铁铝金属间化合物—四方氧化锆陶瓷基复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四方氧化锆(TZP)陶瓷是陶瓷材料中室温力学性能最高的一种材料,但TZP材料除了具有陶瓷材料所固有的脆性之外,由于应力诱导相变对温度的敏感性,在高温下t-ZrO_2的稳定性增高,导致相变增韧失效,致使材料的强度和韧性随温度上升而急剧下降。加之在低温环境下时效导致强度和韧性下降(低温老化)、及由低导热率和高热膨胀系数引起的较差的抗热震性能等缺点大大削弱了其与金属材料的竞争优势,限制了其的规模开发和应用。目前国内外针对于TZP的弱点采取了一系列措施,如利用高模量高强度的晶须、颗粒及片晶与TZP复合。这些措施虽在一定程度上改善了TZP材料的中高温性能,但由于增韧相和基体的热膨胀系数、弹性模量的差异太大,在基体中产生较大的应力,往往导致室温力学性能的下降。
     寻求一种新的复合思路和方法,进一步改善TZP的力学性能,无疑对拓宽其应用领域,增加其与金属材料的竞争力具有重要意义。
     利用Fe_3Al金属间化合物这种“半陶瓷材料”的高温强度、高温蠕变和抗氧化耐腐蚀性能优于大部分金属材料、韧性优于陶瓷材料的特性,并根据Fe_3Al较ZrO_2高的韧性、与之相近的热膨胀系数、较高的热导率及金属间化合物所特有的在一定温度范围内强度随温度升高的特性,可望在增韧的同时改善ZrO_2的抗热震性能,依据这一思路,设计制备了新型ZrO_2(3Y)/Fe_3Al复合材料。并对复合材料制备工艺、微观结构、力学性能及增韧机制进行了系统研究。本论文主要研究内容如下:
     首先,根据热力学原理考察增韧相Fe-Al金属间化合物与基体ZrO_2的化学相容性,预测增韧相与基体可能的化学反应性,从而确定适宜的Fe-Al金属间化合物种类和适宜的工艺条件,为降低乃至抑制界面反应提供理论依据。热力学计算结果表明,当用Al原子百分比大于42%的Fe-Al金属间化合物(Fe-42~50at%Al)用作增韧相时,将与ZrO_2基体发生化学反应,生成Al_2O_3和ZrAl_2;而Al原子百分比小于42%的Fe_3Al金属间化合物(Fe-28at%Al)则不易与基体发生化学反应。从化学相容性的角度考虑,Fe_3Al是较为适宜的增韧相。
     采用机械合金化制备纳米Fe-Al金属间化合物粉体,并借助XRD、SEM、TEM及DSC等测试手段,研究了机械合金化及低溫退火过程中的组织结构演变、Fe_3Al粉体烧结后的块体材料的微观结构及力学性能。研究表明,Fe、Al元素粉末在机械合金化过程中形成无序α-Fe过饱和固溶体。球磨过程中晶粒细化和微观应变同时存在,且微观应变随球磨时间增大而增大。分析表明,球磨50h的Fe-28Al粉体在800℃退火过程中,
Tetragonal ZrO_2 (TZP) possesses the most excellent mechanical properties among ceramics. However, The intrinsic low fracture toughness of ceramic, mechanical properties dramatically decrease with increasing temperature due to the t-ZrO_2 to m-ZrO_2 transformation toughening effect decreasing at higher temperature with increasing of t-ZrO_2 phase stability, poor thermal shock resistance induced by high thermal expansion coefficient and low thermal conductivity as well as the severe strength degradation after exposure to low temperature, have weaken the predominance competing with metal, and thus largely limited the actual application of TZP ceramics. Various methods have been applied to improve the properties, and composite technique that secondary reinforcing phase with high modules and strength such as whiskers, particles, platelets are dispersed in matrix, have improved the mid and high temperature properties, unfortunately, the room temperature properties declined due to the high stress in matrix producing by the thermal mismatch. Exploiting a new approach to improve the properties of TZP is significant for widening its actual application.Fe_3Al, an intermetallic comparing to 'semi-ceramic material', with more excellent high temperature strength, high temperature creep resistance and oxidation resistance compared with most metal, and with higher fracture toughness compared with ceramics. Its higher fracture toughness and thermal conductivity, similar thermal expansion coefficient compared with monolith ZrO_2 make it possible to improve the fracture toughness as well as the thermal shock resistance. According to above characteristic of Fe_3Al, a novel composite—ZrO_2 (3Y)/Fe_3Al has been suggested in this thesis, and the preparation technology, microstructure, mechanical properties and toughening mechanism were investigated. The following works haven been developed.The chemically compatibility of iron aluminide intermetallic with zirconia matrix were analyzed by thermodynamic theory to predict the chemical reaction between matrix and toughening phase, and thus to provide the academic evidence depend on which to choose the appropriate Fe-Al intermetallic and preparation technology to depress baneful interface reaction. The results show that the chemical interaction between iron aluminide intermetallic and zirconia matrix wouldn't take place when Al <42at%, and interface reaction production, Al_2O_3 and ZrAl_2 will produced when Al>42at%. From this point, Fe_3Al is appropriate toughened phase for ZrO_2 matrix.Nano-Fe_3Al powders were prepared by mechanical alloying technology. The structural evolution of Fe-Al elemental powders during mechanical alloying process under the protection of argon atmosphere and low