都:四川大学,2002.
    13.余宗莲,饶兵,樊玉清等.废水中硝基酚类化合物生物降解的研究进展[J].环境工程学报,2007,1(7):1-9.
    14.刘智.甲基甲基对硫磷降解菌DLL-1(Pseudomonas putida)的生物学特性、降解基因克隆及基因工程菌的构建[D].南京:南京农业大学,2002.
    15. Oren, A., P. Gurevich, Y. Henis. Reduction of Nitro substituted Aromatic Compounds by the Halophilic Anaerobic Eubacteria Haloanaerobium praevalens and Sporohalobacter marismortui[J]. Appl Environ Microbiol,1991,57(11):3367-3370.
    16. Melgoz, R. M., G. Buitron. Degradation of p-nitrophenol in a batch biofilter under sequential anaerobic/aerobic environments[J]. Water Science & Technology,2001,44(4):151-157.
    17. Boyd, S. A., D. R. Shelton, D. Berry, et al. Anaerobic biodegradation of phenolic compounds in digested sludge[J]. Applied Environ Microbiol,1983,46(1):50-54.
    18. Donlon, B. A., G. Lettinga. Continuous detoxification, transform ation and degradation of Nitroph-enols in upflow anaerobic sludge blanket(UASB)reactors[J]. Biotechnology and Bioengineering, 1996,51(4):439-449.
    19. Simpson, J. R., W. C. Evans. The metabolism of nitrophenols by certain bacteria[J]. J Biochem 1953,55:xxiv.
    20. Spain, J. C., O. Wyss, D. T. Gibson. Enzymatic oxidation of p-nitrophenol[J]. Biochem Biophys Res Commun,1979,88(2):634-641.
    21. Prakash, D., A. Chauhan, R. K. Jain. Plasmid-encoded degradation of p-nitrophenol by Pseudomonas cepacia[J]. Biochem Biophys Res Commun,1996,224(3):375-381.
    22. Hanne, L. F., L. L. Kirk, S. M. Appel. Degradation and induction specificity in actinomycetes that degrade p-nitrophenol[J]. Applied Environ Microbiol,1993,59(10):3505-3508.
    23. Spain, J. C., D. T. Gibson. Pathway for biodegradation of para-nitrophenol in a Moraxella sp. [J]. Appl Environ Microbiol,1991,57(3):812-819.
    24. Jain, R. K., H.-J. Dreisbach, J. C. Spain. Biodegradation of p-Nitrophenol via 1,2,4-Benzenetriol by an Arthrobacter sp.[J]. Appl Environ Microbiol,1994,60(8):3030-3032.
    25. Chauhan, A., A. K. Chakraborti, R. K. Jain. Plasmid-Encoded Degradation of p-Nitrophenol and 4-Nitrocatechol by Arthrobacter protophormiae[J]. Biochem Biophys Res Commun,2000, 270(3):733-740.
    26. Mitra, D., C. S. Vaidyanathan. A new 4-nitrophenol 2-hydroxylase from a Nocardia sp. [J]. Biochem Int,1984,8(5):609-615.
    27. Kitagawa, W., N. Kimura, Y. Kamagata. A Novel p-Nitrophenol Degradation Gene Cluster from a Gram-Positive Bacterium, Rhodococcus opacus SAO101[J]. J Bacteriol,2004,186(15):4894-4902.
    28. Bang, S. W., Molecular analysis of p-nitrophenol degradation by Pseudomonas sp. strain ENV2030[D]. New Jersey:The State University of New Jersey,1997.
    29.张俊杰.Pseudomonas sp. WBC-3菌株分解代谢4-硝基酚的机理研究[D].武汉:中国科学院研究生院(武汉病毒研究所),2006.
    30. Zhang, J.J., H. Liu, X. Y. Zhang, et al. Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3 [J]. J. Bacteriol,2009,191(8):2703-2710.
    31. Lynda L P, J. Z. Gerben. Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase[J]. J Bacteriol,2007,189:7563-7572.
    32. Takeo, M. T. Yasukawa, Y. Abe, et al. Cloning and characterization of a 4-nitrophenol Hydrox-ylase gene cluster from Rhodococcus sp. PN1 [J]. J Biosc Bioeng,2003,95(2):139-145.
    33. Takeo, M., M. Murakami, S. Niihara, et al. Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. strain PN1:characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression[J]. J Bacteriol,2008,190(22):7367-7374.
    34. Roldan, M. D., R. Blasco, F. J. Caballero, et al. Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus[J]. Arch Microbiol,1998,169(1):36-42.
    35. Gibson, J., C. S. Harwood. Metabolic diversity in aromatic compound utilization by anaerobic microbes[J]. Annu Rev Microbiol,2002,56:345-369.
    36. Nishino, S. F., J. C. Spain, L. A. Belcher, C. D. Litchfield. Chlorobenzene degradation by bacteria isolated from contaminated groundwater[J]. Appl Environ Microbiol,1992,58:1719-1726.
    37. Deo, P. G., N. G. Karanth. Biodegradation of hexachlorocyclohexane isomers in soil and food environment[J]. Crit Rev Microbiol,1994,20:57-78.
    38. Diaz, E., A. Ferrandez,M. A. Prieto, J. L. Garcia. Biodegradation of aromatic compounds by Escherichia coli[J]. Microbiol Mol Biol Rev,2001,65:523-569.
