冀北山地典型森林植被与土壤成分的空间异质性关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林作为人类生产、生活资源的重要供给,随人类需求量的不断增加而遭受越来越多地破坏性干扰,部分原始林逐渐退化成为次生林。在中国,次生林已经成为森林资源的主体,占据近一半的森林总面积。在冀北山地,以温带落叶阔叶林为主的地带性植被受到人为或自然的干扰,形成了大面积以杨、桦为主的次生林。本研究以自然恢复形成的天然杨桦次生林为对象,在群落特征分析的基础上,对次生林的植被、土壤的空间异质性以及二者空间异质性的关系进行量化分析,揭示出天然次生林植被和土壤的空间分布特征、变异规律及空间异质性间的关系,对格局与过程的深入理解具有重要意义,为次生林的人工抚育、改造及管理等提供依据。主要研究结果如下:
     1.天然杨桦次生林的群落特征
     该天然次生林群落共有乔木16种,灌木18种,草本71种,优势种主要有山杨、白桦、华北落叶松、毛榛和细叶苔草等。先锋树种山杨、白桦的径级结构显示其种群幼树缺乏,种群呈现衰退趋势;树高分布显示出林分乔木的分层不明显,垂直结构复杂。灌木径级结构呈近似反“J”型分布,树高分布显示林下灌木没有明显的垂直结构。群落物种间的总体关联表现为显著正相关;群落物种间的联结系数(AC)显示乔木种对间存在较强的正联结,乔木和灌木种对间大多存在较强的负联结。
     物种多样性显示草本的物种丰富度最大,乔木的多样性指数和均匀度则最高。乔木物种生态位宽度指数从大到小依次是华北五角枫,华北落叶松,花楸,白桦等。灌木和草本物种中,生态位宽度指数最大的分别是毛榛和细叶苔草。生态位重叠指数较大的物种对主要有白桦和蒙古栎、青杆,华北落叶松和华北五角枫、花楸,毛榛和沙株、锦带花,细叶苔草和舞鹤草、歪头菜、风毛菊等。
     乔木总体上呈弱度混交、处于中庸状态,随起测直径的增大,团状分布的结构单元逐渐减小。灌木的混交度很低,处于中庸向劣态过渡状态,以团状分布为主。乔、灌树种在本研究尺度上大多呈现聚集分布的格局。主要物种间的相关关系显示,白桦与山杨、落叶松、毛榛在大部分尺度上以负关联为主,落叶松、山杨以及毛榛的种间关系在大部分尺度上为正关联。
     2.植被的空间异质性特征
     乔木、灌木及枯落物的空间异质性均以指数模型的拟合效果较好,叶面积指数和草本以球形模型的拟合效果较好。乔、灌、草、叶面积指数以及枯落物未分解、半分解和已分解层的变程(描述空间异质性尺度的有效参数)分别为11.4 m、5.7m、8.7m、73.1m、31.5m、27.9m和41.4m。结构比(空间自相关引起的变异占总变异的百分比)显示,乔、灌、草、枯落物未分解和半分解层均具有强烈的空间相关性,结构比分别为0.92,0.89,0.92,0.89和0.87:叶面积指数和己分解层具有中等强度的空间相关性,结构比分别为0.52和0.72。从空间分布格局来看,乔、灌、草均呈现出明显的斑块状空间分布格局;其中,乔木以3×103cm2以下的断面积占据很大的比例。灌木的斑块化程度明显高于乔木,在15 cm2以下的斑块最多。草本的空间格局较复杂,盖度30%-60%的斑块占据较大比例。叶面积指数的空间分布格局较简单,0.8-1.2的斑块所占比例最大。枯落物半分解层现存量的呈明显的斑块状分布,未分解层和已分解层呈较为的连续分布,各分解程度的枯落物现存量均以0.1-0.2 kg的斑块占据最大比例。
     3.土壤的空问异质性特征
     表层土壤含水量的空间格局以指数模型拟合较好,变程为40.2 m,结构比为0.94,具有强烈的空间相关性。土壤pH值和养分的空间分布格局在垂直方向上具有一定的延续性,以0-20 cm和20-40 cm土壤层的分布格局最为相似。对于土壤pH值,其变程随深度增加而减小,由浅到深依次为46.1 m、37.1 m、27.4 m。不同土壤层养分的变程有较大差异,0-20 cm变程为36-164 m,20-40 cm的变程为53-115 m,40-60 cm的变程为36-108 m。从不同指标来看,全氮在各土壤层中的变程最小,土壤有机质的变程最大,磷元素的变程较氮、钾元素大。在空间结构比上,各土层的氮、磷、钾全量呈强烈的空间相关;而速效磷、速效钾和有机质为中等强度的空间相关。从空间分布格局来看,表层土壤含水量以15%-30%的斑块面积为最大;随土壤深度的增加,pH值5.9-6.1、5.9-6.1、6.1-6.3的斑块,有机质60-80 g/kg、40-60 g/kg、20-40 g/kg的斑块,速效磷6 mg/kg以下的斑块,速效钾200-250 mg/kg、150-200 mg/kg、100-150 mg/kg的斑块,全磷4-6 g/kg、2-4 g/kg、4-6 g/kg的斑块,全钾16-18 g/kg、16-18 g/kg、18-20 g/kg的斑块,全氮2-3 g/kg、1-2 g/kg、1-2 g/kg的斑块在各土壤层中的面积均为最大。
     4.植被与土壤空间异质性的关系
     在该天然杨桦次生林中,15%-30%的土壤含水量较适于乔、灌的生长,且对叶面积指数的影响较大;25%-30%的土壤含水量较适于草本的生长,且与枯落物现存量的联系最为紧密。5.9-6.3的pH值较适于乔木的生长;5.9-6.1的pH值较适于灌木和草本的生长,且与叶面积指数和枯落物现存量的联系最紧密。40-60 g/kg的有机质较适于乔、灌、草的生长,且对叶面积指数的影响较大;40-50 g/kg的土壤有机质与枯落物现存量的联系最紧密。6-12 mg/kg的速效磷适于乔、灌的生长,且对叶面积指数的影响较大;6-8 mg/kg的速效磷较适于草本生长,且与枯落物现存量的联系最紧密。100-250 mg/kg速效钾较适于乔木的生长;150-200 mg/kg速效钾适于灌木、草本的生长,且与叶面积指数、枯落物现存量的联系最紧密。0.3-0.5 g/kg全磷较适于乔木的生长;0.3-0.4 g/kg的全磷适于灌木、草本的生长,且与叶面积指数和枯落物现存量的联系最紧密。16-20g/kg全钾较适于乔、灌、草的生长,且与叶面积指数和枯落物现存量的联系最紧密。1.5-2.5g/kg全氮较适于乔木、草本的生长;1.5-2.0g/kg全氮适于灌木生长,且与叶面积指数和枯落物现存量的联系最紧密。
Forest is an important production and life supply of humans. With the increasing of human's demanding, more forest suffered destructive interference, and part of virgin forests gradually degenerated into secondary forests. In China, secondary forest has become predominance of the forest resources, and occupied nearly half of the total forest. In mountainous region of northern Heibei, zonal vegetation-temperate deciduous forests have suffered disturbance by man-made or natural, and gradually formed a large area of secondary forest dominated by Populus and Behula. In the study, a Poplar-Birch natural secondary forest plot was settled in Beigou forestry station. The research based on data of vegetation and soil in the plot, the characteristics of forest community, spatial heterogeneity of vegetation and soil, the relationship of spatial heterogeneity of vegetation and soil components were analyzed. The paper aims to reveal the characteristics of spatial patterns and heterogeneity of the secondary forest, and provide quantitative relationship of spatial heterogeneity of vegetation and soil. The research findings could extend the theories of pattern and process, and provide some references to secondary forest conservation and management. The main results are as follows:
     1. The characteristics of the Poplar-Birch natural secondary forest
     There were 16 arbor species,18 bush species and 71 grass species in the forest. The dominant species were Populus davidiana, Betula platyphylla, Larix gmelinii, Corylus mandshurica and Carex rigescens et al. The diameter structure of pioneer trees—Populus davidiana, Betula platyphylla showed there were fewer seedlings, the populations were in recession. The height structure showed arbors have no obvious vertical structure. The diameter distribution of bush presented approximate inversed“J”. The height distribution showed bushes have no obvious vertical structure. Interspecific association in the community was significantly positive. Association coefficient between species indicated that association between arbor pairs was strongly positive, while association between arbor and bush pairs was more strongly negative.
     Grass species have the largest richness; arbors have the highest diversity index and evenness index. Niche breadth of arbors from big to small were as follows, Acer truncatum, Larix gmelinii, Sorbus pohuashanensis, Betula platyphylla et al. The biggest niche breadths of bush and grass species were Corylus mandshurica and Carex rigescens. The bigger niche overlap index of species pairs were Betula platyphylla-Quercus mongolica, Betula platyphylla-Picea wilsonii; Larix gmelinii-Acer truncatum, Larix gmelinii-Sorbus pohuashanensis:Corylus mandshurica-Swida bretchneideri, Corylus mandshurica-Weigela florida; Carex rigescen-Maianthemum bifolium, Carex rigescen-Vicia unijuga, Carex rigescen-Saussurea japonica, et al.
     Arbors were weakly mingling and in middle state, the number of cluster unites decreased with the measuring diameters increasing. Whereas the mingling of bushes were lower, and in transition of middle to inferior state, and mainly dominated by cluster unites. In the research scale, aggregating was the main distribution in arbors and bushes populations. The relationship of main species pairs indicated that Betula platyphylla vs. Populus davidiana, Betula platyphylla vs. Larix gmelinii, Betula platyphylla vs. Corylus mandshurica were negatively associated at most of the scales, while species pairs among Larix gmelinii, Populus davidiana, Corylus mandshurica were positively associated.
     2. The characteristics of vegetation spatial heterogeneity
     Exponential model was the optimum model for spatial heterogeneity of arbors, bushes and litter amount, while spherical model was the fittest model to spatial heterogeneity of leaf area index (LAI) and grass coverage. The range of arbor, bush, grass, LAI and undecomposed, semi-decomposed, decomposed litters were 11.4 m,5.7m,8.7m,73.1m,31.5m,27.9m and 41.4m. The structure ratio of arbor, bush and grass, undecomposed and semi-decomposed litter amount showed strongly spatial correlated, respectively, the values were 0.92,0.89,0.92,0.89 and 0.87. Whereas structure ratio of LAI and decomposed litter showed moderately spatial correlated, the values were 0.52 and 0.72. In spatial distribution patterns, arbor, shrub and grass were obviously patchy. The basal area less than 3×103 cm2 of arbor individuals occupied a large percentage. Fragmentation level of bush was much higher than arbor, the basal area less than 15 cm2 individuals were the most. The pattern of grass was more complicated, the patches of 30%-60% of coverage took a large percentage. The pattern of LAI was simple, the patches of 0.8-1.2 occupied the largest percentage. The litter amount of semi-decomposed distributed obviously patchy while undecomposed and decomposed distributed continuous. The patches of 0.1-0.2 kg of litter amount took the largest percentage in the 3 levels of decomposition.