temperature annealing process, and the microstructure and mechanical properties of bulk Fe_3Al have been investigated by means of XRD, SEM, TEM and DSC. The results show that disordered a-Fe solid solution formed during milling. The reduction of crystal size and the increase of microstrain exist simultaneity, and the microstrain increased with the increasing of mill time. The disorder a-Fe solid solution milled for 50h translates to order DO_3 structure through Al atom order rearrangement and removing of APS domains during annealing at 800 ℃. The bulk Fe_3Al were prepared by hot-pressed vacuum sintering. The room compressive yield strength, compressive yield strain and hardness (HRC)
    were 1900 MPa, 14% and 61 respectively. The room bending strength and fracture toughness were 1300 MPa and 49 MPam1/2. The elevated room mechanical properties result from the effects of fine grain and homogeneous structure effects. The successful preparing of powder and bulk are important for the preparing of ZrO2 (3 Y)/Fe3Al composite.From both toughening and reinforcing viewpoint, sub-micron ZrO2 (3Y) and micron Fe3Al are selected as matrix and toughen phase respectively. ZrO2 (3Y)/Fe3Al composites were prepared by hot-pressed vacuum sintering. Densification behavior of ZrO2(3Y)/Fe3Al composites were investigated under hot pressing. The results show that the grain growth rate of Fe3Al is higher than that of ZrC>2. The apparent activity energies of grain growth are 212KJ/mol and 250KJ/mol for Fe3Al and ZrO2 respectively. In the stage of hot pressing, the mass and quick deformation of specimens occur in 20min from the beginning of putted on pressure, after that, deformation rate increase slightly with the increasing of holding pressure time. The quick densification of specimens occur when the liquid formed at 1340°C. The slippage between particles become easy due to the decreasing viscosity, and thus accelerates the process of densification. The relatively density of composites reach nearly 100% under hot pressing sintering at 1350°C, holding 30min.The fracture toughness and bending strength of ZrO2(3Y)/Fe3Al composites increase with the increasing of Fe3Al content. The au KiC and hardness are 1321MPa, 36MPa ? m1/2 and 88HRA respectively when Fe3Al content is 40vol%. The K\c value of composite is 2.6 times as that of ZrO2(3Y), and o( increase 29% compared with ZrO2(3Y). The hardness of composites decline slightly with the increasing of Fe3Al content due to the pin effect of interface and reinforcement effect brought about by intragranular ZrO2.The influence of Fe3Al content on the phase stability of t-ZrO2 was investigated by XRD. Due to the compatible effect of dropped elastic module by addition Fe3Al and the thermal mismatch between matrix and toughening phase, which induced radial compressive stress of ZrO2, the phase stability of t-ZrO2 decrease with the increasing of Fe3Al content. The degressive degree of the phase stability of t-ZrO2 is not obviously, the t-ZrO2 content decrease from 91% for ZrO2 to 85% for composites.The microstructures of composites were investigated by SEM, TEM, EDS and HREM. Most of the ZrO2 and Fe3Al grains had an equiaxed morphology and that part of the Fe3Al was clubbed. The average grain sizes of the ZrO2 and the Fe3Al were 350 nm and lum, respectively. ZrO2 and A12O3 particles were observed in Fe3Al grain. The order degree of Fe-Al intermetallics is not uniform, most of Fe-Al intermetallic with DO3 structure, where part with B2 structure. The HREM image of ZrO2-Fe3Al interface along the [001] Fe3Ai//[0H] Z102projection shows that the interfaces are very clean, and no reaction phase existed at the interface. The atom arrangement beside interface between Fe3Al and ZrO2 is partly corresponding, existing at semicoherent state. The mismatch degree 5 of spacing between planes in crystal is 30%, and dislocation induced by mismatch is observed at interface. Due to the discrepancy of thermal expansion coefficient between ZrO2 and Fe3Al is small, accordingly, the residual thermal stress in interface is small, and the residual strains layer in interface, which always observed in most