    39. Ellis, L. B., B. K. Hou, W. Kang, L. P. Wackett. The University of Minnesota Biocatalysis/ Biodegradation Database:post-genomic datamining[J].2003, Nucleic Acids Res,31:262-265.
    40. Dua, M., A. Singh, N. Sethunathan, A. K. Johri. Biotechnology and bioremediation:successes and limitations[J]. Appl Microbiol Biotechnol,2002,59:143-152.
    41. Sticher, P., M. C. M. Jaspers, K. Stemmler, H. Harms, A. J. B. Zehnder, J. R. van der Meer. Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples[J]. Appl Environ Microbiol,1997, 63:4053-4060.
    42. Tropel, D., J. R. van der Meer. Bacterial transcriptional regulators for degradation pathways of aromatic compounds[J]. Microbiol Mol Biol Rev,2004,68:474-500.
    43. Henikoff, S., G W. Haughn, J. M. Calvo, J. C. Wallace. A large family of bacterial activator proteins[J]. Proc Natl Acad Sci,1988,85:6602-6606.
    44. Schell, M. A. Molecular biology of the LysR family of transcriptional regulators[J]. Annu Rev Microbiol,1993,47:597-626.
    45. Diaz, E., M. A. Prieto. Bacterial promoters triggering biodegradation of aromatic pollutants[J]. Curr Opin Biotechnol,2000,11:467-475.
    46. Ohtsubo, Y.,M. Delawary, K. Kimbara,M. Takagi, A. Ohta, Y. Nagata. BphS, a key transcriptional regulator of bph genes involved in polychlorinated biphenyl/biphenyl degradation in Pseudomonas sp. KKS102[J]. J Biol Chem,2001,276:36146-36154.
    47. Rothmel, R. K., T. L. Aldrich, J. E. Houghton, W. M. Coco, L. N. Ornston, A. M. Chakrabarty. Nucleotide sequencing and characterization of Pseudomonas putida catR:a positive regulator of the catBC operon is a member of the LysR family[J]. J Bacteriol,1990,172:922-931.
    48. Leveau, J. H. J., F. Konig, H.-P. Fuchslin, C. Werlen, J. R. van der Meer. Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate[J]. Mol Microbiol,1999,33:396-406.
    49. Jones, R. M., V. Pagmantidis, P. A. Williams, sal genes determining the catabolism of salicylate esters are part of a supraoperonic cluster of catabolic genes in Acinetobacter sp. strain ADP1[J]. J Bacteriol,2000,182:2018-2025.
    50. Coco, W. M., R. K. Rothmel, S. Henikoff, A. M. Chakrabarty. Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida[J]. J Bacteriol,1993,175:417-427.
    51. Leveau, J. H. J., J. R. van der Meer. The tfdR gene product can successfully take over the role of the insertion element-inactivated TfdT protein as a transcriptional activator of the tfdCDEF gene cluster, which encodes chlorocatechol degradation in Ralstonia eutropha JMP134(pJP4) [J]. J Bacteriol, 1996,178:6824-6832.
    52. Rome'ro-Arroyo, C. E., M. A. Schell, G. L. Gaines, E. L. Neidle. catM encodes a LysR-type transcriptional activator regulating catechol degradation in Acinetobacter calcoaceticus[J]. J Bacteriol,1995,177:5891-5898.
    53. Schell, M. A., E. F. Poser. Demonstration, characterization, an mutational analysis of NahR protein binding to nah and sal promoters[J]. J Bacteriol,1989,171:837-846.
    54. Lonetto, M. A., V. Rhodius, K. Lamberg, P. Kiley, S. Busby, C. Gross. Identification of a contact site for different transcription activators in region 4 of the Escherichia coli RNA polymerase σ70 subunit[J]. J Mol Biol,1998,284:1353-1365.
    55. Bundy, B. M., L. S. Collier, T. R. Hoover, E. L. Neidle. Synergistic transcriptional activation by one regulatory protein in response to two metabolites[J]. Proc Natl Acad Sci,2002,99:7693-7698.
    56. Sarah E. Maddocksl, C. F. Petra Oyston. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins[J]. Microbiology,2008,154:3609-3623.
    57. Perez-Rueda, E., J. Collado-Vides. The repertoire of DNA binding transcriptional regulators in Escherichia coli K-12[J]. Nucleic Acids Res,2000,28:1838-1847.
    58. Huffman, J. L., R. G. Brennan. Prokaryotic transcription regulators:more than just the helix-turn-helix motif[J]. Curr Opin Struct Biol,2002,12:98-106.
    59. Aravind, L., V. Anantharaman, S. Balaji, M. M. Babu, L. M. Iyer. The many faces of the helix-turn-helix domain:transcription regulation and beyond[J]. FEMS Microbiol Rev,2005, 29:231-262.
    60. Belitsky, B. R., P. J. Janssen, A. L. Sonenshein. Sites required for GltC-dependent regulation of Bacillus subtilis glutamate synthase expression[J]. J Bacteriol,1995,177:5686-5695.
    61. Lochowska, A., R. Iwanicka-Nowicka, D. Plochocka, M. M. Hryniewicz. Functional dissection of the LysR-type CysB transcriptional regulator Regions important for DNA binding, inducer response, oligomerization and positive control[J]. J Biol Chem,2001,276:2098-2107.