     3. The characteristics of soil spatial heterogeneity
     Exponential model was the fittest model to spatial heterogeneity of topsoil water content (SWC). The range of SWC was 40.2 m, and structure ratio (0.94) showed the strong spatial correlation. In vertical soil horizon, spatial distribution patterns of soil pH value and soil nutrients were continuous, and the patterns were similar in different soil horizons, especially, in 0-20 cm and 20-40 cm. The range of pH value from the shallower to the deeper horizons were 46.1 m,37.1 m and 27.4 m. The range of nutrients were quite different in each soil horizons, the range of 0-20 cm soil horizon were 36-164 m, 20-40 cm were 53-115 m,40-60 cm were 36-108 m. From different soil nutrients indexes, range of total nitrogen was the smallest, while range of soil organism matter was the largest. The range of phosphor was larger than nitrogen and potassium. In spatial structure ratio, the total content of nitrogen, potassium showed strong spatial correlation at the research scale, whereas organic matter, available phosphorus and potassium showed moderate spatial correlation. In spatial distribution pattern, the area of 15%-30% patches of topsoil water content was the largest. With the increase of the depth of soil, the areas of patches of 5.9-6.1,5.9-6.1,6.1-6.3 pH value,60-80 g/kg,40-60 g/kg,20-40 g/kg organic matter, less than 6 mg/kg available phosphorus,200-250 mg/kg,150-200 mg/kg,100-150 mg/kg available potassium,4-6 g/kg,2-4 g/kg,4-6 g/kg total phosphorus,16-18 g/kg,16-18 g/kg,18-20 g/kg total potassium,2-3 g/kg,1-2 g/kg,1-2 g/kg total nitrogen occupied the largest percentage in each soil horizons.
     4. The relationship of spatial heterogeneity between vegetation and soil
     In the Poplar-Birch natural secondary forest,15%-30% topsoil water content was suitable for arbor and bush, and has a great influence on LAI; 25%-30% topsoil water content was suitable for grass, and have a close relationship with litter amount.5.9-6.3 pH value was suitable for arbor; 5.9-6.1 pH value was suitable for bush and grass, and closely related to LAI and litter amount.40-60 g/kg organism matter was suitable for arbor, bush and grass, and greatly influenced LAI; 40-50 g/kg organism matter has a close relationship with litter amount.6-12 mg/kg available phosphorus was suitable for arbor and bush, and greatly influenced LAI; 6-8 mg/kg available phosphorus was suitable for grass, and closely related to litter amount.100-250 mg/kg available potassium was suitable for arbor; 150-200 mg/kg available potassium was suitable for bush and grass, and has a close relationship with LAI and litter amount.0.3-0.5 g/kg total phosphorus was suitable for arbor; 0.3-0.4 g/kg total phosphorus was suitable for bush and grass, and closely related to LAI and litter amount.16-20g/kg total potassium was suitable for arbor, bush and grass, and has a close relationship with LAI and litter amount.1.5-2.5 g/kg total nitrogen was suitable for arbor and grass; 1.5-2.0 g/kg total nitrogen was suitable for bush, and closely related to LAI and litter amount.
引文
[1]安慧君,张韬.异龄混交林结构量化分析[M].北京:中国环境科学技术出版社,2004
    [2]曹建华,袁道先.石生藻类、地衣、苔藓于碳酸盐岩持水性及生态意义[J].地球化学,1999,28(3):248-256
    [3]曹群根.毛竹林水文效应的初步研究[J].竹类研究,1989(2):24-38
    [4]常超,谢宗强,熊高明,等.三峡库区不同植被类型土壤养分特征[J].生态学报,2009,19(11):5978-5985
    [5]琛引珍,何凡.缙云山区影响林冠截留量因素的初步分析[J].中国水土保持科学,2005(3):69-72
    [6]陈皓,章申.黄土地区氮磷流失的模拟研究[J].地理科学,1991,11(2):142-147
    [7]陈雄文,张新时,周广胜,等.中国东北样带(NECT)森林区域中主要树种空间分布特征[J].林业科学,2000,36(6):35-38
    [8]陈玉福,董鸣.毛乌素沙地景观的植被与土壤特征空间格局及其相关分析[J].植物生态学报,2001,25(3)265-269
    [9]陈玉福,董鸣.生态学系统的空间异质性[J].生态学报,2003,23(2):346-352
    [10]杜道林,刘玉成,李睿.缙云山亚热带栲树林优势种群间联结性研究[J].植物生态学报,1995,19(2):149-157
    [11]方精云,郭庆华,刘国华.我国水青冈属植物的地理分布格局及其与地形的关系[J].植物学报,1999,41(7):766-774
    [12]傅伯杰.景观多样性分析及其制图研究.生态学报[J],1995,15(4):345-350
    [13]高宝嘉,张执中,李镇宇.封山育林对昆虫群落结构及多样性稳定性影响的研究[J].生态学报,1992,12(1):1-7
    [14]龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征[J].土壤学报,1998,35(1):10-15
