多过程驱动的随机常微分方程几类终值与边值问题适应解性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文旨在研究多过程驱动的随机常微分方程几类终值与边值问题适应解的性质,其中的驱动过程由三个独立的随机过程组成(两个维纳过程Wt,Bt与一个跳过程Lt),而对应的σ域全体Ft既不单增也不单降,故不构成一般的域流.全文共分三大部分.第一部分,通过证明带跳的一般Skorohod积分意义下的Ito公式和Doleans-Dade公式,首次证明了由Levy过程驱动的倒向双重随机微分方程,当系数函数f与Z有关时的比较定理,我们给出的条件为易于判定的“负跳一致小”条件.第二部分,证明了由Levy过程驱动的倒向随机微分方程在不同Bihari条件下适应解的存在唯一性.第三部分,不同于Pardoux和Peng的鞅表示定理,本文通过扩大解容许范围引入变差逼近的思想,研究随机微分方程两点边值问题适应解的存在性.给出方程适应解存在的充要条件,同时利用构造解序列的方法给出方程的一个适应解.为此全文共分五章.
     第一章给出本学位论文所需要的预备知识,包括Levy过程,Skorohod积分以及Malliavin微分的一些主要结论和性质.
     第二章讨论在金融和偏微分的概率解释中有重要应用价值的,由Levy过程驱动的倒向双重随机微分方程:通过证明上述方程的适应解在Malliavin微分意义下的可微性,给出了一种易于判断的比较定理的存在条件.第一节利用函数逼近的方法,证明了当终值ξ与系数函数满足一定条件时,倒向双重随机微分方程解的高阶矩的存在性(定理2.3.1,定理2.3.2).第二节和第三节,利用Malliavin微分的性质和Picard迭代法,分别证明了倒向双重随机微分方程对Wiener过程{Bt}的一阶、二阶Malliavin导数的存在性,指出解的一阶、二阶Malliavin导数也满足一个线性的倒向双重随机微分方程(定理2.4.1,定理2.5.1),同时也证明了倒向双重随机微分方程的解的一、二阶Malliavin导数的高阶矩的存在性(定理2.4.2,定理2.5.2).第四节,通过证明了带跳的Skorohod积分意义下的Ito公式(定理2.6.1)和Doleans-Dade公式(定理2.6.2),以及对生成Teugels鞅的Levy过程的详细讨论,给出了系数函数f与Z有关时,在“负跳一致小”条件下适应解的比较定理(定理2.6.4).
     第三章讨论由Levy过程驱动的倒向随机微分方程在不同Bihari条件下,适应解的存在唯一性.第一节讨论由Levy过程驱动的倒向双重随机微分方程(Eq.(1)),当系数g满足Lipschitz条件,f满足推广的Bihari条件:|f(t,y1,u1,z1)-f(t,y2,u2,z2)|2≤c(t)k(|y1-y2|2)+K(|u1-u2|2+‖z1-z2‖2)时,利用推广It6公式、Picard迭代法和区间延拓过程,证明了上述方程Ft-适应解的存在唯一性(定理3.2.1).第二节利用推广的Bihari不等式和截断函数,给出了由Levy过程驱动的倒向随机微分方程在局部Bihari条件下解的存在唯一性(定理3.3.2).第三节同样借助推广的Bihari不等式和一些光滑函数,给出了由Levy过程驱动的倒向随机微分方程在单调Bihari条件下解的存在唯一性(定理3.4.1,定理3.4.2).
     第四章引入变差逼近的思想,研究如下形式的随机微分方程的两点边值问题dXt=f(t,Xt)dt+σ(t,Xt)dWt,AX0+BXT=ξ*.给出适应解存在的充分必要条件(定理4.3.1).在f(t,Xt)=ft的简单情况下,通过放宽可行解范围引入控制项ft,把解Xt延拓为(Xt,ft),并利用构造随机序列的方法得到方程的一个解(定理44.1),同时也证明了所构造的解对边值的连续依赖性(定理4.5.1).最后把我们得到解的充要条件分别与Strum-Liouvelle问题(关于正交性条件的例4.6.1)以及Peng关于倒向随机微分方程的“鞅逼近”问题(关于布朗桥的例4.6.2)相比较,说明本文给出的变差适应解的广泛性.