    62. Porrua, O., M. Garci'a Jaramillo, E. Santera, F. Govantes,. The LysR-type regulator AtzR binding site:DNA sequences involved in activation, repression and cyanuric acid-dependent repositioning[J]. Mol Microbiol,2007,66:410-427.
    63. Muraoka, S., R. Okumura, N. Ogawa, T. Nonaka, K. Miyashita, T. Senda.Crystal structure of a full-length LysR-type transcriptional regulator, CbnR:unusual combination of two subunit forms and molecular bases for causing and changing DNA bend[J]. J Mol Biol,2003,328:555-566.
    64. Akakura, R., S. C.Winans.. Constitutive mutations of theOccR regulatory protein affect DNA bending in response to metabolites released from plant tumors[J]. J Biol Chem.2002, 277:5866-5874.
    65. van Keulen, G., A. N. Ridder, L. Dijkhuizen, W. G. Meijer. Analysis of DNA binding and transcriptional activation by the LysRtype transcriptional regulator CbbR of Xanthobacter flavus[J\. J Bacteriol,2003,185:1245-1252.
    66. Akakura, R., S. C. Winans. Constitutive mutations of the OccR regulatory protein affect DNA bending in response to metabolites released from plant tumors[J]. J Biol Chem,2002, 277:5866-5874.
    67. Hindle, Z., C. P. Smith. Substrate induction and catabolite repression of the Streptomyces coelicolor glycerol operon are mediated through the GylR protein[J]. Mol Microbiol,1994,12:737-745.
    68. Maloy, S. R., W. D. Nunn. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12[J]. J Bacteriol,1982,149:173-180.
    69. Nasser, W., S. Reverchon, J. Robert-Baudouy. Purification and functional characterization of the KdgR protein, a major repressor of pectinolysis genes of Erwinia chrysanthemi[J]. Mol Microbiol, 1992,6:257-265.
    70. Sunnarborg, A., D. Klumpp, T. Chung, D. C. LaPorte. Regulation of the glyoxylate bypass operon: cloning and characterization of iclR[J]. J Bacteriol,1990,172:2642-2649.
    71. Gerischer, U., A. Segura, L. N. Ornston. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter[S]. J Bacteriol,1998,180:1512-1524.
    72. Ferrandez, A., J. L. Garcia, E. Diaz. Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12[J]. J Bacteriol, 1997,179:2573-2581.
    73. Romero-Steiner, S., R. E. Parales, C. S. Harwood, J. E. Houghton. Characterization of the pcaR regulatory gene from Pseudomonas putida, which is required for the complete degradation of p-hydroxybenzoate[J]. J Bacteriol,1994,176:5771-5779.
    74. Trautwein, G., U. Gerischer. Effects exerted by transcriptional regulator PcaU from Acinetobacter sp. strain ADP1[J]. J Bacteriol,2001,183:873-881.
    75. DiMarco, A. A., L. N. Ornston. Regulation of p-hydroxybenzoate hydroxylase synthesis by PobR bound to an operator in Acinetobacter calcoaceticus[J]. J Bacteriol,1994,176:4277-4284.
    76. Guo, Z., J. E. Houghton. PcaR-mediated activation and repression of pca genes from Pseudomonas putida are propagated by its binding to both the 35 and the 10 promoter elements[J]. Mol Microbiol, 1999,32:253-263.
    77. Torres, B., G. Porras, J. L. Garci'a, and E. Di'az. Regulation of the mhp cluster responsible for 3-(3-hydroxyphenyl)propionic acid degradation in Escherichia coli[J]. J Biol Chem,2003, 278:27575-27585.
    78. Popp, R., T. Kohl, P. Patz, G. Trautwein, U. Gerischer. Differential DNA binding of transcriptional regulator PcaU from Acinetobacter sp. strain ADP1[J]. J Bacteriol,2002,184:1988-1997.
    79. Zhang, R. G., Y. Kim, T. Skarina, S. Beasley, R. Laskowski, C. Arrowsmith, A. Edwards, A. Joachimiak, A. Savchenko. Crystal structure of Thermotoga maritima 0065, a member of the IclR transcriptional factor family[J]. J Biol Chem,2002,277:19183-19190.
    80. Hughes, E. J., M. K. Shapiro, J. E. Houghton, L. N. Ornston. Cloning and expression of pca genes from Pseudomonas putida in Escherichia coli[J]. J Gen Microbiol,1988,134:2877-2887.
    81. Gallegos, M. T., C. Michan, J. L. Ramos. The XylS/AraC family of regulators[J]. Nucleic Acids Res,1993,21:807-810.
    82. Luthy, R., I. Xenarios, D. Eisenberg. Profile analysis:detection of distantly related proteins[J]. Proc Natl Acad Sci,1994.84:4355-4358.
    83. Mari'A-Trinidad, G., R. Schleif, A. Bairoch,K Hofmann, J. L. Ramos. AraC/XylS family of transcriptional regulators[J]. Microbiol Mol Biol Rev,1997,61:393-410.
    84. Bertani, I., M. Kojic, V. Venturi. Regulation of the p-hydroxybenzoic acid hydroxylase gene (pobA) in plant-growth-promoting Pseudomonas putida WCS358[J]. Microbiology,2001,147:1611-1620.
