数控机床的可靠性评估与不完全预防维修及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控机床是先进制造的基础装备,其质量通常包含三个指标:即性能指标、可靠性和维修性指标。其中,性能指标的实现,很大程度上有赖于可靠性和维修性的保障。因此,研究数控机床的可靠性和维修性对于提高其质量具有重要意义。
     目前在数控机床可靠性和维修性分析中存在的问题,主要有以下几个方面:
     (1)现有的大多数数控机床可靠性评估模型过多的依赖甚至滥用不可修产品的统计分布模型;
     (2)缺少针对多故障原因和多故障模式,特别是在使用环境、保养方式、操作水平、维修水平及首次使用时间各异的情况下的可靠性评估技术;
     (3)有关可靠性评估指标的区间估计的研究较少或估计精度过低;
     (4)针对数控机床的预防维修模型较少。
     针对上述问题,本文做了以下工作:
     (1)结合Nelson–Aalen和TTT图形检验方法和统计分析检验方法,提出了不同于不可修产品的多台数控机床时间截尾故障数据的综合趋势检验方法。为了确保评估模型的可靠性和准确性,应用该方法对数控机床进行可靠性分析时,需对故障数据按步骤分别进行趋势检验以及更新过程检验。
     (2)用自助法和非齐次泊松过程方法分别给出了故障后修复如新和修复如旧的数控机床的可靠性评估结果。当数控机床故障后修复如新时,用自助法给出了可靠性模型的参数估计,包括点估计和区间估计。计算结果显示自助法较之传统的回归法,其所得参数的估计区间、标准差及模型标准残差均小于后者;当数控机床故障后修复如旧时,提出了基于随机点过程的多台NC机床时间截尾的可靠性评估的可修系统方法,建立了故障时间的幂律模型。用Fisher信息矩阵法给出了模型参数的点估计和区间估计,同时也给出了NC机床的累积平均故障间隔时间和累积故障强度在截尾时间的点估计和区间估计。Akaike信息准则(AIC)计算结果表明,对于故障时间具有某种单调趋势的NC机床可靠性评估,可修系统方法优于统计分布方法。模型通过了趋势检验和拟合优度检验。
     (3)对于多故障模式和多原因的数控机床可靠性分析,提出了3-参数Weibull多重混合模型。用非线性规划方法解决了混合模型的参数估计难题,该方法以负对数似然函数为优化目标代替求解复杂方程组。采用AIC、Bayes信息准则(BIC)和根均方误差复合准则,优选混合模型重数。通过具体应用,给出了NC机床的可靠性评估结果。结果显示该模型优于单一模型,适合于多故障模式和多原因的数控机床可靠性分析。
     (4)基于AIC和BIC信息准则,解决了多台NC机床可靠性评估模型和评估方法的选择问题。用Fisher信息矩阵法给出了模型参数和机床平均寿命的可靠度及给定可靠度的工作保证时间的区间估计,用Monte Carlo仿真法扩大少样本数据的样本容量,提高了区间估计的精度。结果显示,平均寿命的可靠度及可靠度为90%时的工作保证时间的区间估计长度分别减少了93%、95%。
     (5)给出了Kijima型广义更新过程不完全维修恢复因子的数值解法。推导了Kijima型广义更新过程故障时间的抽样公式,用Monte Carlo方法验证了所提方法的有效性和正确性。结果表明,在可修系统可靠性分析中,广义更新过程模型因考虑了系统的恢复因子,所以其评估结果较普通更新过程模型和幂律非齐次泊松过程模型更接近真实的维修环境,后两者只是广义更新过程模型的特殊情况。
     (6)对处于磨损阶段的设备,在考虑可靠度的情况下,提出了系统任意维修质量的不完全顺序预防维修的混合模型,该模型综合考虑了修复因子和故障率增加因子的影响,并且假设修复因子和故障率增加因子均为服从均匀分布的随机变量,用迭代的方法给出了顺序预防维修时间,以平均费用为目标函数,给出了最佳的维修次数,分析了费用参数对目标函数的影响。结果显示为了满足高可靠性的要求,在预防维修中考虑可靠性是必要的和值得的。
NC machine tools are basic equipments of advanced manufacturing, their quality usually consist of three indices including performance, reliability and maintainability index. Among them, the completeness of performance index partly depends on the guarantee of reliability and maintainability indices. Therefore, it is very important to study the reliability and maintainability of NC machine tools to improve their quality. At present, the main problems of reliability and maintainability analyses of NC machine tools are as follows:
     (1) Many existing models for reliability assessment of NC machine tools are much more rely heavily on or even abuse the statistical distribution model of non-repairable items.