     第五章总结了本学位论文的主要内容,并给出了研究展望.
The purpose of this dissertation is to investigate the properties of the adapted solutions of several kinds of terminal value problems and boundary value problems of stochastic differential equations driven by three mutually independent processes:two continuous Wiener process Wt, Bt, and a Levy process Lt. The correspondingσ-algebra Ft is neither increasing nor decreas-ing, so it does not constitute a general filtration. There are three main contributions. Firstly, by proving the Ito formula and Doleans-Dade formula of the Skorohod integral with jump in the sense of general Skorohod integration, we show a comparison theorem of the backward doubly stochastic differential equation driven by Levy process when the coefficient function f is de-pendent on Z, and the sizes of all negative jumps are uniformly small. To our knowledge, this is the first time that such theorem is suggested. Secondly, we show the existence and uniqueness of the adapted solution of backward stochastic differential equations driven by Levy process under various Bihari conditions. Lastly, different from the martingale representation theorem of Pardoux and Peng, by introducing the idea of variational approximation the existence of the adapted solution of the two-point boundary value problem of the stochastic differential equa-tion is investigated, for which the sufficient and necessary condition is indicated. Meanwhile, an adapted solution of the underlying equation is obtained by constructing a solution sequences. The dissertation is organized as the following.
     Chapter 1 gives some preliminaries for this dissertation, including some results and prop-erties of Levy process, Skorohod integral and Malliavin differential.
     In Chapter 2, we study the backward doubly stochastic differential equations driven by Levy process: which have important applications in finance theory and the probability interpretation of partial differential equations. By discussing the Malliavin differentiability of the solution of the above equation, we draw a comparison theorem of which the assumed conditions can be checked very easily. By methods in approximation of functions, Section 2.1 proves the existence(Theorems 2.3.1 and 2.3.2) of the higher-order moments of the solutions of the backward doubly stochastic differential equations when the terminal valueξand the coefficient functions satisfy certain con-ditions. According to the properties of the Malliavin differential and Picard iteration, Sections 2.2 and 2.3 prove the existence of the first order and second order Malliavin derivatives of the backward doubly stochastic differential equation with respect to the Wiener process{Bt}, re-spectively. One-order and two-order Malliavin derivatives of the solutions are proved to be sat-isfied with a linear backward doubly stochastic differential equation(Theorems 2.4.1 and 2.5.1). Meanwhile, the existence(Theorems 2.4.2 and 2.5.2) of higher-order moments of the first or-der and second order Malliavin derivatives of the solutions of the backward doubly stochastic differential equations are proved respectively. In Section 2.4, the Ito formula(Theorem 2.6.1) and Doleans-Dade formula(Theorem 2.6.2) of the Skorohod integral with jump are proved, the Levy process from which the Teugels martingales are derived is discussed thoroughly. After that, we draw a new comparison theorem(Theorem 2.6.4) for the adapted solution in the sense of that the sizes of all negative jumps are uniformly small when the coefficient function f is dependent on Z.
     The third chapter discusses the existence and uniqueness of the adapted solution of the backward stochastic differential equation driven by Levy process under various Bihari condi-tions. In Section 3.1, we consider the backward doubly stochastic differential equations driven by Levy process(Eq.(1)). When the coefficient g satisfies the Lipschitz condition, and f satis-fies the generalized Bihari condition: |f(t,y1,u1,z1)-f(t,y2,u2,z2)|2≤< c(t)k(|y1-y2|2)+K(|u1-u2|2+‖z1-z2‖2), we can prove the existence and uniqueness(Theorem 3.2.1) of the Ft-adapted solutions of Eq.(1) by the generalized Ito's formula, Picard iteration, and interval extension process. By the generalized Bihari inequality and truncation function, the existence and uniqueness(Theorem 3.3.2) of the solution of the backward tochastic differential equation driven by Levy process under local Bihari conditions are proved in Section 3.2. By the generalized Bihari inequality again and some smooth functions, Section 3.3 proves the same results(Theorem 3.4.1 and 3.4.2) but under monotony Bihari conditions.