    [15]谷加存,王政权,韩有志,等.采伐干扰对帽儿山地区天然次生林土壤表层温度空间异质性的影响[J].应用生态学报,2006,17(12):2248-2254
    [16]谷加存,王政权,韩有志,等.采伐干扰对帽儿山天然次生林土壤表层水分空间异质性的影响[J].生态学报,2005,25(8):2001-2009
    [17]郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的土壤养分空间变异特征研究-以河北省遵化市为例[J].应用生态学报,2000,11(4):557-563
    [18]郭志华,卓正大,陈洁,等.庐山常绿阔叶落叶阔叶混交林乔木种群种间联结性研究[J].植物生态学报,1997,21(5):424-432
    [19]韩有志,王政权,谷加存.林分光照空间异质性对水曲柳更新的影响[J].植物生态学报,2004,28(4):468-475
    [20]何志斌,赵文智.荒漠绿洲区人工梭梭林土壤水分空间异质性的定量研究[J].冰川冻土,2004,26(2):207-211
    [21]贺金生,陈伟烈,江明喜,等.长江三峡地区退化生态系统植物群落物种多样性特征[J].生态学报,1998,18(4):399-407
    [22]洪伟,吴承祯.杉木种源胸径生长地理变异规律的研究[J].植物生态学报,1998,22(2):186-192
    [23]洪伟,吴承帧.杉木种源高径生长的空间变异及其分形特征[J].福建林学院学报,2001,21(2):97-100
    [24]侯景儒.中国地质统计学(空间信息统计学)发展的回顾与前景[J].地质与勘探,1997,33(1):53-58
    [25]胡理乐,江明喜,党海山,等.从种间联结分析濒危植物毛柄小勾儿茶在群落中的地位[J].植物生态学报,2005,29(2):258-265
    [26]胡艳波,惠刚盈,戚继忠,等.,吉林蛟河天然红松阔叶林的空间结构分析[J].林业科学研究,2003,16(5):523-530
    [27]惠刚盈,Gadow KV, Albert M.角尺度-一个描述林木个体分布格局的结构参数[J].林业科学,1999,35(1):37-42
    [28]惠刚盈,Gadow KV, Albert M个新的林分空间结构参数-大小比数[J].林业科学研究,1999,12(1):1-6
    [29]惠刚盈,Gadow KV.森林空间结构量化分析方法[M].北京:中国科学技术出版社,2003
    [30]惠刚盈,李丽,赵中华,等.林木空间分布格局分析方法[J].生态学报,2007,27(11):4717-4729
    [31]贾宝全,慈龙骏,杨晓晖,等.石河子莫索湾垦区绿洲景观格局变化分析[J].生态学报,2001,21:34-40
    [32]李斌,张金屯.黄土高原地区植被与气候的关系[J].生态学报,2003,23(1):82-89.
    [33]李国猷.北方次生林经营[M].北京:中国林业出版社,1992
    [34]李小昱,雷延武,王为.农田土壤特性的空间变异性及分形特征[J].干旱地区农业研究,2000,18(4):61-65
    [35]梁士楚,张淑敏,于飞海,等.绢毛匍匐委陵菜与土壤有效磷的小尺度空间相关分析[J].植物生态学报,2007,31(4):613-618
    [36]林波,刘庆,吴彦,等.川西亚高山针叶林凋落物对土壤理化性质的影响[J].应用环境生物学报,2003,9(4):346-351
    [37]刘广全,王浩,秦大庸,等.黄河流域秦岭主要林分凋落物的水文生态功能[J].自然资源学报,2002,17(1):55-61
    [38]刘建,朱选伟,于飞海,等.浑善达克沙地榆树疏林生态系统的空间异质性[J].环境科学2003,24(4):29-34
    [39]骆宗诗,向成华,慕长龙.绵阳官司河流域主要森林类型凋落物含量及动态变化[J].生态学报,2007,27(5):1772-1781
    [40]马克明,傅伯杰,周华锋.北京东灵山地区森林的物种多样性和景观格局多样性研究[J].生态学报,1999,19(1):1-7
    [41]孟宪宇,测树学[M].北京:中国林业出版社,1996
    [42]沈海亮,王季槐,李明.宁夏野生甘草分布空间异质性及分布格局研究[J].草业科学,2007,24(7):18-21
    [43]孙志虎,牟长城,张彦东.用地统计学方法估算长白落叶松人工林凋落物现存量[J].北京林业大学学报,2008,30(7):59-64
    [44]孙志虎,王庆成.水曲柳人工林土壤养分的空间异质性研究[J].水土保持学报2007,21(2):81-84
    [45]王伯荪,彭少麟.南亚热带常绿阔叶林种间联结测定技术Ⅰ:种间联结测式的探讨与修订[J].植物生态学与地植物学丛刊,1985,9(4):274-285
    [46]王军,傅伯杰,邱扬,等.黄土高原小流域土壤养分的空产异质性[J].生态学报,2002,22(8):1173-1178
    [47]王其兵,李凌浩,刘先华,等.内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析[J].植物生态学报,1998,22(5):409-414
    [48]王庆成,程云环.土壤养分空间异质性与植物根系的觅食反应[J].2004,15(6):1063-1068
    [49]王巍,刘灿然,马克平,等.东灵山两个落叶阔叶林中辽东栎种群结构和动态[J].植物学报,1999,41(4):425-432
    [50]王小屈,刘益军.毛竹干流特征的初步研究[J].经济林研究,2004,22(2):30-32
    [51]王彦辉,于澎涛,徐德应,等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):25-30
    [52]王玉刚,肖笃宁,李彦,等.流域尺度绿洲土壤盐分的空间异质性[J].生态学报,2007,27(12):5262-5270
    [53]王政权,王庆成.森林土壤物理性质的空间异质性研究[J].生态学报,2000a,20(6):945-950
    [54]王政权,王庆成,李哈滨.红松老龄林主要树种的空间异质性特征与比较的定量研究[J].植物生态学报,2000b,24(6):718-723
    [55]王政权.地统计学及在生态学中的应用[M].北京:科学出版社.1999
    [56]魏彦昌,欧阳志云,苗鸿,等.尖峰岭自然保护区土壤性质空间异质性出.生态学杂志2007,26(2):197-203
    [57]邬建国.景观生态学—格局、过程、尺度与等级[M].北京:高等教育出版社,2000
    [58]邬建国.景观生态学中的十大研究论题.生态学报,2004,24(9):2074-2076
    [59]吴波,慈龙骏.毛乌素沙地景观格局变化研究[J].生态学报,2001,21:191-196
    [60]吴伟斌,洪添胜,王锡平,等.叶面积指数地面测量方法的研究进展[J].华中农业大学学报,2007,26(2):270-275
    [61]伍业钢,李哈滨.景观生态学的理论发展[M].北京:中国科学技术出版社.1992
    [62]肖笃宁,布仁仓,李秀珍.生态空间理论与景观异质性[J].生态学报,1997,17:453-461
    [63]肖寒,欧阳志云,赵景柱,等.海南岛景观空间结构分析[J].生态学报,2001,21:20-27
    [64]杨秀云,韩有志,宁鹏,等.砍伐干扰对华北落叶松林下土壤有效氮含量空间异质性的影响[J].环境科学学报,2011,31(2):430-439
    [65]杨秀云,韩有志,张芸香,等.采伐干扰对华北落叶松细根生物量空间异质性的影响[J].生态学报,2012,32(1):64-73
    [66]张家城,陈力,郭泉水,等.演替顶极阶段森林群落优势树种分布的变动趋势研究[J].植物生态学报,1999,23(3):256-268
    [67]张金屯.植被数量生态学方法.北京:中国科学技术出版社,1995
    [68]张金屯.数量生态学[M].北京:科学出版社,2004
    [69]张明娟,刘茂松,徐驰,等.不同密度条件下芨芨草空间格局对环境胁迫的响应[J].生态学报,2012,32(2):0595-0604
    [70]张忠华,胡刚,祝介东,等.喀斯特森林土壤养分的空间异质性及其对树种分布的影响[J].植物生态学报,2011,35(10):1038-1049
    [71]赵斌,蔡庆华.地统计学分析方法在水生态系统研究中的应用[J].水生生物学报,2000,24(5):514-520
    [72]周慧珍,龚子同.土壤空间变异性研究[J].土壤学报,1996,33(3):232-241
    [73]周启友,Shimada J土壤水空间分布结构的时间稳定性[J].土壤学报,2003,40(5):683-690
    [74]周先叶,王伯荪,李鸣光,等.广东黑石顶自然保护区森林次生演替过程中群落的种间联结性[J].植物生态学报,2000,24(3):332-339