     (2) Lacking of the solution to multiple failure modes and causes, especially to the different operation environment, types of maintenance, skills of maintenance and operation and the first service time.
     (3) Study on interval estimation of reliability assessment indices is still shortage or the accuracy of interval estimation is too low.
     (4) There exist few preventive maintenance models for NC machine tools.
     Aiming at the problems mentioned above, the following work is done:
     (1) Combing Nelson-Aalen and TTT graphical testing methods and statistical method together, a comprehensive trend testing method for failure data of multiple NC machine tools with time truncation is proposed. This method is different from one for non-repairable items. To guarantee the reliability and accuracy of estimated models of reliability analyses for NC machine tools, one should test failure data with trend testing and renewal process testing, respectively.
     (2) By using bootstrap method and non-homogeneous Poisson process method, reliability assessment for NC machine tools are presented when machine tools are restored to‘as good as new’and‘as bad as old’states after a repair, respectively. When machine tools are in‘as good as new’state, a bootstrap method of parameter estimation for reliability model is proposed and the estimators of point and interval are presented, respectively. The proposed method is validated by an application example, it is shown that this method is feasible and effective and the model has a smaller error and higher precision than traditional method; While machine tools are in‘as bad as old’state after a repair, based on stochastic point process, a repairable system approach of reliability evaluation for multi-NC machine tools with time truncation is proposed, and a power law model of failure times is presented. The point and confidence interval estimators of model parameters and reliability indices, such as cumulative MTBF and failure intensity at truncated time, are all given by FM method. The values of AIC show that repairable system approach performs advantage over statistical distribution method when failure times of NC machine tools have monotonic trend in reliability analyses. The proposed model is passed by trend testing and goodness-fit-test, respectively.
     (3) To analyze the reliability of NC machine tools, a 3-parameter Weibull mixture model is proposed. Negative log-likelihood function is used as an optimal objective instead of solving complex system of equations, the problem of parameter estimation of mixture model is solved by a nonlinear programming method. A comprehensive criteria, which includes Akaike information criterion, Bayesian information criterion and root mean squared error, is presented for selecting the number of components of mixture model. The field failure data of 3 NC machine tools are analyzed and the results of reliability assessment, such as the reliability, maintainability and availability etc., are all presented. The results show that the mixture model of 3-parameter Weibull distribution, with advantages over other Weibull models, is suitable for modelling failure data of multiple NC machine tools with multiple failure modes and causes.
     (4) Based on Akaike information criterion (AIC) and Bayesian information criterion (BIC), the problem of model selection and parameter estimation for time-between-failure of multiple NC machine tools with time truncation is solved. Confidence intervals of model parameters, the reliability of mean time between failure (MTBF) and warranty time with 90% reliability are all presented by Fisher Information Matrix method. Monte Carlo simulation method is used to enlarge size of small sample data and improve the accuracy of interval estimation. The results show that interval length of reliability given MTBF and operational time with 90% reliability are all reduced by 95% and 93%, respectively.
     (5) The sampling formulas of failure times for the generalized renewal process (GRP) I and II model are derived and the effectiveness of the proposed method is validated with Monte Carlo simulation method. The results show that the GRP model is superior to the ordinary renewal process and the power law non-homogeneous Poisson process model.
     (6) To determine the optimal maintenance number for a system with random maintenance quality in infinite time horizon, a sequential imperfect preventive maintenance model considering reliability limit is proposed. The proposed model is derived from the combination of the Kijima type virtual age model and the failure rate adjustment model. Maintenance intervals of the proposed model are obtained through an iteration method when both failure rate increase factor and maintenance restoration factor are random variables with a uniform distribution. The optimal maintenance policy is presented by minimizing the long-run average cost rate. A real numerical example for the failures of NC equipment is given to demonstrate the proposed model. Discussion is presented to show how the optimal average cost rate depends on the different cost parameters. The results show that in order to satisfy the practical requirements of high reliability, it’s necessary and worthwhile to consider the system’s reliability limit in preventive maintenance practice.
引文
[1]贾亚洲.提高数控机床可靠性乃重中之重[N].中国工业报, 2009, 10, 26, B01.
    [2] Polonekph A C.数控机床的精度与可靠性[M].李昌琪,遇立基.北京:机械工业出版社, 1987, 4.
    [3] Vasilev V S. Cost efficiency approach to the selection of NC machine tool reliability standards [J]. Soviet Engineering Research, 1985, 5(9): 49-50.