     By introducing the idea of variational approximation, Chapter 4 investigates the sufficient and necessary conditions(Theorem 4.3.1) for the existence of the adapted solutions of the two-point boundary value problems of the stochastic differential equation of the following form dXt=f(t, Xt)dt+σ(t, Xt)dWt. AX0+BXT=ξ*. In the simple case of f(t, Xt)=ft, a solution of this equation(Theorem 4.4.1) can be obtained by introducing a control term ft, extending the solution from Xt to (Xt,ft), and construct-ing a solution sequence. Meanwhile, we prove the continuous dependency(Theorem 4.5.1) of the constructed solution on the boundary value. Lastly, the sufficient and necessary con-ditions for the solution we obtained are compared with those of the Strum-Liouvelle prob-lems(Example 4.6.1), and the "martingale approximation" problem(Example 4.6.2) proposed by Peng for backward stochastic differential equations, which show the universality of our variational adapted solution.
     Chapter 5 gives the conclusion and future work.
引文
[1]Bismut J M. An introducttory to duality, optimal stochastic control. SIAM Rev.1978,20:62-78
    [2]Pardoux E, Peng S. Adapted solution of a backward stochastic differential equation. System Control Lett.1990,14:55-61
    [3]El Karoui N, Peng S, Quenez M-C. Backward stochastic differential equations in finance. Math.Fina.1997,7:1-71
    [4]Duffie D, Epstein L G. Stochastic differential utility. Econometrica.1992,60:353-394
    [5]Hamadene S, Lepeltier J-P. Reflected BSDEs and mixed game problem. Stoch. Proc. Appl. 2000,85:177-188
    [6]Hamaden S, Lepeltier JP. Zero-sum stochastic Differential Games and Backward Equa-tions, systems Control Lett.1995,24:259-263.
    [7]Peng S. Backward stochastic differential euqations and applications to optimal control. Appl. Math. Optim.1993,27:125-144
    [8]Mao X. Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients. Stoch. Proc. Appl.1995,58:281-292
    [9]Contantin A. Backward stochastic differential equations with non-Lipschitz coefficients. C. R. Math. Acad. Sci., Soc. R. Can.1995,6:280-282
    [10]Darling R, Pardoux E. Backward SDE with monotonicity and random terminal time. Ann. Prob.1997,25:1135-1159
    [11]Lepeltier J-P, San martin J. Backward stochastic differential equations with continuous coefficient. Stat. Prob. Lett.1997,32:425-430
    [12]Lepeltier J-P, San martin J. Existence for BSDE with superlinear-quadratic coefficient. Stochastic and Stochastic Rep.1998,63:227-240
    [13]Kobylanski M. Backward stochastic differential equations and partial differential equa-tions with quadratic growth. Ann. Prob.2000,28:558-602
    [14]Briand Ph, Carmona R. BSDEs with polynomial growth generators. J. Appl. Math. Stochastic Anal.2000,13:207-238
    [15]Bahlali K. Backward stochastic differential equations with locally Lipschitz coefficient. C. R Acad. Sci. Paris, Ser. t.2001,333(1):481-486
    [16]Bahlali K. Existence, uniqueness and stability of backward stochastic differential equa-tions with locally monotone coefficient. C. R Acad. Sci. Paris, Ser. Ⅰ.2002,335:757-762
    [17]Bahlali K. Multidimensional backward stochastic differential equations with locally Lip- schitz coefficient. Elect. Comm. Probab.2002,7:169-179
    [18]Bender C, Kohlmann M. BSDEs with stochastic Lipschitz condition. J. Appl. Math. Stoch. Anal..2001,1:1-15