    metal-ceramics composites, are not observed in ZrO2 (3Y)/Fe3Al composites, and this is help for the obtain of high strength. Radial dislocations produced by thermal mismatch were observed around intragranular ZrO2 particles in Fe3Al. The HREM image indicates that intragranular ZrO2 have not orientation dependence with Fe3Al, the interface of intragranular ZrO2-Fe3Al is non-coherent interface.Base on known theories on phase transformation toughening and bridging toughening, the R-curve of ZrO2 (3Y)/Fe3Al composites was obtained by using indentation crack growth method, and the crack growth resistance behavior were quantificationally investigated through measuring the phase transformation zone height (h) and monoclinic amount in fracture surfaces (Vf) by Raman spectra and XRD respectively. The results show that phase transformation zone height (h) and monoclinic amount in fracture surfaces (Vf) increase with the increasing of Fe3Al content, indicating the elevated phase transformation toughening effect. Due to the compatible effect of stress-induced transformation toughening and crack bridging, ZrO2(3Y)/Fe3Al composites have more obvious R curve behavior than monolith ZrO2. The figure of R curve of ZrO2 (3Y)/Fe3Al composites is steeper, and the X is bigger than those of monolith ZrO2, indicating that ZrO2 (3Y)/Fe3Al composites process higher security in actual application than monolith ZrO2. From the results of the quantificationally analysis of toughening effects, electron density calculation as well as observation of interface and fracture surface by HREM and SEM, the following conclusions can be drawn: the appropriate and favourable interface bonding is the main reason for the consistent between theoretical predict and measured values.Thermal shock resistance behavior of monoclinic ZrO2(3Y)and ZrO2 (3 YyFe^l composites have been investigated by residual strength method and indentation-quench technique respectivly. The interrelation between thermal shock resistance, property parameter and R-curve behavior have been investigated by the calculating of thermal shock resistance parameter (/?> R'and R"" ) . The pattern of indentation crack growth under thermal shock was also investigated. The results show that the critical temperature difference (ATc) increased from 220°C for ZrO2(3Y) to 450°C for ZrO2(3Y)/30vol%Fe3Al composite. The higher fracture toughness, thermal conductivity and lower elastic modulus and Poisson's ratio of ZrO2 (3Y)/Fe3Al composite compared with monolith ZrO2 can relax the thermal stress, and absorb more elastic strain energy without fracture, and then the thermal shock fracture resistance improved .The higher fracture toughness will increase the barriers of crack propagation, and then the thermal shock damage resistance improved.ZrO2 (3Y)/Fe3Al exhibit an improved mechanical strength at mid and high temperature. The bending strength of ZrO2(3Y)/30vol%Fe3Al composite up to 670MPa at 800°C.This should be due to not only the retained crack bridging effect of Fe3Al before 800 °C,which offsetting the decline of phase transformation at increasing temperature, but also the decreasing of restricted stress suppressing phase transformation induced by releasing of residual thermal redial compress stress effect at ZrO2 before 800 °C.Summarizing the above results, the preparation, mechanical property and microstructure of the ZrO2 (3Y)/Fe3Al composite are first reported in this paper internationally. Above studies also provide the firmly theoretical foundation for the practical application of it. The ZrO2 (3Y)/Fe3Al composite can be
引文
1 T.K. Gupta, J.H. Bechtold, R.C. Kuznicki. Stabilization of tetragonal phase in polycrystalline zirconia. J. Mater Sci., 1977, 12: 2421-2426.