    [4] Chirkov A L, Makarov N V, Gavryushin A I, Plekhanova V M. Enhancing the reliability of NC machines and FMMS by running them in at the manufacturers works [J]. Soviet Engineering Research, 1989, 9(3): 114-115.
    [5] Vershinin B V, Sharin Y S. Ways of increasing the reliability of NC equipment [J]. Soviet Engineering Research, 1987, 7(5): 71-71.
    [6] Gupta Y P, Somers T M. Availability of CNC machines: Multiple-input transfer-function modeling [J]. IEEE Transaction on Reliability, 1989, 38(3): 285-295.
    [7] Arts R H P M, Saxena A, Knapp G M. Estimation of distribution parameters of mixed failure mode data [J]. Journal of quality in maintenance engineering, 1997, 3(2): 120-135.
    [8] Keller A Z, Kamath A R R, Perera U D. Reliability analysis of CNC machine tools [J]. Reliability Engineering, 1982, (3): 449-473.
    [9] Ansell J I, Phillips M J. Practical reliability data analysis [J]. Reliability Engineering and System Safety, 1990, (28): 337-356.
    [10] Lapidus A S, Portman V T, Megavoryan L G. Estimating the reliability of NC machine tools in operation [J]. Machines and Tooling, 1978, 49(10): 9-11.
    [11] Jones J A, Hayes J A. Use of a field failure database for improvement of product reliability [J]. Reliability Engineering and System Safety, 1997(55): 131-134.
    [12] Prickett P W. Integrated approach to autonomous maintenance management [J]. Integrated Manufacturing Systems, 1999, 10(3): 233-242.
    [13] Prickett P W, Johns C. Overview of approaches to end milling tool monitoring [J].International Journal of Machine Tools and Manufacture, 1999, 39(1): 105-122.
    [14] Ahmed J U, Bennett D J. Reliability management of machine tool technology: A case study of current practice [J]. International Journal of Materials and Product Technology, 1996, 11(5): 383-408.
    [15] Kerr D, Pengilley J, Garwood R. Assessment and visualisation of machine tool wear using computer vision [J]. International Journal of Advanced Manufacturing Technology, 2006, 28(7-8): 781-791.
    [16] Way Kuo. An annotated overview of system-reliability optimization [J]. IEEE Transactions on reliability, 2000, 49(2): 176-187.
    [17] Liu H, Makis V. Cutting-tool reliability assessment in variable machining conditions [J]. IEEE Transactions on reliability, 1996, 45(4): 573-581.
    [18] Koshy P. Dumitrescu P, Ziada Y. Novel methods for rapid assessment of tool performance in milling [J]. International Journal of Machine Tools & Manufacture, 2004, 44: 1599–1605.
    [19] Ghosh A. Modeling failure types and failure times of turning and boring machine systems [J]. International Journal of Quality & Reliability Management, 2010, 27(7): 815-831.
    [20] McGoldrick P F, Kulluk H. Machine tool reliability-a critical factor in manufacturing systems [J]. Reliability Engineering, 1986, 14(3): 205-221.
    [21] Repetto E. Reliability of high-speed cutting machine tools [C] // QRM. Proceedings of the 4th International Conference on Quality, Reliability, and Maintenance, England: Oxford, 2002: 219-222.
    [22] Freiheit T, Jack H S. Impact of machining parameters on machine reliability and system productivity [J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2002, 124(2): 296-304.
    [23] Deshpande V S, Modak J P. Maintenance strategy for tilting table of rolling mill based on reliability considerations [J]. Reliability Engineering and System Safety, 2003, 80(1): 1-18.
    [24] Ashayeri J. Development of computer-aided maintenance resources planning (CAMRP): A case of multiple CNC machining centers [J]. Robotics and Computer-IntegratedManufacturing, 2007, 23(6): 614-623.
    [25] Das K, Lashkari R S, Sengupta S. Machine reliability and preventive maintenance planning for cellular manufacturing systems [J]. European Journal of Operational Research, 2007, 183(1): 162-180.
    [26] Gharbi A, KennéJ P, Beit M. Optimal safety stocks and preventive maintenance periods in unreliable manufacturing systems [J]. International Journal of Production Economics, 2007, 107(2): 422-434.
    [27] Kim B S, Kim J S, Lee S H, Song J Y, Lee S W. A study on failure mode analysis of machining centers [J]. Journal of the Korean Society of Precision Engineering, 2001, 18(1): 74-79.
    [28] Kim B S, Lee S H, Song J Y, Lee S W. Reliability assessment of machine tools using a failure mode analysis program [J]. Journal of KSMTE, 2005, 14(1): 15-23.
