SOI横向高压器件耐压模型和新器件结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SOI(Silicon On Insulator)高压集成电路因其隔离性能好、漏电流小、速度快、功耗低和抗辐照等优点已成为功率集成电路(Power Integrated Circuit,PIC)重要的发展方向。SOI横向高压器件是SOI高压集成电路的核心和关键,受到了国际上众多学者的研究。但是,由于受到纵向耐压的限制,当前真正进入实用阶段的器件结构,其击穿电压还没有超过600V,从而限制了SOI技术在千伏级高压集成电路中的应用。此外,在设计方面,当前所沿用的设计理论仍然是体硅的RESURF判据,但事实上,SOI器件结构上的特殊性使其RESURF效应和体硅器件有较大差异,这一点在设计中却往往被忽视。
     本文围绕SOI高压器件的耐压问题,从理论模型和器件结构两方面展开创新研究。首次提出了两项耐压理论:S-RESURF(Single REduced SURface Field)高压器件全域耐压模型和D-RESURF(Double REduced SURface Field)高压器件统一耐压模型,设计了两种新结构器件:埋氧层固定电荷结构(Step Buried Oxide fixed Charge,SBOC)和局域电荷槽结构(Charge Captured Trenches,CCT),并进行了部分实验。
     两项耐压理论是:
     1) SOI S-RESURF高压器件全域耐压模型。提出均匀、阶梯和线性漂移区的SOI S-RESURF高压器件全域耐压模型,导出包含耗尽区电荷共享效应与埋氧层电场调制效应的SOI S-RESURF判据。基于电势分解法求解二维Poisson方程,得到了任意漂移区横向杂质分布的SOI S-RESURF器件在全耗尽和不全耗尽情况下的二维电势和电场分布全域解析模型,然后将其应用于均匀、阶梯和线性漂移区结构的分析,给出了最优浓度分布的理论公式和最小阶梯数判据。最后,在此理论指导下,在3μm顶层硅、1.5μm埋氧层的SOI材料上成功研制了耐压为250V,导通电阻为1.6Ωmm~2的二阶掺杂SOI LDMOS,其耐压比相同结构的均匀掺杂漂移区器件提高了57%,而导通电阻下降了11%。
     2) SOI D-RESURF高压器件统一耐压模型。提出均匀、阶梯和线性掺杂SOI D-RESURF高压器件二维耐压解析模型,构成了系统的SOI D-RESURF统一耐压理论,并首次给出了普适于所有双层漂移区器件的SOI D-RESURF判据。首先借助P-top结深因子,把D-RESURF器件等效成阶梯S-RESURF器件,进而建立了具有均匀、阶梯和线性掺杂P-top层的SOI D-RESURF器件的二维势场分布模型,然后借助该模型对器件耐压特性进行了深入分析,首次定量研究了D-RESURF器件比S-RESURF器件耐压略微降低的机理,建立了浓度优化区DOR(Doping Optimal Region)。并首次得到了阶梯和线性掺杂P-top层浓度分布的理论优化公式,提出了最优P-top层阶梯数判据,为SOI D-RESURF器件的设计提供理论依
SOI HVIC (Silicon On Insulator High Voltage Integrated Circuit) is the mainstream and trend of the Power Integrated Circuit (PIC) due to the improved isolation, reduced leakage current, high speed performance, low power dissipation, and perfect irradiation hardness. As one of the key device in SOI HVIC, SOI lateral high voltage device has been deeply investigated in this field. It is shown that the breakdown voltage of SOI power device is lower than 600V due to the restriction of the vertical blocking capacity, which limits the application of 1000V-level SOI HVIC. Moreover, the conventional RESURF criterion of silicon device is still used on the design of SOI high voltage device, however, the buried oxide layer prevents the depletion region expanding into the substrate and thus brings about some new characteristic in SOI RESURF effect, and these effects are always neglected.In this thesis, the breakdown voltage problem of SOI lateral high voltage device is addressed. A unified breakdown model of S-RESURF (Single REduced SURface Field) device with varied drift doping profiles and a unified breakdown model of D-RESURF (Double REduced SURface Field) device with varied P-top doping profiles are firstly proposed. Two new SOI devices with Step Buried Oxide fixed Charge (SBOC) and Charge Captured Trenches (CCT) are developed, which break the vertical breakdown limitation of the conventional SOI device. The partial experiments are carried out.A unified breakdown model of SOI S-RESURF device with varied drift doping profiles is proposed and an S-RESURF criterion including the charge sharing effect in depletion region and the electric field modulating effect of buried oxide layer is firstly derived. By solving 2-D Poisson equation, the analytical description of the 2-D electric field and potential distributions of the device with uniform, step and linear drift doping profiles for the completely and incompletely drift regions are given. The impact of the geometry parameters and drift doping concentration on breakdown voltage is investigated for the varied drift doping profiles. An optimized drift doping profile and a minimized step number are derived to carry out a uniform surface electric field and thus maximize the breakdown voltage. Experimentally, the 250V and 1.6Ωmm2 LDMOS with two step drift doping profiles have been fabricated on the 3 urn-thick top silicon film and 1.5μm-thick buried oxide layer. The measured results have shown that the two step doping profiles bring about an increase in the breakdown voltage by as much as 57% , and also a decrease in the on-resistance by as much as 11% in comparison to the conventional uniformly doped drift device. The numerical and