    2 T.K. Gupta. Sintering of tetrangonal zirconia and its Characteristics. Sci. Sinering, 1978, 10(3): 205-216.
    3 T. Masaki. Mechanical properties toughened ZrO_2-Y_2O_3 ceramics. J. Am. Ceram. Soc., 1986, 69(8): 634-640.
    4 郭景坤.关于先进结构陶瓷的研究.无机材料学报,1999,14(2):193-200.
    5 M.V. Swain, L.R. F. Rose. Strength limitation of transformation- toughened zironia alloys. J. Am. Ceram. Soc., 1986, 69(7): 511-518.
    6 T. Sato, S. Ohtake, M. Shimada. Transformation of yttria partially stabilized zirconia by low temperature annealing in air. J. Mater. Sci., 1985, 20: 1466-1470.
    7 I. Masayuki, S. Tsugio, E.Tadashi. Grain-size dependence of thermal-shock resistance of yttria-doped tetragonai zirconia polycrystals. J. Am. Ceram. Soc., 1990, 73(8): 2523-25.
    8 S.E Dougherty, G. Nieh, J. Wadsworth. Mechanical properties of a 20 vol% SiC whisker-reinforced, yttria-stabilized, tetragonal zirconia composite at elevated temperature. J. Mater. Res., 1995, 10(1): 113-118.
    9 J. Hong, L. Gao, B.A. Shaw, D.P. Thompson. SiC platelet and SiC platelet-alumina reinforced TZP matrix composites. Br. Ceram. Trans., 1995, 94(5): 201-204.
    10 X. Miao, W.M. Rainnforth, W.E. Lee. Dense zirconia-SiC platelet composites made by pressureless sintering and hot pressing. J. Eur. Ceram. Soc., 1997, 17: 913-920.
    11 N.S. Stoloff. Iron aluminides: present status and future prospects. Mater. Sci. Eng., 1998, A258: 1-14.
    12 E. Ryshkewitch, Oxide ceramics: physical chemistry and technology; pp. 350-396. Academic Press, New York, 1960.
    13 A.G Evans, R.M. Cannon. Toughening of brittle solid by Martensitic transformations. Acta Mater, 1986, 34(5): 761-800.
    14 A.G. Evans. Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc., 1990, 73(2): 187-206.
    15 R.H. Hannink, P.M. Kelly, B.C. Muddle. Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc., 2002, 83(3): 461-487.
    16 D.J. Green, R.H.J. Hannink, M.V. Swain. Transformation toughening of ceramics. CRC Press, Boca Raton, FL, 1989.
    17 N. Claussen, M. Ruhle, A.H. Yanagida (Eds.), Advances in ceramics, Vol. 12, science and technology of zirconia Ⅱ. American Ceramic Society, Columbus, OH, 1985.
    18 M.V斯温.陶瓷的结构与性能,北京:科学出版社.1998:101.
    19 H.G. Scott. Phase relationships in the zirconia-yttria system. J. Mater. Sci., 1975, 10: 1527-35.
    20 Y. Lee, D.J. Kim, B.Y. Kim. Influence of alumina particle size on fracture toughness of (Y, Nb)-TZP/Al_2O_3 composites. J. Eur Ceram. Soc., 2002, 22: 2173-2179.
    21 F.F. Lange. Transformation toughening Part 1. Size effects associated with the thermodynamics of constrained transformations. J. Mater Sci., 1982, 17: 225-234.
    22 M.V. Swain. Grain-size dependence of toughness and transformability of 2mol% Y-TZP ceramic. J. Mater. Sci. Lett., 1986, 5: 1159-1162.
    23 高濂.严东升,郭景坤.Y-TZP陶瓷中ZrO_2颗粒大小对相变增韧的影响.中国科学(A),1988,1:95-100.
    24 施剑林,李包顺,陆正兰.3Y-TZP多晶材料密度、断裂相变与力学性能的相互关系.材料研究学报,1996,10(1):5156.
    25 A.B. Leon, Y. Morikawa, M. Kawahara, M.J. Mayo. Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta. Mater, 2002, 50: 4555-4562.
    26 D.Casellas, F.L. Cumbrera, F. Sanchez, W. Forsling. On the transformation toughening of Y-ZrO_2 ceramics with mixed Y-TZP/PSZ microstructures. J. Eur Ceram. Soc., 2001, 21: 765-777.