    85. Gallegos, M. T., S. Marque's, J. L. Ramos. Expression of the TOL plasmid xylS gene in Pseudomonas putida occurs from a σ70-dependent promoter or fromσ70-andσ54-dependent tandem promoters according to the compound used for growth[J]. J Bacteriol,1996,178:2356-2361.
    86. Brennan, R. G., B. W. Matthews. The helix-turn-helix DNA binding motif[J]. J Biol Chem,1989, 264:1903-1906.
    87. Wintjens, R., M. Rooman. Structural classification of HTH DNAbinding domains and protein-DNA interaction modes[J]. J Mol Biol,1996,262:294-313.
    88. Prieto, M. A., J. L. Garci'a. Identification of a novel positive regulator of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli[J]. Biochem Biophys Res Commun, 1997,232:759-765.
    89. Prieto, M. A., J. L. Garci'a. Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli[S]. J Biol Chem,1994,269:22823-22829.
    90. Providenti, M. A., R. C. Wyndham. Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway[J]. Appl Environ Microbiol,2001,67:3530-3541.
    91. Roth, J. R., J. G. Lawrence, M. Rubenfield, S. Kieffer-Higgins, G. M. Church. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium[2]. J Bacteriol,1993, 175:3303-3316.
    92. Ramos, J. L., C. Michan, F. Rojo, D. Dwyer, K. Timmis. Genetic analysis of the effector binding site of xylS, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon[J]. J Mol Biol 1990,211:373-382.
    93. Ferrandez, A., B. Minambres, B. Garcia, E. R. Olivera, J. M. Luengo, J. L.Garcia, E. Diaz. Catabolism of phenylacetic acid in Escherichiacoli. aerobic hybrid pathway[J]. J Biol Chem,1998, 273:25974-25986.
    94. Haydon, D. J., J. R. Guest. A new family of bacterial regulatory proteins[J]. FEMS Microbiol Lett, 1991,63:291-295.
    95. Se'bastien, R., A. Derouaux, F. Giannotta, J. Dusart. Subdivision of the Helix-Turn-Helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies[J]. J Biol Chem, 2002,277:12507-12515.
    96. van Aalten, D. M., C. C. DiRusso, J. Knudsen, and R. K. Wierenga. Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold[J]. EMBO J, 2000,19:5167-5177.
    97. van der Meer, J. R. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds[J]. Antonie Leeuwenhoek,1997,71:159-178.
    98. Rigali, S., A. Derouaux, F. Giannotta, J. Dusart. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies[J]. J Biol Chem,2002, 277:12507-12515.
    99. Watanabe, T., R. Inoue, N. Kimura, K. Furukawa. Versatile transcription of biphenyl catabolic bph operon in Pseudomonaspseudoalcaligenes KF707[J]. J Biol Chem,2000,275:31016-31023.
    100. Ferra'ndez, A., J. L. Garcia, E. Di'az. Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli[J]. J Biol Chem,2000, 275:12214-12222.
    101. Morett, E., L. Segovia. The σ54 bacterial enhancer-binding protein family:mechanism of action and phylogenetic relationship of their functional domains[J]. J Bacteriol,1993,175:6067-6074.
    102. Sasse-Dwight, S., J. D. Gralla. Probing the Escherichia coli glnALG upstream activation mechanism in vivo[J]. Proc Natl Acad Sci,1988,85:8934-8938.
    103. Buck, M., W. Cannon. Activator-independent formation of a closed complex between σ54-holoenzyme and nifH and nifU promoters of Klebsiella pneumoniae[J]. Mol Microbiol,1992, 6:1625-1630.
    104. Pe'rez-Mart(?)n, J., V. de Lorenzo. In vitro activities of an Nterminal truncated form of XylR, a a54-dependent transcriptional activator of Pseudomonas putida[J]. J Mol Biol,1996,258:575-587.
    105. Wikstro'm, P., E. O'Neill, L. C. Ng, V. Shingler. The regulatory Nterminal region of the aromatic-responsive transcriptional activator DmpR constrains nucleotide-triggered multimerisation[J]. J Mol Biol,2001,314:971-984.
    106. Ramos, J. L., S. Marque's, K. N. Timmis. Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators[J]. Annu Rev Microbiol,1997,51:341-373.
    107. Ramos, J. L., C. Micha'n, F. Rojo, D. Dwyer, K. Timmis. Genetic analysis of the effector binding site of xylS, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon[J]. J Mol Biol,1990,211:373-382.
    108. Arenghi, F. L., P. Barbieri, G. Bertoni, V. de Lorenzo. New insights into the activation of o-xylene biodegradation in Pseudomonas stutzeri OX1 by pathway substrates[J]. EMBO Rep,2001, 2:409-414.
    109. Garmendia, J., D. Devos, A. Valencia, V. de Lorenzo. A la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer-binding protein XylR to non-natural effectors[J]. Mol Microbiol,2001,42:47-59.
    110. Pe'rez-Marti'n, J., V. de Lorenzo. The amino-terminal domain of the prokaryotic enhancer-binding protein XylR is a specific intramolecular repressor[J]. Proc Natl Acad Sci,1995,92:9392-9396.
