大庆地区耐盐绿化树种的选择及繁殖技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用模拟大庆地区典型碱斑土盐浓度的溶液对30种应试树种(28种乡土树种,2种引进树种)分别进行0.5倍(0.197%)、1.0倍(0.394%)、2.0倍(0.788%)、2.5倍(0.985%)盐浓度的处理,于20天和30天后对应试树种的脯氨酸、过氧化物酶(SOD)、超氧化物歧化酶(POD)、细胞膜通透性、光合速率等耐盐碱性生理生化指标进行分析,初步筛选出沙枣、枸杞、小叶锦鸡儿、白榆、花楸5种树种为适合大庆地区的耐盐碱绿化树种,同时对筛选出的沙枣、花楸、小叶锦鸡儿3种耐盐树种进行组培快繁技术研究。
     1 盐处理对树种生理生化指标的影响
     随盐碱处理液浓度的增加,应试树种的脯氨酸含量基本上呈现上升趋势;SOD活性也呈现上升的趋势;而POD活性则呈现先下降后上升再下降的趋势;相对电导率呈现明显的上升趋势,其中在2.5倍盐碱胁迫液处理20天时应试树种的相对电导率均明显高于对照;光合速率在0.5倍、1.0倍盐碱处理液下变化趋势一致性较差,但在2.5倍盐碱处理液下应试树种的光合速率均明显低于对照。
     2 耐盐碱树种的筛选
     参照各应试树种被测生理生化指标对4种盐处理的响应程度,对各树种的耐盐碱能力综合分析并排序,初步确定沙枣、枸杞、小叶锦鸡儿、白榆和花楸为适合大庆地区的耐盐碱绿化树种。
     3 耐盐树种的组培快繁技术研究
     沙枣(Elaeagnus angustifolia)在MS+6-BA0.5mg·L~(-1)条件下能产生试管丛生芽,其茎段在MS+6-BA(0.5~1.0)mg·L~(-1)+NAA0.8mg·L~(-1)条件下对愈伤组织不定芽效果最佳。试管苗用IBA50mg·L~(-1)处理1h,接种到无激素培养基中,生根率为94%。
     以花楸(Sorbus pohuashanensis(Hance) Hedl.)带腋芽茎节为外植体,最佳基本培养基为MS培养基;芽诱导培养基为1/2MS+6-BA2.5mg·L~(-1)+2.4-D0.5mg·L~(-1);增殖培养基为MS+6-BA(1.6~2.1)mg·L~(-1)+NAA(O.14~0.23)mg·L~(-1),平均繁殖系数达到13倍以上;继代壮苗培养基为MS+6-BA0.2mg·L~(-1)+IBA0.2mg·L~(-1);在1/2MS+IBA0.3mg·L~(-1)培养基上,平均生根数为5.96,生根率达90.20%。将生根后的组培苗移栽至腐殖土:泥炭土:河沙(比例为3∶2∶1)的基质中,成活率达95.55%。
     以小叶锦鸡儿(Caragana microphylla Lam.)茎段为外植体,最适的芽诱导培养基是MS+6-BA0.5mg·L~(-1)和IAA0.01mg·L~(-1);生根培养基是1/2MS+IAA0.5mg·L~(-1)。
Thirty native and introduced tree species were treated with 0.5 times (0.197%)、 1.0 times (0.394%)、 2.0 times (0.788%)、 2.5 times (0.985%) salt solution, which simulated salt concentration of alkaline patch in Daqing. Proline, peroxidase(POD), superoxide dismutase(SOD), cell membrane permeability, photosynthesis rate were analyzed after 20 and 30 salt treatment. The results showed ascension and descent ranges of different trees were different. Five tree species, namely Elaeagnus angustifolia, Lycium brabarum L., Caragana microphylla Lam., Ulmus pumila L. and Sorbus pohuashanensis (Hance) Hedl.were primarily proved to have stronger salt-resistance ability. At the same time, Elaeagnus angustifolia, Caragana microphylla Lam, and Sorbus pohuashanensis (Hance) Hedl.were also used to study their tissue culture propagation.1. Effects of salt treatment on related biophysical-chemical indexUnder salt treatment, the content of free praline and SOD activity increased with the concentration of salt;POD activity was descended firstly, and ascended then descended with increasing salt concentration;Relative conductance responded to salt treatment appeared the same trend with free praline and SOD activity, and under 2.5 times salt concentration on 20d, relative conductance was significantly higher than CK;Photosynthetic rate of tree species responded to 0.5 times 、 1.0 times salt concentration were different. However, photosynthetic rate was distinctly lower than that of CKunder 2.5 times salt concentration.2. Selecting Salt-tolerance treesIntegrated rating law was used to select salt-tolerance trees from the above tested biophysical-chemical index. The trees' salt-tolerance was Elaeagnus angustifolia>Lycium brabarum L.