    [29] Ashweni S. Using failure mode and effects analysis to improve manufacturing processes [J]. Medical Device and Diagnostic Industry, 1993, 15(7): 47-51.
    [30]贾亚洲.提高数控机床可靠性加快振兴装备制造业的关键[J].中国制造业信息化,2006(3): 42-43.
    [31]申桂香,张英芝,薛玉霞,等.基于熵权法的数控机床可靠性综合评价[J].吉林大学学报(工学版), 2009, 39(5): 1208-1211.
    [32] Wang Y Q, Yam R C M, Zuo M J, et al. A comprehensive reliability allocation method for design of CNC lathes [J]. Reliability Engineering and System Safety, 2001, 72(3): 247-252.
    [33]张英芝,申桂香,吴甦,等.随机截尾数控机床三参数威布尔分布模型[J].吉林大学学报(工学版), 2009, 39(2): 378-381.
    [34]张日明.数控装备可靠性信息系统网络平台建设[D].长春:吉林大学, 2006.
    [35]王桂萍.加工中心可靠性及绿色性评价体系与增长技术研究[D].吉林:吉林大学, 2008, 6.
    [36]高萍.基于可靠性分析的复杂设备预防性维修决策研究[D].北京:清华大学, 2008, 6.
    [37]陈琦.基于可靠性的设备维护优化研究[D].天津:天津大学, 2008, 1.
    [38]王涛.数控系统的可靠性设计理论和方法研究[D].天津:天津大学, 2008, 8.
    [39]吴军.基于性能参数的数控装备服役可靠性评估方法与应用[D].武汉:华中科技大学, 2008, 9.
    [40]王灵芝,徐宇工,张家栋.基于设备有效度和可靠度的预防修经济优化模型[J].机械工程学报, 2010, 46(4): 163-168.
    [41]陈凤腾,左洪福.基于可靠性和维修性的航空备件需求和应用[J].机械科学与技术, 2008, 27(6): 779-783.
    [42] Pan E S, Liao W Z, Zhuo M L. Periodic preventive maintenance policy with infinite time and limit of reliability based on health index [J]. J. Shanghai Jiaotong Univ. (Sci.), 2010, 15(2): 231-235.
    [43]韩帮军,范秀敏,马登哲.基于可靠度约束的预防性维修策略的优化研究[J].机械工程学报, 2003, 39(6): 102-105.
    [44]廖雯竹,潘尔顺,奚立峰.基于设备可靠性的动态预防维护策略[J].上海交通大学学报, 2009, 43(8): 1332-1336.
    [45] Ascher H E. Weibull distribution versus Weibull process [C]// Proceedings Annual Reliability and Maintainability Symposium, 1981: 426-429.
    [46] Ascher H E, Feingold H. Repairable systems reliability: Modeling, inference, misconceptions and their causes [M]. New York: Marcel Dekker, 1984.
    [47] Muralidharan K. A review of repairable systems and point process models [J/OL]. ProbStat Forum, 2008, 1: 26–49. http: // www.probstat.org.in.
    [48] Nelson W. An application of graphical analysis of repair data [J]. Quality and Reliability Engineering International, 1998, 14 (1): 49-52.
    [49] Kvaloy J T, Lindqvist B H. TTT-based tests for trend in repairable systems data [J]. Reliability Engineering and System Safety, 1998, 60: 13-28.
    [50] Xie M, Goh T N, Ranjan P. Some effective control chart procedures for reliability monitoring [J]. Reliability Engineering and System Safety, 2002, 77: 143-150.
    [51] Bergman B. On age replacement and the total time on test concept [J]. Scandinavian Journal of Statistics, 1979, 6: 161-168.
    [52] Louit D M, Pascual R, Jardine A K S. A practical procedure for the selection oftime-to-failure models based on the assessment of trends in maintenance data [J]. Reliability Engineering and System Safety, 2009, 94(10): 1618-1628.
    [53]孙进康,郦正能.可修复系统故障数据分析模型与方法研究[J].解放军理工大学学报, 2000, 1(2): 57-62.
    [54] Pulcini G. Modeling the failure data of a repairable equipment with bathtub type failure intensity [J]. Reliability Engineering and System Safety, 2001, 71: 209-218.
    [55] Lewis P A, Robinson D W. Testing for monotone trend in a modulated renewal process [C]//Proschan F, Serfling R J. Reliability and biometry. Philadelphia: SIAM, 1974: 163-182.
    [56] Crow L H. Evaluating the reliability of repairable systems [C]//IEEE Proceedings Annaual Reliability and Maintainability Symposium, 1990: 275-279.