    [75]周晓峰.森林生态系统定位研究(第一集)[M].哈尔滨:东北林业大学出版社,1991
    [76]朱教君.次生林经营基础研究进展[J].应用生态学报,2002,13(12):1689-1694
    [77]朱教君,刘世荣.次生林概念与生态干扰度[J].生态学杂志,2007,26(7):1085-1093
    [78]祖元刚,马克明,张喜军.植被空间异质性的分形分析方法[J].生态学报,1997,17(3):333-337
    [79]Asner GP, Scurlock JMO, Hicke JA. Global sythesis of leaf area index observation:Implications for ecological and remote sensing studies [J]. Globe Ecology and Biogeography,2003.12:191-205
    [80]Barras N, Kellman M. The supply of regeneration microsites and segregation of tree species in a hardwood/boreal forest transition zone [J]. Journal of Biogeography,1998,25 (5):871-881
    [81]Belsky AJ. Influence of trees on savanna productivity:Test of shade, nutrient and tree-grass competition [J]. Ecology,1994,75:922-932
    [82]Besag JE. Comments on Ripley's paper [J]. Journal of the Royal Statistical Society, Series B, 1977,39:193-195
    [83]Biging GS, Dobbertin MA. Evaluation of competition indices in individual tree growth models [J]. Forest Science,1995,41:360-377
    [84]Borcard D, Legendre P, Drapeau P. Partiailing out the spatial component of ecological variation [J]. Ecology,1992,73:1045-1055
    [85]Burgess TM, Webster R. Optimal interpolation and isarithmic mapping of soil properties I:The semivariogram and punctual kriging [J]. Journal of Soil Science,1980,31:315-331
    [86]Burrough PA. Multiscale sources of spatial variation in soil. Ⅰ. Application of fractal concepts to nested levels of soil variation [J]. Journal of Soil Science,1983a,34:577-597
    [87]Burrough PA. Multiscale sources of spatial variation in soil. Ⅱ. A non-Brownian fractal model and its applications in soil survey [J]. Journal of Soil Science,1983b,34:599-620
    [88]Caldwell MM, Pearey RM. Exploitation of environmental heterogeneity by Plants: ecophysiological process above and below ground [M]. Physiological Ecology Series, Academic Press Inc, San Diego,1994
    [89]Cambardella CA, Moorman TB, Parkin TB, et al. Field-scale variability of soil properties in central Iowa soils [J]. Soil Science Society of America Journal,1994,58:1501-1511
    [90]Chatfield C. The analysis of time series:an introduction (3rd) [M]. London:Chapman and Hall, 1984
    [91]Chen JM, Rich PM, Gower ST, et al. Leaf area index of boreal forests:Theory, techniques, and measurements [J]. Journal of Geophysical Research,1997,102:29429-29443
    [92]Chen Yf, Yu FH, Dong M. Scale dependent spatial heterogeneity of vegetation in Mu Us Sandy Land a semi-arid area of China [J]. Plant Ecology,2002,162:135-142
    [93]Cintra R. Leaf litter effects on seed and seedling predation of the palm Astrocaryum murumuru and the legume tree Dipteryx micrantha in Amazonian forest [J]. Tropical Ecology,1997,13(5): 709-725
    [94]Cui M, Caldwell MM. Shading reduces exploitation of soil nitrateand phosphate by Agropyron desertorum and Artemisia tridentata from soils with patchy and uniform nutrient distributions [J]. Oecologia,1997,109:177-183
    [95]Dale MRT. Spatial pattern analysis in plant ecology [M]. Cambridge University Press. United Kingdom,2000
    [96]Davi H, Baret F, Huc R, et al. Effect of thinning on LAI variance in heterogeneous forests [J]. Forest Ecology and Management,2008,56:90-99
    [97]Davies SJ, Palmiotto PA, Ashton PS, et al. Comparative ecology of Ⅱ symaptric species of Macaranga in Borneo:Tree distribution in relation to horizontal and vertical resource heterogeneity [J]. Journal of Ecology,1998,86:662-673
    [98]Davies SJ. Tree mortality and growth in 11 sympatric Macaranga species in Bomeo [J]. Ecology, 2001,82:920-932
    [99]de Avila AL, Araujo MM, Longhi SJ, et al. Floristic clusters on natural regeneration in Mixed Rain Forest remnant, RS, Brazil [J]. Scientia Forestalis,2011,39 (91):331-342
    [100]Dutilleul P, Legendre P. Spatial heterogeneity against heteroscedastieity:an ecological paradigm versus a statistical concept [J]. Oikos,1993,66:152-171
    [101]Farley RA, Fitter AH. Temporal and spatial variation in soil resources in a deciduous woodland [J]. Journal of Ecology,1999,87:688-696