> Caragana microphylla Lam.> Ulmus pumila L.> Sorbus pohuashanensis (Hance) Hedl.3. Study on tissue culture propagation in salt-tolerant treesElaeagnus angustifolia could produce multiple bud clumps in Ms + 6-BA 0.5 mg·L~(-1). Under MS+6-BA0.5-1.0mg·L~(-1)+NAA0.8mg·L~(-1), Elaeagnus angustifolia stems could induce a large number of callus shoots. After tube seedlings were soaked by IBA50mg·L~(-1) forlh, and cultured to media without hormones, the rooting rate is 94%.Stem segments with axillary buds in Sorbus pohuashanensis (Hance) Hedl.were chosen as explants to study tissue culture propagation technology. The results showed that the best basic medium was MS;axillary buds were induced successfully on MS basal media supplemented with 6-BA2.5mg·L~(-1)and 2.4-D0.5mg·L~(-1);the optimum medium for bud proliferation was MS+6-BA(1.6-2.1)mg·L~(-1) + NAA (0.14-0.23) mg·L~(-1);the shoots grew strongly on MS+6-BA1.2mg·L~(-1)+IBA0.2mg·L~(-1);and l/2MS+IBA0.3mg·L~(-1) was the best medium for shoot
    rooting, the rooting rate was 90.20%, and the average root number of 5.96;plantlets survival rate reached 95.55% when transplanted on the mixture (soil3: peat moss2: sandl).Stem segments of Caragana microphylla Lam. were used to optimize the tissue culture condition. The results showed that MS+6-BA0.5mg-L"1+IAA0.01mg-L'1 was the optimum medium for inducing bud, l/2MS+IAA0.5mg-L"' best fitting for rooting.
引文
[1] 高翔雁,徐海涵,齐丽范.影响大庆地区树木成活的主要因素.防护林科技,2005,1:69-70
    [2] 刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社,1994
    [3] Fortmeiev R, Schuber S. Plan Cell and Environment. 1995, 19: 1041-1047
    [4] 林西风,李冠一.植物耐盐性研究进展.生物工程进展,2000,20(2):20-26
    [5] 张耕耘等.九个水稻耐盐突变体的RFLP分析.植物学报,1994,36(5):345-350
    [6] 李艳华,杨敏生等.树木抗盐生理研究进展.河北林果研究,2000,15(2):189-196
    [7] 赵可夫,盐生植物.植物学通报,1997,14(4):1-12
    [8] Wyn Jones RG, Storey R, Leigh RA, Ahmad N, Pollard A. A hypothesis on cytoplasmic osmorcgulation: In E. Marre and O. Ciferri (eds.), Regulation of cell membrane activities in plants, 1977, 121-136
    [9] 衣艳君,刘家尧等.NaCl对盐生植物和非盐生植物生理效应的比较.曲阜师范大学学报,1995,21(1):69-73
    [10] 孙兰菊,岳国峰,王金霞.植物耐盐机制研究进展.海洋科学,2001,25(4):28-31
    [11] 赵可夫,盐生植物的抗盐性及抗盐机理.中国科技出版社,1993:134-164
    [12] Prior C, Potier S, Souciet J, Sychrova H. Characterization of the NHA1 gene encoding a Na+/H+ antiporter of the yeast Saceharomyces Cerevisiae. FEBS Lett, 1996, 387: 89-93