    111. Lee, S. Y., A. de La Torre, D. Yan, S. Kustu, B. T. Nixon, D. E. Wemmer. Regulation of the transcriptional activator NtrCl:structural studies of the regulatory and AAA-ATPase domains[J]. Genes Dev,2003,17:2552-2563.
    112. Arenghi, F. L., P. Barbieri, G. Bertoni, V. de Lorenzo. Newinsights into the activation of o-xylene biodegradation in Pseudomonas stutzeri OX1 by pathway substrates[J]. EMBO Rep,2001, 2:409-414.
    113. Arenghi, F. L., D. Berlanda, E. Galli, G. Sello, P. Barbieri. Organization and regulation of meta cleavage pathway genes for toluene and o-xylene derivative degradation in Pseudomonas stutzeri OX1 [J]. Appl Environ Microbiol,2001,67:3304-3308.
    114. Pe'rez-Marti'n, J., and V. de Lorenzo. Physical and functional analysis of the prokaryotic enhancer of the σ54-promoters of the TOL plasmid of Pseudomonas putida. J Mol Biol,1996,258:562-574.
    1. 刘智.甲基甲基对硫磷降解菌DLL-1(Pseudomonas putida)的生物学特性、降解基因克隆及基因工程菌的构建[D].南京:南京农业大学,2002.
    2. 刘智,孙建春,李顺鹏.甲基对硫磷降解菌DLL-1的分离、鉴定及降解性研究.应用于环境生物学报,1999,5:147-150.
    3. 刘智,李顺鹏.甲基对硫磷降解菌DLL-1的诱变育种.土壤学报,2003,40(2):293-300.
    4. 刘智,洪青,张晓舟等.甲基对硫磷降解菌DLL-E4降解对-硝基苯酚特性.中国环境科学,2003,23(4):435-439.
    5. 邓海华.Pseudomonas putida DLL-E4对硝基苯酚降解相关基因的克隆及其功能分析[D].南京:南京农业大学,2006.
    6. J.萨姆布鲁克D.W.拉塞尔分子克隆实验指南(第三版)[M].北京:科学出版社,2002.
    7. Miller, S. A., D. D. Dykes, H. F. Polesky. A simple salting out procedure for extracting DNA from human nucleated cells [J]. Nucleic Acids Res,1988,16(3):1215-1220.
    8. Wang,S. M., J. He, Z. L. Cui. Self-Formed Adaptor PCR:a Simple and Efficient Method for Chromosome Walking[J]. Appl Environ Microbiol,2007,73(15):5048-5051.
    9. Zhang, J.J., H. Liu, X. Y. Zhang, et al. Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3[J]. J. Bacteriol,2009,191(8):2703-2710.
    10. Moonen, M. J., N. M. Kamerbeek, A. H. Westphal, et al. Elucidation of the 4-hydroxyacetophenone catabolic pathway in Pseudomonas fluorescens ACB[J]. J Bacteriol,2008,190(15):5190-5198.
    11.沈文静,张静,曹慧等.恶臭假单胞菌DLL-E4对硝基苯酚降解途径关键基因pnpC的突变分析研究[J].生态与农村环境学报,2008,(24):77-82.
    12. Spain, J. C., J. B. Hughes, H.-J. Knackmuss. Biodegradation Nitroaromatic Compounds and Explosives[M]. New York:LEWIS PUBLISHERS,2000.
    13. Vaillancourt, F. H., J. T. Bolin, L. D. Eltis. The ins and outs of ring-cleaving dioxygenases[J]. Crit Rev Biochem Mol Biol,2006,41(4):241-67.
    14. Lynda L P, J. Z. Gerben. Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase[J]. J Bacteriol,2007,189:7563-7572.
    15. Takeo, M. T. Yasukawa, Y. Abe, et al. Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1 [J]. J Biosc Bioeng,2003,95(2):139-145.
    16. Takeo, M., M. Murakami, S. Niihara, et al. Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. strain PN1:characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression[J]. J Bacteriol,2008,190(22):7367-7374.
    1. J.萨姆布鲁克,E.F.弗,T.曼尼阿蒂斯,分子克隆实验指南(第三版)[M].2002,北京:科学出版社.
    2. White, G.F., J. R. Snape, S. Nicklin. Biodegradation of glycerol trinitrate and pentaerythritol tetranitrate by Agrobacterium radiobacter[J]. Appl. Environ. Microbiol,1996,62:637-642.
    3. Horton, R. M., Z. L. Cai, N. Ho, et al. Gene splicing by overlap extension:tailor-made genes using the polymerase chain reaction[J]. Biotechniques,1990,8:528-535.
    4. Quandt, J., M. F. Hynes. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria[J]. Gene,1993,127:15-21.
    5. 刘智,洪青,张晓舟等.甲基对硫磷降解菌DLL-E4降解对硝基苯酚特性[J].中国环境科学,2003,23(4):435-439.
    6. 陈玉銮,孟伟,周祝敏等.卡尔曼滤波紫外光度法同时测定邻、间、对苯二酚[J].分析测试技术与仪器,1995,1(4):21-25.
    7. Structural Genomics Consortium, Architecture et Fonction des Macromol6cule Biologiques, Berkeley Structural Genomics Center, et al. Protein production and purification[J]. Nature Methods, 2008,5(2):135-146.