    27 A.H. Heuer. Transformation toughening in ZrO_2-containing ceramics, J. Am. Ceram. Soc., 1987, 70(10): 689-98.
    28 Y. Takano, M. Yoshinaka, K. Hirota. Mechanical properties of CoAl materials with the combined additions of 3Y-TZP and Al_2O_3. J. Am. Ceram. Soc., 2001, 84(10): 2445-2447.
    29 P. Zwigl. D. Dunand. Transformation-mismatch plasticity of NiAl/ZrO_2 composites—finite-element modeling. Mater Sci. Eng., 2002, A335: 128-136.
    30 A. Kitaoka, K. Hirota, M. Yoshinaka. Toughening and strengthening of NiAl with Al_2O_3 by the addition of 3Y-TZP. J. Am. Ceram. Soc., 2000, 83 (5): 1311-1313.
    31 M. Nagashima, K. Maki, M. Hayakawa. Fabrication of Al_2O_3/ZrO_2 micro/nano-composite prepared by high energy ball milling, Materials Transactions, 2001, 42(6): 1119-1123.
    32 H. Tomaszewski, M. Boniecki, H. Weglarz. Effect of grain size and residual stresses on R-curve behavior of alumina based composites. J. Eur Ceram. Soc., 2001, 21: 1021-1026.
    33 N. Claussen, K.L. Weisskopf, M. Ruhle. Tetragonal zirconia polycrystals reinforced with SiC whiskers. J. Am. Ceram. Soc., 1986, 69(3): 288-292.
    34 沈志坚,李廷凯,丁子上.Y-TZP/SiC_W复合材料的微观结构与力学性能。硅酸盐学报,1992,20(3):223-229.
    35 黄勇,张宗涛,江作昭.晶须补强陶瓷基复合材料界面研究进展.硅酸盐学报,1996,24(4):451-457.
    36 林广涌,雷廷权,周玉.晶须增韧和相变增韧复合作用的机制与效果.兵器材料科学与工程,1995,18(2):11-15.
    37 S.E Dougherty, G. Nieh, J. Wadsworth. Mechanical properties of 20vol% SiC whisker-reinforced, yttria-stabilized, tetragonal zirconia composite at elevated temperatrie. J. Mater Res., 1995, 10(1): 113-118.
    38 Z. Ding, R. Oberacker. H. Frei, F. Thummler. Consolidation of Y-TZP/SiC particulate composites by sintering and containerless post-HIPing. J. Eur. Ceram. Soc., 1992, 10: 255-261.
    39 司文捷,黄勇.SiC颗粒弥散对相变增韧陶瓷高温蠕变性能的影响。硅酸盐学报,1993,21(3):208-213.
    40 D.Y. Lee, D-J. Kim, B-Y. Kim. Influence of alumina particle size on fracture toughness of (Y, Nb)-TZP/Al_2O_3 composites. J. Eur. Ceram. Soc., 2002, 22: 2173-2179.
    41 J. Hong, L. Gao, B.A. Shaw, D.P. Thompson. SiC platelet and SiC platelet-alumina reinforced TZP matrix composites. Br. Ceram. Trans., 1995, 94(5): 201-204.
    42 S.J. Glass, D, J. Green. Mechanical properties of infiltrated alumina-Y-TZP composites. J. Am. Ceram. Soc., 1996, 19: 2227-2236.
    43 N. Bamba, Y.H. Choa, T. Sekino, K. Niihara. Mechanical properties and microstructure for 3 mol% yttria doped zirconia/silicon carbide nanocomposites. J. Eur. Ceram. Soc., 2003, 23: 773-780.
    44 X.M. Chen, X.Q. Liu, F. Liu, X.B. Zhang. 3Y-TZP ceramics toughened by Sr_2Nb_2O_7 secondary phase. J. Eur. Ceram. Soc., 2001, 21: 477-481.
    45 李包顺,黄校先,郭景坤,严东升.Y-TZP/SiCp复合材料的力学性能。无机材料学报,1986,1(2):129-134.
    46 X.X. Huang, J.K. Guo, L.H. Gui. In: Carlsson R, Johansson T, Kahlman L, Ed. 4th International Symposium on Ceramic Materials and Components for Enfines, Goteborg, Sweden, Jun. 10-12, 1991. 757-764.