    [13] Shi H, Ishitani M, Kim, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA, 2000, 97: 6896-6901
    [14] Zhu JK. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 2003, 6: 441-445
    [15] Ko CH, Gaber RF. TRK1 and TRK2 encode structurally related K+ stransporters in Saceharomyces cerevisiae. Mol Cell Biol., 1991, 11: 4266-4271
    [16] Haro R, Banuclos M, Quintero FJ, Rubio F, Rodriguez-Navarro A. Genetic basis of sodium exclusion and sodium tolerance in yeast. Physiol Plant, 1993, 89: 868-874
    [17] Gaxiola R, De Larrinoa IF, Villalba JM, Serrano R. A novel and conserved salt -induced protein is an importaut determinant of salt tolerance in yeast. EMBO J. 1992, 11: 3157-3164
    [18] 刘家琼等.我国沙漠中部地区主要不同生态类型植物的水分关系和旱生结构比较研究.植物学报,1987,29(6):662-673
    [19] Hare PD, Cress WA. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Rcgulation, 1997, 21: 79-102
    [20] Hare PD, Cress WA, Van Stadcn J. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Envir., 1998, 21: 535-553
    [21] Delauney AJ et al. Proline biosynthesis and osmoregulation in plants. Plant J, 1993, 4: 215-223
    [22] 任天应,张乃生,张金发.黄花菜耐盐能力的研究与生产应用.山西农业科学,1991,9:13-15
    [23] Liu JP, Zhu JK. Proline accumulation and salt-stress-induced gene expression in salt hypersensitive mutant of Arabidopsis. Plant Physiol, 1997, 114: 591-596
    [24] 刘家尧,衣艳君等.甜菜碱的测定技术及其在植物抗盐生理中的作用.曲阜师范大学学报,1994,20(2):66-69
    [25] 梁峥,骆爱玲.甜菜碱和甜菜碱合成酶.植物生理学通讯,1995,31(1):1-8
    [26] Pollard A, Wyn jones RG. Enzyme activities in concentrated solutions of glycine betaine and other solutes. Planta, 1979, 144: 291-298
    [27] 毛桂莲,许兴,徐兆桢.植物耐盐生理生化研究进展.中国农业生态学报,2004,12(1):43-46
    [28] Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RAJr. The natural polyamine spermine functions directly as a free redical scavenger. Proceedings of the National Acedemy of Science of USA, 1998, 95: 11140-11145
    [29] Kirn JE, Han TJ, Lee JS, Chang SC. ABA and polyamines act independently in primary leaves of cold stressed tomato (Lycopersicon esculentum). Physiologia Plantarum, 2002, 115: 370-376
    [30] Sivakumar P, Sharmila P, Jain V, Pardha SP. Sugars have potential to Curtail oxygenase activity of Rubisco. Biochemical and Biophysical Research Communications, 2002, 298: 247-250
    [31] Koster KL, Leopold AC, Sugars and desiccation tolerance in seeds. Plant Physiol, 1988, 96: 302-304
    [32] Bohner HJ, Jensen RG. Metabolic engineering for increased salt tolerance the next step: comment. Australian Journal of plant physiology, 1996, 23: 661-666