    [19]Briand Ph, Delyon B, Hu Y, Stoica L. Lp solutions of backward stochastic differential equations. Stoch. Proc. Appl.2003,108:109-129
    [20]Bahlali K, N'Zi M, BSDEs with stochastic monotone coefficient. J. Appl. Math. Stoch. Anal..2004,4:317-335
    [21]Jia G Y. A class of backward stochstic differential equations with discontinuous coeffi-cients. Statist. Probab. Lett. (2007), doi:10.1016/j. spl.2007.05.028
    [22]Wang Y, Huang Zh. Backward stochastic differential equations with non-Lipschitz coef-ficients. Statistics and Probability Letters.2009,79:1438-1443
    [23]Peng S. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastic Stochastic Rep.1991,37:61-74
    [24]Peng S. A nonlinear Feynman-Kar formula and applications. Proceedings of Symposium of System Sciences and Control Theory, Chen and Yong eds. Singapore:World Scientic, 1992:173-184
    [25]Hu Y. Probabilistic interpretation for a system of quasilinear elliptic partial differential equations with Neumann boundary conditions. Stoch. Proc. Appl.1993,48:107-121
    [26]Ma J, Protter P, Yong J. Solving forward-backward stochastic differential equations explicity-a four step schme. Probab Theory Relat Fields.1994,98:339-359
    [27]Hu Y, Peng S. Solution of forward-backward stochastic differential equations. Probab Theory Relat Fields.1995,103:273-283
    [28]Pardoux E, Zhang S. Generalized BSDEs and nonlinear Neumann boundary value prob-lems. Probab. Theory Relat. Fields.1998,110:535-558
    [29]Barles G, Buckdahn R, Pardoux E. BSDEs and integral-partial differential equations. Stochastics.1997,60:57-83
    [30]Rozkosz A. Backward SDEs and Cauchy problem for semilinear equations in divergence form. Probab. Theory Related Fields.2003,125(3):393-407
    [31]Rozkosz A. On existence of solutions of BSDEs with continuous coefficient. Statist. Probab. Lett.2004,67 (2),249-256
    [32]Lejay A. BSDE driven by Dirichlet process and semilinear parabolic PDE. Stoch. Proc. Appl.2002,97:1-39
    [33]Lejay A. A probabilistic representation of the solution of some quisa-linear PDE with a divergence form operator. Application to existence of weak solutions of FBSDE. Stoch. Process. Appl.2004,110(2):145-176
    [34]Briand Ph, Confortola F. BSDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces. Stoch. Process. Appl.2008,118(5):818-838
    [35]El Karoui N, Kapoudjian C, Pardoux E, Peng S, Quenez M. Reflected solutions of back-ward SDEs and related obstacle problems for PDEs. Ann. Prob.1997,25:702-737
    [36]Ren Y, Xia N M. Generalized reflected BSDE and an obstacle problem for PDEs with a nonlinear Neumann boundary condition. Stochastic Analysis and Applications.2006,24(4); 1013-1033
    [37]Cvitanic J, Karatzas I. Backward SDEs with reflection and dynkin games. Ann. Prob. 1996,24:2024-2056
    [38]Hamadene S, Lepeltier J-P, Matoussi A. Double barrier backward SDEs with continuous coefficient. Backward Stochastic Differential Equations (Pitman Res. Notes Math. Ser.), Longman, Harlow.1997,364:161-175
    [39]Matoussi A. Reflected solutions of backward stochastic differential equations with con-tinuous coefficient. Statist. Probab. Letters 1997,34:347-354
    [40]Ouknine Y. Reflected BSDE with jumps. Stochastic and Stochastic Rep.1998,5:111-125
    [41]Ma J, Cvitanic J. Reflected forward-backward SDEs and obstacle problems with boundary conditions. J. Appl. Math. Stochastic Anal.2001,14:113-138