    [102]Finzi AC, Canham CD, Van Breeman N. Canopy tree-soil interactions within temperate forests: species effects on pH and cation [J]. Ecological applications,1998,8:447-454
    [103]Fortin MJ, Draperal P, Legendre P. Spatial autocorrelation and sampling design in plant ecology [J]. Vegetation,1989,83:209-222
    [104]Gadow KV, Hui GY. Modeling forest development [M]. Kluwer Academic Publishers,1999, 206 (2):207-223
    [105]Gadow KV. Continuous Cover Forest assessment, analysis scenarios. International IUFRO conference, Goettingen, German,2001,217 (3):19-21
    [106]Garcia-Montiel DC, Scatena FN. The effect of human activity on the structure and composition of a tropical forest in Puerto Rico [J]. Forest Ecology Managment,1994,63 (1):57-78
    [107]Garrigues S, Allard D, Baret F, et al. Multivariate quantification of landscape spatial heterogeneity using variogram models [J]. Remote Sensing of Environment.2008,112 (1): 216-230
    [108]Gonzalez OJ, Zak D. Geostatistical analysis of soil properties in a secondary tropical dry forest, St. Lucia, West Indies [J]. Plant Soil,1994,16:45-54
    [109]Goovaerts R. Geostatistics for natural resources evaluation [M]. Oxford University Press, New York, USA,1997
    [110]Greig-Smith P. Quantitative plant ecology (3rd) [M]. Berkeley and Los Angeles:University of California Press,1983
    [111]Griffin J, Jenkins S, Gamfeldt L, et al. Spatial heterogeneity increases the importance of species richness for an ecosystem process [J]. Oikos,2009,118 (9):1335-1342
    [112]Guilherme FAG, Ferreira TO, Assis MA, et al. Soil profile, relief features and their relation to structure and distribution of Brazilian Atlantic rain forest trees [J]. Scientia Agricola,2012,69 (1):61-69
    [113]Hamman ST, Burke IC, Stromberger ME. Relationships between microbial community structure and soil environmental conditions in a recently burned system [J]. Soil Biology and Biochemistry. 2007,39 (7):1703-1711
    [114]Hao ZQ, Zhang J, Song B, et al. Vertical structure and spatial associations of dominant tree species in an old growth temperate forest [J]. Forest Ecology Managment,2007,252:1-11
    [115]Hughes JB, Daily GC, Ehrlich PR. Population diversity:Its extent and extinction. Science 1997, 278:689-692
    [116]Hulme PE. Natural regeneration of yew (Taxus baccata L.):Microsite, seed or herbivore limitation? [J]. Ecology,1996,84(6):853-861
    [117]Hutehings MJ, John EA, Steward AJA. The ecological consequences of environmental heterogeneity [J]. Journal of Soil Science,1999,31:315-331
    [118]Issaks EH, Srivastava RM. An introduction to applied geostatistics [M]. Oxford:Oxford University Press,1989
    [119]Jackson RB, Caldwell MM. Geostatistical patterns of soil heterogeneity around individual perennial plants [J]. Journal of Ecology,1993,81:683-692
    [120]Jeltsch F, Milton SJ, Dean WRJ, et al. Tree spacing and coexistence in semiarid savannas [J]. Ecology,1996,84 (4):583-595
    [121]Jeltsch F, Milton SJ, Dean WRJ, et al. Modeling the impact of small scale heterogeneities on tree-grass coexistence in semi-arid savannas [J]. Ecology,1998,86:780-793
    [122]Jeltseh F, Moloney K, Milton SJ. Detecting process from snapshot pattern:Lessons from tree spacing in the southern Kalahari [J]. Oikos,1999,85:451-466
    [123]Jongman RHG, ter Braak CJF, van Tongeren OFR. Data analysis in community and land scapee ecology [M]. Wageningen:Pudoc,1987
    [124]Kikvidze Z, Ohsawa A. Measuring the number of co-dominants in ecological communities [J]. Ecological Research,2002,17:519-525
    [125]Kolasa J, Piekett STA. Ecological heterogeneity [M]. Springer-Verlag, New York, USA.1991
    [126]Kotliar NB, Wiens JA. Multiple scales of patehiness and patch structure:a hierarehical framework for the study of heterogeneity [J]. Oikos,1990,59:253-260
    [127]Kuuluvainen T, Jaervinen E, Hokkanen TJ, et al. Structure heterogeneity and autocorrelation in a natural mature Pinus sylvestris dominanted forest [J]. Ecography,1998,21 (2):159-174