    [57]张英芝,贾亚洲,申桂香,等.基于随机截尾的数控机床故障分布模型研究[J].系统工程理论与实践, 2005, 2: 134-138.
    [58]张海波,贾亚洲,周广文.数控系统故障间隔时间分布模型的研究[J].哈尔滨工业大学学报, 2005, 37(2): 198-200.
    [59]贾志成,许世蒙,胡仲翔.加工中心寿命分布模型的研究[J].兵工学报,2007, 28(3): 366-369.
    [60] Allan R N, Abu-Sheikhah N M. Analysis of reliability data using graphic-based interactive techniques [J]. International Journal of Quality & Reliability Management, 1987, 4(3): 57-70.
    [61] Zhao Y G, Ono T, Kato M. Second-order third-moment reliability method [J]. Journal of structural engineering-ASCE, 2002, 128(8): 1087-1090.
    [62] Huang W, Dietrich D L. An alternative degradation reliability modeling approach using maximum likelihood estimation [J]. IEEE transactions on reliability, 2005, 54(2): 310-317.
    [63] Bai Y, Wen L. Application of Bayesian method based on random weighting in reliability parameter estimation. Computer Engineering and Applications [J]. 2007, 6: 229-233.
    [64]王新洲.非线性模型参数估计理论及应用[M].武汉:武汉大学出版社,2002, 6.
    [65]张英芝,申桂香,贾亚洲,等.数控车床故障分布规律及可靠性[J].农业机械学报,2006, 37(1): 156-159.
    [66]高翔,王若平,夏长高,等.随机变量多重Weibull统计模型及参数最优估计[J].农业机械学报,2006, 37(11): 41-44.
    [67]梅文华.可靠性增长试验[M].北京:国防工业出版社,2003, 5: 90-201.
    [68] Saldanha P L C, Simone E A, Frutoso P F. An application of non-homogenous Poisson point processes to the reliability analysis of service water pumps [J]. Nuclear Engineering and Design, 2001(210): 125-133.
    [69] Weckan G R, Shell R L, Marvel J H. Modeling the reliability of repairable systems in the aviation industry [J]. Computers and Industrial Engineering, 2001(40): 51-63.
    [70] Parrella M L, Vitale C. Bootstrap inference in local polynomial regression of time series [J]. Statistical Methods & Applications, 2007, 16: 117-139.
    [71] Efron B. Bootstrap methods: another look at the jackknife [J]. The Annals of Statistics, 1979, 7(1): 1-26.
    [72] Efron B. Better bootstrap confidence interval [J]. Amer. Statist. Assor, 1987, 82: 171-200.
    [73] Luxhoj J T, Huan-Jyh S. Reliability curve fitting for aging helicopter components [J]. Reliability Engineering and System Safety, 1995, 48: 229-234.
    [74] Efron B, Tibshirani R J. Bootstrap methods for standard errors, confidence intervals and other measures of statistical accuracy [J]. Statistical Science, 1986, 1(1): 54-77.
    [75]谢益辉,朱钰. Bootstrap方法的历史发展和前沿研究[J].统计与信息论坛, 2008, 23(2): 91-97.
    [76] http: //cran.r-project.org
    [77] Crow L H. Confidence interval procedures for the Weibull process with applications to reliability growth [J]. Technometrics, 1982, 24(1): 67-72.
    [78] Burnham K P, anderson D R. Multimodel inference: Understanding AIC and BIC in model selection [J]. Sociological Methods Research, 2004, 33(2): 261-304.
    [79] Kijima M, Sumita N. A useful generalization of renewal theory: counting process governed by non-negative Marcovian increments [J]. Journal of Applied Probability, 1986, 23: 71-88.
    [80] Kijima M. Some results for repairable systems with general repair [J]. Journal of AppliedProbability, 1989, 26: 89-102.
    [81] Yanez M, Joglar F, Modarres M. Generalized renewal process for analysis of repairable systems with limited failure experience [J]. Reliability Engineering and System Safety, 2002, 77: 167-180.
    [82] Kececioglu D B, Wang W. Parameter estimation for mixed-Weibull distribution [C]//Proceedings of the 1998 annual reliability and maintainability symposium. California: CA, 1998: 247-252.
    [83] Attardi L, Guida M, Pulcini G. A mixed-Weibull regression model for the analysis of automotive warranty data [J]. Reliability Engineering and System Safety, 2005, 87: 265-273.