    8. Tenhaken, R., H. Ch. Salmen, W. Barz. Purification and characterization of pterocarp-an hydroxylase, a flavoprotein monooxygenase from the fungus Ascochyta rabid involved in pterocarpan phytoalexin metabolism[J]. Arch Microbiol,1991,155:353-359.
    9. Trower, M. K., R. M. Buckland, M. Griffin. Characterization of an FMN-containing cyclohexanone monooxygenase from a cyclohexane-grown Xanthobacter sp. [J]. Eur.I. Biochem,1989,181: 199-206.
    10. Van Berkel, W. J., N. M. Kamerbeek, M. W., Fraaije. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts[J]. J Biotechnol,2006,124:670-689.
    11. Zhang, J.J., H. Liu, X. Y. Zhang, et al. Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from Pseudomonas sp. strain WBC-3[J]. J. Bacteriol,2009,191(8):2703-2710.
    12. Lynda, L P, J. Z. Gerben. Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase[J]. J Bacteriol,2007,189:7563-7572.
    13. Jain, R. K., H.-J. Dreisbach, J. C. Spain. Biodegradation of p-Nitrophenol via 1,2,4-Benzenetriol by an Arthrobacter sp.[J]. Appl Environ Microbiol,1994,60(8):3030-3032.
    14. Takeo, M. T. Yasukawa, Y. Abe, et al. Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1[J]. J Biosc Bioeng,2003,95(2):139-145.
    15. Takeo, M., M. Murakami, S. Niihara, et al. Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. strain PN1:characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression[J]. J Bacteriol,2008,190(22):7367-7374.
    16. Wierenga, R. K., P. Terpstra, W. G. J. Hol. Prediction of the occurrence of the ADP-binding Pαβ-fold in proteins, using an amino acid sequence fingerprint[J]. J Mol Biol,1986,187:101-107.
    17. Eggink, G., H. Engel, G. Vriend, et al. Rubredoxin reductase of P.reudomonas oleovoruns. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints[J]. J Mol Biol,1990,212:135-142.
    18. Eppink, M. H., H. A. Schreuder, W. J. Van Berkel. Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding[J]. Protein Sci,1997,6:2454-2458.
    19. Jose. I. J., L. G. Jose, D. Eduardo. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440[J]. Environ Microbiol,2002,4:824-841.
    20. Kovach M. E., P. H. Elzer, D. S. Hill, et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes[J]. Gene,1995,166:175-176.
    21.蒋建东.多功能农药降解基因工程菌的构建及其环境释放安全评价研究[D].南京:南京农业大学,2006.
    22. Gross K., P. G. Seybold. Substituent effects on the physical properties and pKa of phenol[J]. Internati J QuantumChem,2001,85:569-579.
    23. Diaconu I., R. Girdea, C. Cristea, et al. Removal and recovery of some phenolic pollutants using liquid membranes[J]. Romanian Biotechnological Letters,2010,15(6):5702-5708
    24. Kulkarni M., A. Chaudhari. Biodegradation of p-nitrophenol by P. putida[J]. Biores Technol,2006, 97:982-988.
    25. Qiu X., Q. Zhong, M. Li, et al. Biodegradation of p-nitrophenol by methyl parathion-degrading Ochrobactrum sp. B2[J]. Int. Biodeterior. Biodegrad,2007,59:297-301.
    26. Cronin M., Y. Zhao, R. Yu, pH-dependence and QSAR analysis of the toxicity of phenols and anilines to Daphnia magna[J]. Environ Toxicol,2000,15:140-148.
    27. Saarikoski J., M. Viluksela. Relation between physicochemical properties of phenols and their toxicity and accumulation in fish[J]. Ecotoxicol Environ Saf,1982,6(6):501-512.
    28. Grzegorz, N.-J., J. Sawicki. Influence of pH on the toxicity of nitrophenols to Microtox and Spirotox tests[J]. Chemosphere,2003,52:249-252.
    29. Ohkuraa, K., H. Hori. Analysis of structure-permeability correlation of nitrophenolanalogues in newborn rat abdominal skin using semiempirical molecular orbital calculation[J].Bioorganic & Medicinal Chemistry,1999,7:309-314.
    30. Carrera J. M. Martin-Hernandez, M. E. Suarez-Ojeda, et al. Modelling the pH dependence of the kinetics of aerobic p-nitrophenol biodegradation[J]. Journal of Hazardous Materials,2011, 186:1947-1953.
    31. Vaillancourt, F. H., J. T. Bolin, L. D. Eltis. The ins and outs of ring-cleaving dioxygenases[J]. Crit Rev Biochem Mol Biol,2006,41(4):241-67.
    32. Xun L. Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100[J].JBacteriol,1996,178(9):2645-2649.
    33. Moonen, M. J. H., M.W. Fraaije, Y. M. C. M. Rietjens, et al. Flavoenzyme-catalyzed oxygenations and oxidations of phenolic compounds[J]. Adv. Synth. Catal.2002,344:1-13.
    34. Hernandez, D., A. Janmohamed, P. Chandan, et al. Organization and evolution of the flavincontainingmonooxygenase genes of human and mouse:identification of novel gene and pseudogene clusters[J]. Pharmacogenetics,2004,14:117-130.