    [42]Ramasubramanian S. Reflected backward stochastic differential euqations in an orthant. Proc. Indian Acad. Sci. Math. Sci.2002,112:347-360
    [43]Kobylanski M, Lepeltier J-P, Quenez M C, Torres S. Reflected BSDE with superlinear quadratic coefficient. Prob. Math. Stat..2002,22:51-83
    [44]Hamadene S, Ouknine Y. Reflected backward stochastic differential equations with jumps and random obstacle. E. J. Prob.2003,8:1-20
    [45]Bahlali K, Essaky E H, Ouknine Y. Reflected backward stochastic differential equations with locally monotone coefficient. Stoch. Anal. Appl.2004,22:939-970
    [46]Lepeltier J-P, Xu M. Penalization method for reflected BSDEs with one r.c.1.1. barrier. Stat. Prob. Lett.2005,75:58-66
    [47]Ma J, Zhang J F. Representations and regularities for solutions to BSDEs with reflections. Stoch. Proc. Appl.2005,115:539-569
    [48]Lepeltier J-P, Matoussi A, Xu M. Reflected backward stochastic differential euqations un-der monotonicity and general increasing growth conditions. Adv. Appl. Prob.2005,37:134-159
    [49]Hamadene S. Reflected BSDEs with discontinuous barrier and application. Stochastic and Stochastic Rep.2002,74:571-596
    [50]Lepeltier J-P, San martin J. Backward SDEs with two barriers and continuous coefficient: an existence result. J. Appl. Prob.2004,41:162-175
    [51]Essaky E H, Ouknine Y. Backward stochastic differential euqations with two reflecting barriers and jumps. Stoch. Anal. Appl.2005,23:921-938
    [52]Bahlali K, Hamadene S, Mezerdi B. Backward stochastic differential euqations with two reflecting barriers and continuous with quadratic growth coefficient. Stoch. Proc. Appl. 2005,115:1107-1129
    [53]Hamadene S, Hassani M. BSDEs with two reflecting barriers:the general result. Probab. Theory Relat. Fields.2005,132:237-264
    [54]Harraj N, Ouknine Y, Turpin I. Double-barriers-reflected BSDEs with jumps and viscosity solutions of parabolic intergrodifferential PDEs. J. Appl. Math. Stochastic Anal.2005,1:37-53
    [55]Hamadene S, Hassani M. BSDEs with two reflecting barriers driven by a Brownian and a Poisson noise and related Dynkin game. E. J. Prob.2006,5:121-145
    [56]Hamadene S, Hdhiri I. Backward stochastic differential euqations with two distinct re-flecting barriers and quadratic growth generator. J. Appl. Math. Stochastic Anal.2006:1-28
    [57]Briand Ph, Hu Y. Stability of BSDEs with random terminal time and homogenization of semilinear elliptic PDEs. J.Funct.Ana.1998,155:455-4944
    [58]Xu M. Reflected backward SDEs with two barriers under monotonicity and general in-creasing conditions, J. Theor. Probab.,2007,20:1005-1039
    [59]Xu M. Backward stochastic differential equations with reflection and weak assumptions on the coefficients, Stochastic Processes and Their Applications,2008,118:968-980
    [60]Xu M. Sobolev solution for semilinear PDE with obstacle under monotonicity condition, Elec. J. Probab,2008,13:1035-1067
    [61]Tang S, Li X. Necessary condition for optional control of stochastic system with random jumps. SIAM J. Control Optim.1994,32:1447-1475
    [62]Situ R. On solutions of backward stochastic differential equations with jumps and appli-cations. Stoch. Proc. Appl.1997,66:209-236
    [63]Situ R. Backward stochastic differential equations with jumps and applications. Guangzhou:Guangdong Sci. Tech. Press.2000