    [84] Wang Y Q, Jia Y Z, Yu J Y, et al. Failure probabilistic model of CNC lathes [J]. Reliability Engineering and System Safety, 1999, 65: 307-314.
    [85] Bucar T, Nagode M, Fajdiga M. Reliability approximation using finite Weibull mixture distributions [J]. Reliability Engineering and System Safety, 2004, 84: 241-251.
    [86] Jiang R, Zuo M J, Li H X. Weibull and inverse Weibull mixture models allowing negative weights [J]. Reliability Engineering and System Safety, 1999, 66: 227-234.
    [87] Guo H, Watson S, Tavner P, Xiang J. Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation [J]. Reliability Engineering and System Safety, 2009, 94: 1057-1063.
    [88] Surucu B, Sazak H S. Monitoring reliability for a three-parameter Weibull distribution [J]. Reliability Engineering and System Safety, 2009, 94: 503-508.
    [89] Patra K, Dey D K. A multivariate mixture of Weibull distributions in reliability modeling [J]. Statistics & Probability Letters, 1999, 45: 225-235.
    [90] Jiang S, Kececioglu D. Graphical representation of two mixed-Weibull distributions [J]. IEEE Transactions on Reliability, 1992, 41: 241-247.
    [91] Jiang R, Murthy D. Modeling failure-data by mixture of 2 Weibull distributions: a graphical approach [J]. IEEE Transactions on Reliability, 1995, 44: 477-488.
    [92] Markovic D, Jukic D, Bensic M. Nonlinear weighted least squares estimation of a three-parameter Weibull density with a nonparametric start [J]. Journal of Computational and Applied Mathematics, 2009, 228: 304-312.
    [93] Jukic D, Bensic M, Scitovski R. On the existence of the nonlinear weighted least squares estimate for a three-parameter Weibull distribution [J]. Computational Statistics and Data Analysis, 2008, 52: 4502-4511.
    [94] Ling J, Pan J. A new method for selection of population distribution and parameter estimation [J]. Reliability Engineering and System Safety, 1998, 60: 247-255.
    [95] Jiang S, Kececioglu D. Maximum likelihood estimates, from censored data, for mixed-Weibull distributions [J]. IEEE Transactions on Reliability, 1992, 41: 248-255.
    [96] Hung W L, Chang Y C, Chuang S C. Fuzzy classification maximum likelihood algorithms for mixed-Weibull distributions [J]. Soft Computing, 2008, 12: 1013-1018.
    [97] Abbasi B, Jahromi A H E, Arkat J, Hosseinkouchack M. Estimating the parameters of Weibull distribution using simulated annealing algorithm [J]. Applied Mathematics and Computation, 2006, 183(1): 85-93.
    [98] Richardson S, Green P J. On Bayesian analysis of mixtures with an unknown number of components [J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 1997, 59 (4): 731-758.
    [99] Tsionas E G. Bayesian analysis of finite mixtures of Weibull distributions [J]. Communications in Statistics-Thoery and Methods, 2002, 31(1): 37-48.
    [100] Mazzuchi T A, Soyer R. Assessment of machine tool reliability using a proportional hazards model [J]. Naval Research Logistics, 1989, 36(6): 765-777.
    [101] Merrick J R W, Soyer R, Mazzuchi T A. A Bayesian semiparametric analysis of the reliability and maintenance of machine tools [J]. Technometrics, 2003, 45(1): 58-69.
    [102] Kim B S, Lee S H, Kim J S. Reliability assessment approach using failure mode analysis in machining center [J]. Key Engineering Materials, 2006, 321-323, pt. 2: 1535-1538.
    [103] Wu J, Deng C, Shao X Y, Xie S Q. A reliability assessment method based on support vector machines for CNC equipment [J]. Science in China, Series E: Technological Sciences, 2009, 52(7): 1849-1857.
    [104] Hsu B M, Shu M H. Reliability assessment and replacement for machine tools under wear deterioration [J]. International Journal of Advanced Manufacturing Technology, 2010, 48: 355-365.
    [105] Huang H I, Lin C H, Ke J C. Parametric nonlinear programming approach for a repairable system with switching failure and fuzzy parameters [J]. Applied Mathematics and Computation, 2006, 183: 508-517.
    [106] Franco M, Vivo J. Constraints for generalized mixtures of Weibull distributions with a common shape parameter [J]. Statistics and Probability Letters, 2009, 79: 1724-1730.
    [107] Alqam M, Bennett R M, Zureick A. Three-parameter vs. two-parameter Weibull distribution for pultruded composite material properties [J]. Composite Structures, 2002, 58: 497-503.