    [128]Kuuluvainen T, Penttinen A, Leinonen K, et al. Statistical opportunities for comparing stand structural heterogeneity in managed and primeval forest:an example form boreal spruce forest in southern Finland [J]. Silva Fennica,1996,30 (2-3):315-328
    [129]Lark RM. Exploring scale-dependent correlation of soil properties by nested sampling [J]. European Journal of Soil Science,2005,56 (6):307-317
    [130]Lee KS, Cohen WB, Kennedy RE, et al. Hyperspectral versus multispectaral data for estimating leaf area index in four different biomes [J]. Remote Sensing Environment,2004,91:508-520
    [131]Legendre P. Spatial autocorrelation:Trouble or new paradigm? [J]. Ecology,1993,74:1659-1673
    [132]Lesschena JP, Cammeraata LH, Kooijmana AM, et al. Development of spatial heterogeneity in vegetation and soil properties after land abandonment in a semi-arid ecosystem [J]. Journal of Arid Environments,2008,72 (11):2082-2092
    [133]Levin SA. The problem of pattern and scale in ecology:the Robert H. MaeArthur award lecture [J]. Ecology,1992,73:1943-1967
    [134]Li H, Reynolds JE. A simulation experiment to quantify spatial heterogeneity in categorical maps [J]. Ecology,1994,75:2446-2455
    [135]Li H, Reynolds JF. On definition and quantification of heterogeneity [J]. Oikos,1995,73: 280-284
    [136]Li H, Reynolds JF. A new contagion index to quantify spatial patterns of landscapes [J]. Landscape Ecology,1993,8:155-162
    [137]Lundholm JT. Plant species diversity and environmental heterogeneity:spatial scale and competing hypotheses [J]. Journal of Vegetation Science,2009,20 (3):377-391
    [138]McIntosh RP. Concept and terminology of homogeneity and heterogeneity in ecology. In:Kolasa J and Pickett STA, eds. Ecological heterogeneity [M]. New York:Springer-Verlag,1991,24-46
    [139]Kohl M, Gertner G. Geostatistics in evaluating forest damage surveys:considerations on methods for describing spatial distributions [J]. Forest Ecology and Management,1997,95:131-140
    [140]Miller RE, Ver Hoef JM, Fowler NL. Spatial heterogeneity in eight central Texas grasslands [J]. Journal of Ecology,1995,83:919-928
    [141]Milne BT. Measuring the fractal geometry of landscapes [J]. Applied Mathematics and Computation,1988,27:67-79
    [142]Molofsky J, Augspurger CK. The effect of leaf litter on early seedling establishment in a tropical forest [J]. Ecology,1992,73:68-77
    [143]Moloney KA, Levin SA. The effects of disturbance architecture on landscape level population dynamies[J]. Ecology,1996,77:375-394
    [144]Northupa B K, Diasb CD, Brown JR, et al. Micro-patch and community scale spatial distribution of herbaceous cover in a grazed eucalypt woodland [J]. Journal of Arid Environments.2005,60: 509-530
    [145]Neill RM, Hunsaker CT, Timmins SP, et al. Scale problems in reporting landscape pattern at the region scale [J]. Landscape Ecology,1996,11:169-180
    [146]O'Neill RV, Gardner RH, Milne BT, et al. Heterogeneity and spatial hierarchies. In:Kolasa J and Piekett STA. (eds). Ecological Heterogeneity. New York Springer-Verlag.1991,85-96
    [147]O'Neill RV, Milne BT, Turner MG, et al. Resource utilization scales and pattern [J]. Landscape Ecology,1988,2:63-69
    [148]Palmer M W. Fractal geometry:a tool for describing spatial pat tern of plant communities [J]. Vegetation,1988,75:91-102
    [149]Pickett STA, Cadenasso ML. Landscape Ecology:Spatial heterogeneity in ecological systems [J]. Science,1995,269:331-334
    [150]Piekett STA, White PS. The ecology of natural disturbance and patch dynamies. Academic, New York,1985
    [151]Plotkin JB, Chave J, Ashton PS. Cluster analysis of spatial patterns in Malaysian tree species [J]. American Naturalist,2002,160:629-644
    [152]Qi Y, Wu J. Effects of changing spatial resolution on the results of landscape pattern analysis using spatial autocorrelation indices [J]. Landscape Ecology,1996,11:39-49