    [64]Yin J, Mao X. The adapted solution and comparison theorem for backward stochastic dif-ferential equations with Poisson jumps and applications. J. Math. Anal. Appl.2008,346(2): 345-358
    [65]Qin Y, Xia N M, Gao H. Adapted solutions and continuous dependence for nonlinear stochastic diefrential equations with terminal conndition. Chinese Journal of Applied Prob-abilily and Stotistics.2009,23(3):273-284
    [66]陈捷,夏宁茂.带Poisson跳随机微分方程终值与边值问题的适应解.应用数学2004,17:702-717
    [67]谢臻赟,夏宁茂.随机单调条件下带Poisson跳的倒向随机微分方程解的存在唯一性.山西大学学报(自然科学版),2008,31(3):303-310
    [68]林爱红,夏宁茂.由Levy过程驱动的倒向双重随机微分方程在推广Bihari条件下解的存在唯一性.应用数学学报.2011,34(1):81-95
    [69]Nualart D, Schoutens W. Chaotic and predictable representation for Levy processes. Stoch. Proc. Appl.2000,90:109-122
    [70]Nualart D, Schoutens W. Backward stochastic differential equations and Feymann-Kac formula for Levy processes, with applications in finance. Bernoulli.2001,5:761-776
    [71]Matacz A. Financial modeling and option theory with the truncated Levy process. Int J. Theoret. App. Finance.2000,3(1):143-160
    [72]Bahlali K, Eddahbi M, Essaky E. BSDE associated with Levy processes and application to PDIE. J. Appl. Math. Stoc. Anal.2003,16:1-17
    [73]El Otmani M. Generalized BSDE driven by a Levy processes. J. Appl. Math. Stoc. Anal. 2006,1:1-22
    [74]Mordecki E. Perpetual Options for Levy Processes in the Bachelier Model. Proceedings of the Steklov Mathematical Institute.2002,237:256-264
    [75]Mordecki E. Optimal stopping and perpetual options for Levy process. Finance and Stochastic.2002,6:473-493
    [76]Gerber H.U., Shiu E.S.W. Option Pricing by Esscher transforms(with discussion) Trans. Soc. Actuaries.1994,46:99-191
    [77]Leon J.A., Sole J, Utzet F, Vives J. On Levy processes, Malliavin calculus and market models with jumps. Finance and Stochastics.2002,6:197-225.
    [78]Pardoux E, Peng S. Backward doubly stochastic differential equations and systems of quasilinear SPDEs. Probab. Theory Relat. Fields.1994,88:209-227
    [79]Lin Q. A class of backward doubly stochastic differential equations with non-Lipschitz coefficients. Statistics and Probability Letters.2009,79:2223-2229.
    [80]N'zi, Owo, J.M. Backward doubly sStochastic differential with discontinuous coeffi-cients. Statist. Statistics Probability Letters.2009,79(7):920-926
    [81]N'zi, Owo, J.M. Backward doubly stochastic differential with non-Lipschitz coefficeints. Random Oper. Stochastic Equations.2008,16:307-324
    [82]Chen S. Lp Solutions of One-Dimensional backward stochastic differential equations with continuous coefficients. Stochastic Analysis and Applications.2010,28:820-841
    [83]Shi Y, Gong Y, Liu K. Comparison theorem of backward doubly stochastic differential equations and application. Stoch. Anal. Appl..2005,23(1):97-110
    [84]Lin Q. A generalized existence theorem of backward doubly stochastic differential equa-tions. Acta Math. Sin. Engl. Ser..2009,26(8):1525-1534
    [85]Bally V, Matoussi A. Weak solutions for SPDEs and backward doubly stochastic differ-ential equations. J. Theoret. Probab.2001,14:125-164
    [86]Matoussi A,Scheutzow M. Stochastic PDEs driven by nonlinear noise and backward doubly SDEs. J. Theoret. Probab.2002,15:1-39
    [87]Boufoussi B, AsterenJ V, Mrhardy N. Generalized backward stochastic differential equa-tions and SPDEs with nonlinear Neumann boundary conditions. Bernoulli.2007,13:423-446