    [108] Zhang M H, Cheng Q S. Determine the number of components in a mixture model by the extended KS test [J]. Pattern Recognition Letters, 2004, 25: 211-216.
    [109] Burnham, Anderson. Model selection and multimodel inference: A practical information-theoretic approach [M]. Verlag: Springer, 2nd edition, 2002.
    [110] Johnson L G. Theory and technique of variation research [M]. Amsterdam: Elsevier, 1964.
    [111] Johnson L G. The statistical treatment of fatigue experiments [M]. Amsterdam: Elsevier, 1964.
    [112] Wang W D. Refined rank regression method with censors [J]. Quality and Reliability Engineering International, 2004, 20(7): 667-678.
    [113] Dai Y, Zhou Y F, Jia Y Z. Distribution of time between failures of machining center based on type ? censored data [J]. Reliability Engineering and System Safety, 2003, 79: 375-377.
    [114] Wang Y Q, Yam R C M, Zuo M J. A multi-criterion evaluation approach to selection of the best statistical distribution [J]. Computers & Industrial Engineering, 2004, 47: 165-180.
    [115]贺国芳,等.可靠性数据的收集与分析[M].北京:国防工业出版社,1997.
    [116]张英芝,贾亚洲,申桂香,等.数控机床故障分布的灰关联分析[J].农业机械学报, 2004, 35(6): 195-197.
    [117]王金武,刘家福,许仲祥.履带式拖拉机可靠性与维修性的分析[J].农业机械学报, 2004, 35(4): 81-83.
    [118] Akaike H. Information theory and an extension of the maximum likelihood principle [C] // Petrov B N, Csaki F. Proc. Second Int. Symp. on Information Theory. Budapest: Akademiai Kiado, 1973: 267-281.
    [119] Sayama S, Sekine M. Weibull distribution and K-distribution of sea clutter observed by X-band radar and analyzed by AIC [J]. IEICE Transactions on Communications, 2000, E83B (9): 1978 -1982.
    [120] Adrian E, Raftery. Bayes factors and BIC: Comment on‘A critique of the Bayesian information criterion for model selection’[J]. Sociological Methods Research, 1999, 27(3): 411-427.
    [121] Zhang L F, Xie M, Tang L C. A study of two estimation approaches for parameters of Weibull distribution based on WPP [J]. Reliability Engineering and System Safety, 2007, 92: 360-368.
    [122] Escobar L A, Meeker W Q. The asymptotic equivalence of the fisher information matrices for type I and type II censored data from location-scale families [J]. Communications in statistics theory and methods, 2001, 30(10): 2211-2225.
    [123] Park S, Balakrishnan N, Zheng G. Fisher information in hybrid censored data [J]. Statistics and Probability Letters, 2008, 78: 2781-2786.
    [124] Blischke W, Murphy D. Warranty cost analysis [M]. NewYork: Marcel Dekker; 1994.
    [125] Henderson S G. Estimation for nonhomogeneous Poisson processes from aggregated data [J]. Operations Research Letters, 2003, 31: 375-382.
    [126] Majeske K D. A non-homogeneous Poisson process predictive model for automobile warranty claims [J]. Reliability Engineering and System Safety, 2007, 92: 243-251.
    [127] Syamsundar A, Naikan V N A. Mathematical modelling of maintained systems using point processes [J]. IMA Journal of Management Mathematics, 2009, 20: 275-301.
    [128] Kaminskiy M, Krivtsov V. A Monte Carlo approach to repairable system reliability analysis [M]. Probabilistic Safety Assessment and Management, New York: Springer, 1998: 1063-1068.
    [129] Kaminskiy M, Krivtsov V. G-Renewal process as a model for statistical warranty claim prediction [C]// Proceedings of the annual reliability and maintainability symposium. Los Angeles: CA, 2000: 276-280.
    [130] Krivtsov V. A Monte Carlo approach to modeling and estimation of the Generalized renewal process in repairable system reliability analysis [D]. Maryland: University of Maryland, 2000.
    [131] Jacopino A, Groen F, Mosleh, A. Modeling imperfect inspection and maintenance in defense aviation through Bayesian analysis of the KIJIMA type I General Renewal Process (GRP) [C]// Proceedings of Annual Reliability and Maintainability Symposium, 2006: 470-475.
    [132] Veber B, Nagode M, Fajdiga M. Generalized renewal process for repairable systems based on finite Weibull mixture [J]. Reliability Engineering and System Safety, 2008, 93: 1461-1472.
    [133] McCullough B D, Wilson B. On the accuracy of statistical procedures in Microsoft Excel 2003 [J]. Computational Statistics and Data Analysis, 2005, 49 (4): 1244-1252.