    [153]Rensahaw E, Ford ED. The description of spatial patter nusing two-dimensional spectral analysis [J]. Vegetation,1984,56:75-85
    [154]Robertson G P, Gross KL. Assessing the heterogeneity of below ground resources:quantifying pattern and scale [A]. In:Caldwellmm and Pearcy RW, ED. Exploitation of Environmental Heterogentity by Plants [C]. New York:Academic Press,1994,237-253
    [155]Robertson, GP, Klingensmith KM, Klug MJ, et al. Soil resources, microbial activity and primary production across an agricultural ecosystem [J]. Ecological Applications,1997,7:158-170
    [156]Rossi, RE, Milla DJ, Journel AJ et al. Geostatistical tools for modeling and interpreting ecological spatial dependence [J]. Ecological Monographs,1992,62:277-341
    [157]Roy S. Spatial variation of soil physico-chemical properties influenced by spatial and temporal variation of litter in a dry tropical forest floor [J]. Oecologia Montana,1996,5 (1):21-26
    [158]Rubio A, Escudero A. Small-scale spatial soil-plant relationship in semi-arid gypsum environments [J]. Plant and Soil,2000,220:139-150
    [159]Schlesinger WH, Raikes JA, Hartley AE, et al. On the spatial pattern of soil nutrients in desert ecosystems [J]. Ecology,1996,77:364-374
    [160]Schluter D. A variance test for detecting species association with some example application [J]. Ecology,1984,65 (3):998-1005
    [161]Sellers P, Schime ID. Remote-sensing of the land biosphere and biogeochemistry in the EOS era science priorities, methods and implementation [J]. Global and Planetary Change,1993,7 (4): 279-297
    [162]Smith G P. Quantitative plant ecology 3rd ed [M]. Oxford:Blackwell Scientific Publications, 1983:105-128
    [163]Sokal RR, Jacquez GM, Wooten MC. Spatial autocorrelation analysis of migration and selection [J]. Genetics,1989,121:845-856
    [164]Soto DP, Salas C, Donoso PJ, et al. Structural and spatial heterogeneity of a mixed Nothofagus dombeyi-dominated forest stand after a partial disturbance [J]. Revista Chilena Historia Natural. 2010,83 (3):335-347
    [165]Stoyan H, De-Polli H, Bohm S, et al. Spatial heterogeneity of soil respiration and related properties at the plant scale [J]. Plant and Soil,2000,222:203-214
    [166]Sugihara G, May RM. Applications of fractals in ecology [J]. Trends in Ecology & Evolution, 1990,5:79-86
    [167]Teixeira AD, Assis MA, Luize BG. Vegetation and environmental heterogeneity relationships in a Neotropical swamp forest in southeastern Brazil (Itirapina, SP) [J]. Aquatic Botany.2011, 94 (1):17-23
    [168]Tilman D, Kareiva P. Spatial Ecology:The role of space in population dynamics and interspecific interactions [M]. Princeton University Press, Princeton, New Jersey,1997
    [169]Trangmar BB, Yost RS, Uehara G. Application of geostatistics to spatial studies of soil properties [J]. Advances in Agronomy,1985,38:45-94
    [170]Turner MJ, Gardner RH. Quantitative methods in landscape ecology [M]. Springer-Verlag, New York, USA
    [171]Turner MJ. Landscape ecology:the effect of pattern on process [J]. Annual review of Ecology and Sysmatics,1989,20:171-197
    [172]Vivian-Smith G. Micro topographic heterogeneity and floristic diversity in experimental wetland communities [J]. Journal of Ecology,1997,85:71-81
    [173]Waring RH. Forest ecosystem concept and management [M]. Academic Press,1985
    [174]Waring RH, Running SW. Forest ecosystems:analysis at multiple scales [M]. Academic Press. 2007
    [175]Webster R. Quantitative spatial analysis of soil in field [J]. Advance in Soil Science,1985,3: 1-70
    [176]Wu J, Jelinski DE, Luck M, et al. Multiscale analysis of landscape heterogeneity:Scale variance and pattern metrics [J]. Geographic Information Systems,2000,6:6-19
    [177]Yastrebov AB. Different types of heterogeneity and plant competition in monspecific stand [J]. Oikos,1996,75 (1):89-97
    [178]Zenner EK, Hibbs DE. A new method for modeling the heterogeneity of forest strueture [J]. Forest ecology and Management,2000,129:75-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700