    35. Yaffe, M. B. X-ray crystallography and structural biology [J]. Crit Care Med,2005, 33(12):435-440.
    36. Liu W. D, W. J. Shen, X. L. Zhao, et al. Expression, purification, crystallization and preliminary X-ray analysis of para-nitrophenol 4-monooxygenase from Pseudomonas putida DLL-E4[J]. Acta Cryst F,2009, F65(1):1004-1006.
    1. Spain, J. C., D. T. Gibson. Pathway for biodegradation of para-nitrophenol in a Moraxella sp. [J]. Appl Environ Microbiol,1991,57(3):812-819.
    2. Simpson, J. R., W. C. Evans. The metabolism of nitrophenols by certain bacteria[J]. Biochem J 1953,55:xxiv.
    3. Spain, J. C., O. Wyss, D. T. Gibson. Enzymatic oxidation of p-nitrophenol[J]. Biochem Biophys Res Commun.1979,88(2):634-641.
    4. Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440[J]. Environ Microbiol,2002, 12:799-808.
    5. Jose. I. J., L. G Jose, D. Eduardo. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440[J]. Environ Microbiol,2002,4:824-841.
    6. Nam, J.-W., H. Nojiri, H. Noguchi, et al. Purification and characterization of carbazole l,9a-dioxygenase, a three-component dioxygenase system of Pseudomonas resinovorans strain CA10[J]. Appl Environ Microbiol,2002,68:5882-5890.
    7. Moonen, M. J., S. A. Synowsky, W. A. Berg, et al. Hydroquinone dioxygenase from Pseudomonas fluorescens ACB:a novel member of the family of nonheme-iron(II)-dependent dioxygenases[J]. J Bacteriol,2008,190:5199-5209.
    8. Qi W, J. Jellison. Characterization of a transplasma membrane redox system of the brown rot fungus Gloeophyllum trabeum[J]. International Biodeterioration & Biodegradation,2004,53(1): 37-42.
    9. Vaillancourt, F. H., J. T. Bolin, L. D. Eltis. The ins and outs of ring-cleaving dioxygenases[J]. Crit Rev Biochem Mol Biol,2006,41(4):241-67.
    10. Harayama, S., M. Rekik, A. Wasserfallen, et al. Evolutionary relationships between catabolic pathways for aromatics:Conservation of gene order and nucleotide sequences of catechol oxidation genes of pWWO and NAH7 plasmids[J]. Molecular and General Genetics,1998,210(2):241-247.
    11. OECD SIDS 2002. Screening Information Data Set. CAS RN 123-31-9 1,4-Benzenediol[M]. United Nations Environment Programme Publications,2002.
    12. Whysner, J., L. Verna, J. C. English, et al. Analysis of studies related to tumorigenicity induced by hydroquinone[J]. Regul Toxicol Pharmacol,1995,21(1):158-176.
    13. Li, C., J. W. Schwabe, E. Banayo, et al. Coexpression of nuclear receptor partners increases their solubility and biological activities[J]. Proc Natl Acad Sci,1997,94:2278-2283
    14. O'Neill, H., S. G. Mayhew, G. Butler, Cloning and analysis of the genes for a novel electron-transferring flavoprotein from Megasphaera elsdenii[J]. J Biol Chem,1998,273:21015-21024.
    1. Simpson, J. R., W. C. Evans. The metabolism of nitrophenols by certain bacteria[J]. Biochem 1953, 55:xxiv.
    2. Kitagawa, W., N. Kimura, Y. Kamagata. A Novel p-Nitrophenol Degradation Gene Cluster from a Gram-Positive Bacterium, Rhodococcus opacus SAO101[J]. J Bacteriol,2004,186(15):4894-4902.
    3. 沈文静,张静,曹慧,崔中利.恶臭假单胞菌DLL-E4对硝基苯酚降解途径关键基因pnpC的突变分析研究.生态与农村环境学报.2008(24),77-82.
    4. Takeo, M. T. Yasukawa, Y. Abe, et al. Cloning and characterization of a 4-nitrophenolhydroxylase gene cluster from Rhodococcus sp. PN1[J]. J Biosc Bioeng,2003,95(2):139-145.
    5. Lynda L P, J. Z. Gerben. Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase[J]. J Bacteriol,2007,189:7563-7572.
    6. Chauhan, A., A. K. Chakraborti, R. K. Jain. Plasmid-Encoded Degradation of p-Nitrophenol and 4-Nitrocatechol by Arthrobacter protophormiae[J]. Biochem Biophys Res Commun.,2000, 270(3):733-740.
    7. Kitagawa, W., N. Kimura, Y. Kamagata. A Novel p-Nitrophenol Degradation Gene Cluster from a Gram-Positive Bacterium, Rhodococcus opacus SAO101[J]. J Bacteriol,2004,186(15):4894-4902.
    8. 沈文静.Pseudomonas putida DLL-E4对硝基苯酚代谢途径中1,2,4-苯三酚1,2-双加氧酶基因的功能分析[D].南京:南京农业大学,2008.
    1. 刘智.甲基甲基对硫磷降解菌DLL-1(Pseudomonas putida)的生物学特性、降解基因克隆及基因工程菌的构建[D].南京:南京农业大学,2002.
    2. Horton, R. M., Z. L. Cai, N. Ho, et al. Gene splicing by overlap extension:tailor-made genes using the polymerase chain reaction[J]. Biotechniques,1990,8:528-535.