    47 李廷凯,沈志坚等.ZrO_2-Al_2O_3系陶瓷复合材料力学性能。硅酸盐学报,1990,18(1):39-43.
    48 A. Selcuk, C. Leach, R.D. Rawlings. Processing, microstructure and mechanical properties of SiC platelet-reinforced 3Y-TZP composites. J. Eur. Ceram. Soc., 1995, 15: 33-43.
    49 B. Yang, X.M. Chen, X.Q. Liu. Effect of BaTiO_3 addition on structures and mechanical properties of 3Y-TZP ceramics. J. Eur. Ceram. Soc., 2000, 20: 1153-1158.
    50 G.Y. Lin, T.C. Lei. Microstructure, Mechanical properties and thermal shock behaviors of Al_2O_3+ZrO_2+SiCw composites. Ceramics International, 1998, 24: 313-326.
    51 张请纯,俞向东.Al-Y-TZP陶瓷的抗热震行为与相变的关系.无机材料学报,1991,6(2):177-183.
    52 I. Masayuki, S. Tsugio, E. Tadashi. Grain-size dependence of thermal-shock resistance of yttria-doped tetragonal zirconia pclycrystals. J Am. Ceram. Soc., 1990, 73(8): 2523-25.
    53 K. Kobayashi, H. Kuwajima, T. Masaki. Phase change and Mechanical properties of ZrO_2-Y_2O_3 solid electrolyte after aging. Solid State Ionics. 1981, 3(4): 489-495.
    54 T. Sato, M. Shimada. Transformation of yttria-doped tetragonal-ZrO_2 polycrystals by annealing in water. J. Am. Ceram. Soc., 1985, 68(6): 356-359.
    55 F.F. Lange, G.L. Dunlop, B.I. Davis. Degradation During Aging of Transformation-Toughened ZrO_2-Y_2O_3 Materials at 250℃. J. Am. Ceram. Soc., 1986, 3: 327-340.
    56 T. Sato, A. Ohtaki, T. Endo, M. Shimada. Transformation of yttria-doped tetragonal-ZrO_2 polycrystals by annealing under controlled humidity conditions. J. Am. Ceram. Soc., 1985, 68(12): 320-322.
    57 J.F. Li, R. Watanabe. Influence of a small amount of Al_2O_3 addition on the transformation of Y_2O_3 partially stabilized ZrO_2 during annealing. J. Mater. Sci., 1997, 32: 1149-1153.
    58 W.Z Zhu, X.B. Zhang. Aging behavior of tetragonal zirconia polycrstal (TZP) ceramics in the temperature range of 200℃ to 350℃ in air. Scripta Mater., 1999, 40(11): 1229-1233.
    59 M. Yoshuimura, T. Noma, K. Kawabata, S. Somiya. Role of water on the degradation process of Y-TZP. J. Mater. Sci. Lett., 1987, 6: 465-467.
    60 S. Schmauder, H. Schubert. Significance of internal stresses for the martensitic transformation in yttria-stabilized tetragonal-zerconia polycrystals during degradation. J. Am. Ceram. Soc., 1986, 69: 534-540.
    61 N. Ohhmichi, K. Kamioka, K. Ueda, K. Matsui. Phase transformation of zirconia ceramics by annealing in hot water. J. Ceram. Soc. Jpn., 1999, 107(2): 128-133.
    62 S. Chen, H. Lu. Sintering of 3mol% Y_2O_3-TZP and its fracture after ageing treatment. J. Mater. Sci., 1988, 23: 1195-1200.
    63 H. Lu, S. Chen. Low-temperature ageing of t-ZrO_2 polycrystals with 3mol% Y_2O_3. J. Am. Ceram. Soc., 1987, 70(8): 537-541.
    64 J. Chevalier, B. Cales, J. M. Drouin. Low-temperature aging of Y-TZP ceramics. J. Am. Ceram. Soc., 1999, 82(8): 2150-2204.
    65 N. Ohmichi, K. Kamika, L. Ueda, K. Matsui. Phase transformation of zirconia ceramics by annealing in hot water. J. Ceram. Soc. Jpn., 1999, 107[2]: 128-133.