    [33] 肖雯,李恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究.西北植物学报,2000,20(5):818-825
    [34] 龚明.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系.植物学报,1989,31(11):841-846
    [35] Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25(2): 239-250
    [36] 山东农学院,西北农学院编.植物生理学实验指导.济南:山东科学技术出版社,1980
    [37] 沈义国, 陈受宜.植物盐胁迫应答的分子机制.遗传,2001,23(4):365-369
    [38] 闫先喜,赵檀方等.盐胁迫预处理对大麦根尖分化区细胞超微结构的影响.西北植物 学报,1994,14(4):237-277
    [39] 杜秀敏等.植物中活性氧的产生及清除机制.生物工程学报,2001,17:121-125
    [40] Mittova V, Tal M, Volokita M, et al. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species lycopersicon pennellii but not in the cultivated species[J]. Physiologia Plantarum, 2002, 115 (3): 393-400
    [41] 王丽娟,田京伟,杨建雄,张军.植物组织培养的研究进展,运城高等专科学校学报,1999,17(3):8-11
    [42] 王文静,袁道强,高松洁.植物组织培养的应用现状,河南师范大学学报(自然科学版),2000,28(3):137-139
    [43] 赵云,刘继生,王元兴.植物生物技术在林木育种中的应用.吉林林业科技,1995,6:562-563
    [44] 韩一凡.德国林木生物技术的研究现状.世界林业研究,1993,2:23-26
    [45] 曹孜义,刘国民,实用植物组织培养技术教程.兰州:甘肃科学技术出版社,1996,1-9
    [46] 程东升.木本植物基因工程研究进展及存在问题.生命科学,1993,5(5):20-23
    [47] 孙丽华,朱翔.生物技术在林木遗传改良中的应用与进展.四川林业科技,2000,2:53-56
    [48] 施季森,迎接21世纪现代林木生物技术育种的挑战.南京林业大学学报,2000,1:1-6
    [49] 蒋丽娟,李昌珠.生物技术在林木育种上的应用.湖南林业科技,1999,3:26-29
    [50] 韩美丽,陆荣升.林木生物技术的研究显著及发展趋势.广西林业科学,1996,25(4):213-217
    [51] 史忠礼,高智慧,俞世群,江志标.生物技术在林业上研究和应用的概况和展望.浙江林业科技,2002,1:73-76
    [52] 张红晓,经剑颖,张贯臣.组织培养技术在植物育种中的应用.洛阳大学学报,2003,8(4):43-45
    [53] 翟中和,王喜忠,丁明孝.细胞生物学.北京:高等教育出版社,2000
    [54] 黄坚钦.植物细胞的分化和脱分化.浙江林学院学报,2001,18(1):89-92
    [55] 潘瑞炽,李玲.植物生长发育的化学控制.广州:广东高等教育出版社,1999
    [56] 林顺全.植物细胞工程.厦门:厦门大学出版社,2000
    [57] 潘瑞炽,董愚得.植物生理学(第三版).北京:高等教育出版社,1995
    [58] 陈正华.木本植物组织培养的应用.北京:高等教育出版社,1986:28-30
    [59] Preece JE, Bates S. In vitro studies with white ash. Woody plant biotechnology, 1991, 210: 37-45
    [60] Bates SA, Preece JE, Navarrete NE. Thidiazuron stimulates shoot organogenesis and somatic embryogenesis in white ash (Fraxinus anericana L.). Plant cell Tiss Org Cult, 1992, 31: 21-29
    [61] 刘敏.花卉组织培养与工厂化生产.北京:地质出版社,2002,44
    [62] Preece JE. Callus product and somatic embryogenesis from white ash. Hortscience, 1989, 24(2): 377-380
    [63] 高国训.植物组织培养中的褐变问题.植物生理学通讯,1999,35(6):501-506
    [64] Pierik RLM. In Vitro Culture of Higher Plant. Mattinus Nijhoff Publishers, 1987
    [65] 刑世岩.木本植物组织培养玻璃化的成因和控制.泰安林业科技,2000,17(2):11-14
    [66] 崔丽华.植物生长调节物质对组织培养中不定芽不定根的作用.辽宁师范专科学校学报,2000,2(2):97-99
    [67] 黄学林,李筱菊.高等植物组织离体培养的形态建成及调控.北京:科学出版社,1995
    [68] 卜学贤,陈维伦.试管植物的玻璃化现象.植物生理学通讯,1987,5:13-18
    [69] 孔祥生,张妙霞,张益民.甜柿组织培养中玻璃化现象的发生与防治.北方园艺,1999,4:15-16
    [70] 邓成木,刘进平.热带亚热带植物微繁殖.长沙:湖南科学技术出版社,2001
    [71] 姚洪军,罗晓芳,田砚亭.植物组织培养外植体褐变的研究进展.北京林业大学学报,1999,21(3):78-84
    [72] 王续衍,林秦碧.苹果组织培养研究简报.四川农业大学学报,1988,3(1):46-48