    [88]Buckdahn R, Ma J. Pathwise stochastic Taylor expansions and stochastic viscosity solu-tions for fully nonlinear stochastic PDEs. Ann. Probab.2002,30:1131-1171
    [89]Buckdahn R, Ma J. Stochastic viscosity solutions for nonlinear stochastic partial differen-tial equations (Part Ⅱ). Stochastic Process. Appl.2001,93:205-228
    [90]BuckdahnR, Ma J. Stochastic viscosity solutions for nonlinear stochastic partial differen-tial equations (Part Ⅰ). Stochastic Process. Appl.2001,93:181-204
    [91]Djehiche B, N'Zi M., Owo J.-M. Stochastic viscosity solutions for SPDEs with contin-uous coefficients. J. Math. Anal. Appl. doi:10.1016/j.jmaa.2010.08.005
    [92]Zhang Q, Zhao H. Pathwise stationary solutions of stochastic partial differential equations and backward doubly stochastic differential equations on infinite horizon. J. Func. Anal 2007,252:171-219
    [93]Zhang Q, Zhao H. Stationary solutions of SPDEs and infinite horizon BDSDEs with non-Lipschitz coefficients. Journal of Differential Equations.2010,248(5):953-991
    [94]Ren Y, Lin A, Hu L. Stochastic PDIEs and backward doubly stochastic differential equa-tions driven by Levy processes. Journal of Computational and Applied Mathematics.2009, 223:901-907
    [95]Hu L, Ren Y. Stochastic PDIEs with nonlinear Neumann boundary conditions and gener-alized backward doubly stochastic differential equations driven by Levy processes. Journal of Computational and Applied Mathematics.2009,229:230-239.
    [96]Zhu Q, Shi Y. Forward-backward doubly stochastic differential equations with Brown motions and Poisson process., www.paper.edu.cn,2007
    [97]Pardoux E, Protter Ph. Two-sided stochastic integral and calculus. Probab. Theor. Rel. Fields.1987,76:15-50
    [98]M.N'ZL, OUKNINE Y. Backwark stochastic differentail equations with jumps involving a subdifferential operator. Random Oper. and Stoch. Equ.2000,8:319-338
    [99]黄志远.随机分析学基础(第二版).科学出版社.2001
    [100]黄志远,严加安.无穷维随机分析引论.科学出版社.1997
    [101]Nualart D, Pardoux E. Stochastic calculus with anticipating integrands. Probab. Theory Relat. Fields.1988,78:535-581
    [102]Malliavin P. Stochastic calculus of variation and Hypoe Uiptic operators. Kyoto:Proc Intern Symp Symp.1976:195-263
    [103]Peng S. Probabilistic interpretation for systems of quavilinezr parabolic partial differen-tial equations. Stochastic, and Stochastic, Reports.1991.37:66-74
    [104]Nualart D. The Malliavin Calculus and Related Topics (2nd). Springer.2006
    [105]Oksendal B. An introduction to Malliavin Caculus with application ti Economics. Course at NHH, Bergen.1997.
    [106]Benhamou E. An application of MaUiavin Calculus to continuous time Asian Options Greeks. Technical report, London School of Eco- nomics.2000
    [107]Miquelon Montero, Arturo Kohatsu-Higa, MaUiavin Calculus applied to Finance, workshopon Stochastic Numerice, Kyoto(Japan)(coot).
    [108]Applebaum D, Levy Processes and Stochastic Calculus, Cambridge University Press. Cambridge.2004.
    [109]Nunno G, oksendal B, Proske F. Malliavin Calculus for Levy Processes with Applica-tions to Finance. Springer-Verlag,2009
    [110]Imkeller P. Malliavin's Calculus and Applications in Stochastic Control and Finance, IM PAN Lectures Notes. Warsaw,2008
    [111]Petrou E. Malliavin calculus in Levy spaces and applications to finance. Electron. J. Probab.2008,13:852-879
    [112]SoleJ, Utzet F, Vives J. Canonical Levy process and Malliavin calculus. Stochastic Pro-cess. Appl.2007,117:165-187.