    66 D.Y. Lee, D.J. Kim, D.H. Cho, M.H. Lee. Effect of Nb_2O_5 and Y_2O_3 alloying on the mechanical properties of TZP ceramic. Ceramic International, 1998, 24: 461-465.
    67 D.J. Kim, H.J. Jung, D.H. Cho. Phase transformation of Y_2O_3 and Nb_2O_5 doped tetragonal zirconia during low temperature ageing in air. Solid State Ionics, 1995, 80: 67-73.
    68 D.j. Kim. Effect of Ta_2O_5, Nb_2O_5, and HfO_2 alloying on the transformability of stabilized tetragonal ZrO_2. J. Am. Ceram. Soc., 1990, 73(1): 115-120.
    69 谷飚,聂一凡.Fe_3Al氢致开裂和应力腐蚀的TEM原位观察.金属学报,1997,32(7):707-713.
    70 刘毅,郦定强,林栋梁.金属间化合物FeAl超塑性变形中的位错特征.金属学报,1996,32(3):225-231.
    71 万晓景,朱家红,黄胜标.Fe_3Al与水汽及氢气的表面反应.金属学报,1955,31(4):181-185.
    72 余瑞璜.固体与分子经验电子理论.科学通报,1978,23(3):217-224.
    73 C.G. McKamey, J.A. Horton, C.T. Liu. Effect of Chromium on Properties of Fe_3Al. J. Mater Res., 1989, 4: 1156-1163.
    74 U.Prakash, R.A.Buckley, H.Jones, In: L.A. Johnson, D.P. Pope, J.O. Stiegler eds. High temperature Ordered Intermetallic Alloys. Pittsburgh, PA: Material Research Society. 1991, 213: 393-399.
    75 余兴泉,孙扬善,黄海波.轧制加工对Fe_3Al基合金组织及性能的影响.金属学报,1995,31(8):B368-372.
    76 倪瑞澄,孙震.金属间化合物及其粉末冶金材料.粉末冶金技术,1989,7(4):253-260.
    77 C.G. McKamey, J.H.DeVan, P.E.Tortorelli, and V.K.Sikka. A review of recent developments in Fe_3Al-based alloys. J. Mater Res., 1991, 6: 1779-1783.
    78 孙扬善.Fe_3Al基金属间化合物的性能和应用前景.机械科学与技术,1997,26(4):33-39.
    79 C.G. Mckamey, C.T.Liu, S.A.David, J.A.Horton, O.H.Pierce and J.J.campbell. Development of iron aluminides for coal conveysion system, ORNLITM-10793 (oak Ridge Nationel laboratory, oak Ridge, TN, July1988).
    80 O. Ikeda, I. Ohnuma, R. Kainuma. Phase equilibria and stability of ordered BCC phases in the Fe-rich portion of the Fe-Al system. Intermatallics, 2001, 9: 755-761.
    81 尹衍升、施忠良、刘俊友,铁铝金属间化合物—合金化与成分设计,上海:上海交通大学出版,1995:20.
    82 S.H. Ko, B.G. Park, H. Hashimoto, T. Abe. Effect of MA on microstructure and synthesis path of in-situ TiC reinforced Fe-28at.% Al intermetallic composites. Mater Sci. Eng., 2002, A329-331: 78-83.
    83 R. Suvramanian, J.H. Schneibel. The ductile-brittle size transition of iron aluminide ligaments in an FeAl/TiC composite. Acta mater., 1998, 46(13): 4733-4741.
    84 M. Krasnowski, A.Witek, T. Kulik. The Fe-Al-30%TiC nanocomposite produced by mechanical alloying and hot-pressing consolidation. Intermetallics, 2002, 10: 371-376.
    85 M. Inoue, K. Suganuma, K. Nihara. Fracture mechanism of FeAl matrix composites with discontinuous ceramic reinforcents. Mater Sci. Eng., 1999, A265: 240-245.
    86 R. Subramanian, J.H. Schneibel. FeAl-TiC and FeAl-WC composites—melt infiltration processing, microstructure and mechanical properties. Mater Sci. Eng., 1998, A244: 103-112.
    87 O. Sbaizero, G. Pezzotti. Influence of residual and bridging stresses on the R-curve behavior of Mo- and FeAl-toughened alumina. J. Eur. Ceram. Soc., 2000, 20: 1145-1152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700