    3. Quandt, J., M. F. Hynes. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria[J]. Gene,1993,127:15-21.
    4. 刘智,洪青,张晓舟等.甲基对硫磷降解菌DLL-E4降解对硝基苯酚特性[J].中国环境科学,2003,23(4):435-439.
    5. 陈玉銮,孟伟,周祝敏等.卡尔曼滤波紫外光度法同时测定邻、间、对苯二酚[J].分析测试技术与仪器,1995,1(4):21-25.
    6. Maddocks, S. E., P. C. F. Oyston. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins[J]. Microbiology,2008,154:3609-3623.
    7. Schell, M. A. Molecular biology of the LysR family of transcriptional regulators[J]. Annu Rev Microbiol,1993,47:597-626.
    8. Aravind, L., V. Anantharaman, S. Balaji, et al. The many faces of the helix-turn-helix domain: transcription regulation and beyond[J]. FEMS Microbiol Rev,2005,29:231-262.
    9. Viale, A. M., H. Kobayashi, T. Akazawa, et al. RcbR, a gene coding for a member of the LysR family of transcriptional regulators, is located upstream of the expressed set of ribulose 1,5-bisphosphate carboxylase/oxygenase gcnes in the photosynthetic bacterium Chromatium vinosum[J]. J Bacteriol,1991,173:5224-5229.
    10. Pe'rez-Rueda, E., J. Collado-Vides. Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteria[J]. J Mol Evol,2001,53:172-179.
    11. Paoli, G. C., F. Soyer, J. Shively, et al. Rhodobacter capsulatus genes encoding form Iribulose-1,5-bisphosphate carboxylase/oxygenase (cbbLS) and neighbouring genes were acquired by a horizontal gene transfer[J]. Microbiology,1998,144:219-227.
    12. Kukavica-Ibrulj, I. F., A. Sanschagrin, M. Peterson, et al. Functional genomics of PycR, a LysR family transcriptional regulator essential for maintenance of Pseudomonas aeruginosa in the rat lung[J]. Microbiology,2008,154:2106-2118.
    13. Oscar, H., A. J. Martinez-Costa, A. Miguel, et al. An Additional regulatory gene for actinorhodin production in streptomyces lividans involves a LysR-Type transcriptional regulator[J]. J Bacteriol, 1999,181(14):4353-4364.
    14. Tropel, D., Van der Meer., J. R. Bacterial transcriptional regulators for degradation pathways of aromatic compounds[J]. Microbiol Mol Biol Rev,2004,68:474-500.
    15. O'Leary, D. N., K. E. O'Connor, W. Duetz, et al. Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3[J]. Microbiology,2001,147:973-979.
    16. Collier, L. S., G. L. Gaines, E. L. Neidle. Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptionalactivator[J]. J Bacteriol,1998,180:2493-2501.
    17. Rome'ro-Arroyo, C. E., M. A. Schell, G. L. Gaines, et al. catM encodes a LysR-type transcriptional activator regulating catechol degradation in Acinetobacter calcoaceticus[J]. J Bacteriol,1995, 177:5891-5898.
    9. Simpson, J. R., W. C. Evans. The metabolism of nitrophenols by certain bacteria[J]. Biochem 1953, 55:xxiv.
    10. Kitagawa, W., N. Kimura, Y. Kamagata. A Novel p-Nitrophenol Degradation Gene Cluster from a Gram-Positive Bacterium, Rhodococcus opacus SAO101[J]. J Bacteriol,2004,186(15):4894-4902.
    11.沈文静,张静,曹慧,崔中利.恶臭假单胞菌DLL-E4对硝基苯酚降解途径关键基因pnpC的突变分析研究.生态与农村环境学报.2008(24),77-82.
    12. Takeo, M. T. Yasukawa, Y. Abe, et al. Cloning and characterization of a 4-nitrophenolhydroxylase gene cluster from Rhodococcus sp. PN1[J]. J Biosc Bioeng,2003,95(2):139-145.
    13. Lynda L P, J. Z. Gerben. Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase[J]. J Bacteriol,2007,189:7563-7572.
    14. Chauhan, A., A. K. Chakraborti, R. K. Jain. Plasmid-Encoded Degradation of p-Nitrophenol and 4-Nitrocatechol by Arthrobacter protophormiae[J]. Biochem Biophys Res Commun.,2000, 270(3):733-740.
    15. Vaillancourt, F. H., J. T. Bolin, L. D. Eltis. The ins and outs of ring-cleaving dioxygenases[J]. Crit Rev Biochem Mol Biol,2006,41(4):241-67.
    16. Harwood, C. S., R. E. Parales. The β-ketoadipate pathway and the biology of self-identity[J].Annu Rev Microbiol,1996,50:553-590.
    17. Johnson, G. R., J. C. Spain. Evolution of catabolic pathways for synthetic compounds:bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene[J]. Appl Microbiol Biotechnol, 2003,62:110-123.
    18. van der Meer, J. R. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds[J]. Antonie Leeuwenhoek,1997,71:159-178.
    19. Williams, P. A., J. R. Sayers. The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas[J]. Biodegradation,1994,5:195-217.
    20. Tropel, D., J. R. Van der Meer., Bacterial transcriptional regulators for degradation pathways of aromatic compounds[J]. Microbiol Mol Biol Rev,2004,68:474-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700