    [113]Peng S. Stochastic Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim.1992, 30(2):284-304
    [114]Ren Y, Mohamed E. O. Generalized reflected BSDEs driven by a Levyprocess and an obstacle problem for PDIEs with a nonlinear Neumann boundary condition. J. Comput. Appl. Math.2010,233:2027-2043
    [115]Pardoux E, Zhang S. Generalized BSDEs and nonlinear Neumann boundary value prob-lems. Probab. Theory Relat. Fields.1998,110:535-558
    [116]Mohamed E. O. BSDE driven by a simple Levy process with continuous coefficeint. Statistics and Probability Letters.2008,78:1259-1265
    [117]彭实戈.倒向随机微分方程及其应用.数学进展.1997,26:97-112
    [118]Wu Zh, Xu M. Comparison theorems for forward backward SDEs. Statistics and Proba-bility Letters.2009,79:426-435
    [119]Hu Y, Peng S. On the comparison theorem of multidimensional BSDEs. C. R. Math. Acad. Sci. Paris.2006,343:135-140
    [120]Yin J, Mao X. The adapted solution and comparison theorem for backward stochastic differential equations with Poisson jumps and applications. J. Math. Anal. Appl.2008,346 :345-358
    [121]范锡良.由Levy过程驱动的倒向双重随机微分方程的比较定理及其应用,《应用数学学报》.2009,32(4):705-716
    [122]Zhou Q. On comparison theorem and solutions of BSDEs for Levy processes, Acta Mathematicae Applicatae Sinica, English Series.2007,23:513-522
    [123]Barles G, Buckdann R, Pardoux E. BSDE's and integral-partial differential equations. Stochastics.1997,60:57-83
    [124]Roberts S, Shipman J. S. Two-Point Boundary Value Problems:Shooting Mthods. Else-vier, New York,1972
    [125]Ma J, Yong J. Forward-Backward Stochastic Differential Equations and Their Applica-tions. Springer-Verlag,2000
    [126]Xia N. M. The eigenfunction expansion of the solution for the nonhomogeneous Sturm-Liouville problem containing white noise. J. M. A. A.1991,159:88-109
    [127]Xia N. M. The random eigenvalue problem for differential equation containing small white noise. Q. Appl. Math.1988,46:611-630
    [128]夏宁茂.带有白噪声小干扰的随机微分方程二点边值问题的求解.应用数学学报.1985,8:340-350
    [129]Barry M. R., Boyce W. E. Numerical solution of a class of random boundary value problems. J. Math. Anal. Appl.1979,67:96-119
    [130]Lax M. D., Boyce W. E. The method of moments for linear random initial value prob-lems. J. Math. Anal. Appl.1976,53:111-132
    [131]Boyce W. E. Stochastic nonhomogeneous sturm liouville problems. Journal of the Franklin Institute.1966,282:206-215
    [132]Arnold L. Stochastic differential equations:Theory and Applications. Wiley, New York, 1974
    [133]Protter Ph. Stochastic Integration and Differential Equations. Springer-Verlag Berlin Heidelberg, Second Edition,2004.
    [134]Peng S. Backward stochastic differential equation and exact controllability of stochastic control systems. Progr. Natur. Sci.1994,4:274-284
    [135]Bihari I. A generalization of a lemma of Bellman and its application to uniqueness prob-lem of differential equations. Acta Math. Acad. Sci. Hungar.1956,7:71-94
    [136]严加安.鞅与随机积分引论.上海科学技术出版社.1981
    [137]何声武,汪嘉冈,严加安.半鞅与随机分析.科学出版社.1995
    [138]龚光鲁.随机微分方程引论.北京大学出版社.1995
    [139]严加安,彭实戈,方诗赞,吴黎明.随机分析选讲科学出版社.1997
    [140]闫理坦,鲁立刚,许志强.随机积分与不等式.科学出版社.2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700