    [73] 李师翁,范小峰,卢东平.大果良种沙棘愈伤组织诱导及植株再生的研究.西北植物学报,2001,21(2):262-266
    [74] 徐晓锋.小麦叶中脯氨酸含量测定方法的研究.生物技术,1997,1:40-42
    [75] 王大海,西伯利亚蓼耐盐碱机制初步研究.东北林业大学硕士论文,2004
    [76] 罗广华,王爱国.几种检测超氧化物歧化酶活性反应的比较.植物生理学通讯,1983,5:46-49
    [77] 朱广廉.植物生理学实验.北京:北大出版社,1990
    [78] 菜智军,盐胁迫下转耐盐基因(bet A基因)小黑杨的生理指标检测及耐盐性分析.东北林业大学硕士论文,2004
    [79] 邓运川.盐碱地区绿化好树种——沙枣.中国花卉报,2003,4
    [80] 李康,陶秀冬.大沙枣组织培养及快速繁殖技术研究.新疆农业科学,1996,5:231-233
    [81] 周以良.黑龙江树木志.哈尔滨:黑龙江科学出版社,1986,334-335
    [82] 王志,王淑华,李鑫,王志学,邓春海,王洪奇, 冯键,孙翠焕,朱万芹.黑果腺肋花楸的组织培养繁殖.北方果树,2002,1:10-11
    [83] 孙敬三,桂耀林.植物细胞工程实验技术.北京:科学出版社.1995,403-423
    [84] Sato T, Ide Y, Saito A. Tissue culture technology in rapid clonal Propagation of Japanese White birch. Jpn For Soc, 1986, 68: 343-346
    [85] 袁志发,周静芋.实验设计与分析.北京:高等教育出版社,2000,366-372
    [86] Niu XW. Biological characters of peashrub. Acta Agriculture Boreali-Sinica, 1998, 13 (4): 122-129
    [87] Guo AL, Zhang HS, Gao XX, Feng LQ. Study on the microscopic structure fibermorphology and chemical component of four kinds peashrub. Journal of Innermongolia forestry College, 1998, 20 (1): 13-17
    [88] Zhang YZ. Growth technical and effects of peashrub in the built of eco-environment. Gansu Agri. Sci. and Techn, 2002, 8: 43-44
    [89] Jin ZN, Jin JJ, Jin GZ. Pharm acological action of the extract of Caragana microphylla Lam. Journal of Yanbian Medical College, 1994, 17 (4): 267-270
    [90] 慈忠玲,贺晓,何丽君,黄垫.柠条锦鸡儿愈伤组织的培养和分化.内蒙古林学院学报(自然科学版),1998,4:15-19
    [91] 刘家琼,邱国玉,石庆辉,李风琴.塔克拉玛干沙漠耐旱、耐盐植物种的选择.生态学杂志,1994,13(3):21-24
    [92] 张秀伏.沙坡头沙区锦鸡儿属植物抗旱性研究.中国沙漠,1990,10(2):40-51
    [93] 于春江,丁长廷,李殿波,李金用.绿化树木花楸及其栽培技术.中国林副特产,1998.2:21-22
    [94] Victor Quesada. Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol, 2002, 130: 951-963
    [95] Shalhevet J. Plants under Water and Salt Stress In: L. Fowden, T. Mansfield and J Stoddart Ed. Plant Adoption to Environmental Stress. New York: Chapman and Hall press. 1993: 133-154
    [96] Liu YC, Chang HC. Brackish Water Irrigation and Environmen of Add Region. Gansu: Gansu Science and Technique Press. 1992
    [97] 吕之香,NaCl对小麦苗叶片脯氨酸氧化酶活性和游离脯氨酸累积的影响.植物生理学报,1992,18(4):376-382
    [98] 吕之香,王正刚.盐胁迫下小麦叶片吡咯-5-羧酸还原酶活性对游离脯氨酸积累的影响.植物生理学报,1993,19(2):113-116
    [99] 汤章城.逆境条件下植物脯氨酸累积及其可能意义.植物生理学通讯,1984,1:15-21
    [100] 张显强,张宇斌,王家远,乙引.NaCl胁迫对玉米幼苗叶片蛋白质降解和脯氨酸累积的影响.贵州农业科学2002,30(2):3~4
    [101] 张强.绿优谷对混合盐碱胁迫的生理响应.2004,东北师范大学硕士论文
    [102] 王丽燕,赵可夫.玉米幼苗对盐胁迫的生理响应.作物学报,2005,13(2):264-266
    [103] 杜保国,杨途熙,魏安智,杨锋利.桤叶唐棣组织培养研究.西北植物学报,2005,25(2):400-404
    [104] 王冬梅,黄学林,黄上志.细胞分裂素类物质在组织培养中的作用机理.植物生理学报,1996,32(5):373-377
    [105] 周莉娟,姜秀勇.影响香石竹组培茁玻璃化的若干原因.福建农业学报,1999,102-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700