    [134] Pascual R, Ortega J H. Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts [J]. Reliability Engineering and System Safety, 2006, 91: 241-248.
    [135] Rivas A, Gomez-Acebo T, Ramos J C. The application of spreadsheets to the analysis and optimization of systems and processes in the teaching of hydraulic and thermal engineering [J]. Computer Applications in Engineering Education, 2006, 14: 256-268.
    [136] Nash J C. Teaching statistics with Excel 2007 and other spreadsheets [J]. Computational Statistics and Data Analysis, 2008, 52(10): 4602-4606.
    [137] Jacopino A, Groen F, Mosleh A. Behavioural study of the general renewal process [C]// Proceedings of the annual reliability and maintainability symposium. Losangeles, 2004: 237-242.
    [138] Jacopino A. Generalization and Bayesian solution of the general renewal process for modeling the reliability effects of imperfect inspection and maintenance based on imprecise data [D]. Maryland: University of Maryland, 2005.
    [139] Uematsu K, Nishida T. Branching non-homogeneous Poisson process and its application to a replacement model [J]. Microelectronics and Reliability, 1987, 27: 685-691.
    [140] Mettas A, Zhao W. Modeling and analysis of repairable systems with general repair[C]// Proceedings of the annual reliability and maintainability symposium. Virginia, 2005: 176-182.
    [141] Pham H, Wang H. Imperfect Repair [J]. European Journal of Operational Research, 1996, 94: 425-438.
    [142] Kijima M, Morimura H, Suzuki Y. Periodical replacement problem without assuming minimal repair [J]. European Journal of Operational Research, 1988, 37: 194-203.
    [143] Guo R, Ascher H E, Love C E. Generalized models of repairable systems—A survey via stochastic processes formalism [J]. ORiON, 2000, 16(2): 87-128.
    [144] Doyen L, Gaudoin O. Classes of imperfect repair models based on reduction of failure intensity or virtual age [J]. Reliability Engineering and System Safety, 2004, 84: 45-56.
    [145] Liu X, Makis V, Jardine A K S. A replacement model with overhauls and repairs [J]. Naval Research Logistics, 1995, 42: 1063-1079.
    [146] Nakagawa T. A summary of imperfect preventive maintenance policies with minimal repair [J]. RAIRO Operations Research, 1980, 14: 249-255.
    [147] Lie C H, Chun Y H. An algorithm for preventive maintenance policy [J]. IEEE Transactions on Reliability, 1986, 35(1): 71-75.
    [148] Nguyen D G, Murthy D N P. Optimal preventive maintenance policies for repairable systems [J]. Operations Research, 1981, 29(6): 1181-1194.
    [149] Nakagawa T. Periodic and sequential preventive maintenance policies [J]. Journal of Applied Probability, 1986, 23: 536-542.
    [150] Nakagawa T. Sequential imperfect preventive maintenance policies [J]. IEEE Transactions on Reliability, 1988, 37(3): 295-298.
    [151] Lin D, Zuo M J, Yam R C M. General sequential imperfect preventive maintenance models [J]. International Journal of Reliability Quality and Safety Engineering, 2000, 7: 253-266.
    [152] Lin D, Zuo M J, Yam R C M. Sequential imperfect preventive maintenance models with two categories of failure modes [J]. Naval Research Logistics, 2001, 48: 172-182.
    [153] Jayabalan V, Chaudhuri D. Cost optimization of maintenance scheduling for a system with assured reliability [J]. IEEE Transactions on Reliability, 1992, 41(1): 21-25.
    [154] Zhao X J, Xi L F, Lee J. Reliability-centered predictive maintenance scheduling for acontinuously monitored system subject to degradation [J]. Reliability Engineering and System Safety, 2007, 92: 530-534.
    [155] Liao W Z, Pan E S, Xi L F. Preventive maintenance scheduling for repairable system with deterioration [J]. Journal of Intelligent Manufacturing, 2010, 21: 875-884.
    [156] Wu S, Clements-Croome D. Preventive maintenance models with random maintenance quality [J]. Reliability Engineering and System Safety, 2005, 90: 99-105.
    [157] Coetzee J L. The role of NHPP models in the practical analysis of maintenance failure data [J]. Reliability Engineering and System Safety, 1997, 56: 161-168.
    [158] Yu J W, Tian G L Tang M L. Statistical inference and prediction for the Weibull process with incomplete observations [J]. Computational Statistics & Data Analysis, 2008, 52(3): 1587-1603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700