    experimental results have been shown to support the theoretical model for both the incompletely and completely depleted drift region.A unified breakdown model of SOI D-RESURF device with varied P-top doping profiles is developed and a D-RESURF criterion for SOI high voltage device is demonstrated for the first time. Based on solving 2-D Poisson equation, the 2-D analytical models of SOI D-RESURF device with uniform, step and linear P-top doping profiles are proposed, respectively. The three mentioned models form an integrated breakdown theory for the D-RESURF SOI device. The relationship between the structural parameters and breakdown characteristic is studied. A RESURF Doping Optimal Region (DOR) for optimizing the drift region concentration is given and extended into the design of the SOI device with double drift layer. A theoretical optimum P-top doping distribution and a minimum step-number criterion are firstly reported to realize the tradeoff among the performance, structure and process. The analytical model is verified by numerical simulations and published experimental data. A new SOI high voltage device with step buried oxide layer charge (SBOC) is proposed. Firstly, a new theory, INBOLF (INcreased Buried Oxide Layer Field) theory, is proposed to improve the vertical breakdown voltage by increasing the electric field of buried oxide layer. This breakdown theory brings out a new approach to improve the vertical blocking capacity in SOI high voltage device. Based on the theory, the immobile charges are implemented into the upper surface of buried oxide layer to increase the vertical electric field and uniform the lateral one. The 2-D Poisson's equation is solved to demonstrate the modulation effect of the fixed interface charges and analyze the electric field and breakdown voltage at the various geometric parameters and step number for the new SBOC device. In the lateral direction, the new device can increase the electric field of buried oxide layer from the conventional 90V/um to the critical value of SiO2 600V/um. In the vertical direction, a near uniform surface electric field can be obtained by optimizing the distribution of the fixed interface charges. As a result, 1200V breakdown voltage is firstly realized in a structure with top Si layer of 3um, buried oxide layer of 2u.m and drift length of 70um. The breakdown voltage is only 190V for the conventional device with the same geometry parameters.A new SOI high voltage device with single-sided or double-sided charge captured trench (CCT) is proposed. For the novel structure on the reverse-biased state, high density interface charge increasing from the source to the drain are distributed on the
引文
[1] F. Udrea, D. Garner, K. Sheng, et al. SOI Power Devices, Electronics & Communication Engineering Journal, 2000, Feb, pp. 27-40
    [2] Sorin Cristoloveanu, Far-future trends in SOI technology: a guess, Journal of High Speed Electronics and System, 2002, Vol. 12, No. 2, pp. 137-145
    [3] Sorin Cristoloveanu, Silicon on insulator technologies and devices: from present to future, Solid-State Electronics, 2001, No. 45, pp. 1403-1411
    [4] A. Nakagawa, Recent advances in high voltage SOI technology for motor control and antomotive applications, IEEE Proc. BCTM'96, 1996, pp.69-72
    [5] E. Arnold, "Silicon-on-Insulator devices for high voltage and power IC applications", Electrochem. Soc., 1985, pp. 1983~1988
    [6] A. Nakagawa, "Impact of dielectric isolation technology on power ICs" , Proc. of ISPSD91, 1991, pp. 16~21
    [7] A. Nakagawa, N. Yasuhara, et al., "Prospects of high voltage power ICs on thin SOI", IEDM Tech. Dig., 1992, pp. 229~232
    [8] J. M. O,Connor, J. C. Tsang, J. B. McKitterick, 225℃ high temperature silicon-on-insulator(SOI) ASICs for harsh environments, IEEE Proc. ISPSD'98, 1998, pp. 2-5
    [9] Kabayshi K., Yanagigawa H., Mori K., et al., High voltage SOI CMOS IC technology for driving plasma display panels, IEEE Proc. ISPSD'98, 1998, pp. 141-144
    [10] M. M. Pelella, W. Maszara, S. Sundararajan, et al., Advantages and challenges of high performance CMOS on SOI, IEEE International SOI Conference, 2001, pp. 1-4
    [11] J. D. V. wyk, F. C. Lee, Power electronics technology-status and future, IEEE Proc. PESC'99, 1999, pp. 3-12.
    [12] Charles E. Mullett, PSMA Chair, A 5-year power technology roadmap, IEEE Proc. APEC'04, 2004, pp. 11-17
    [13] Jeffery D. Shepard, Power electronics futures, IEEE Proc. APEC'04, 2004, pp. 31-34
    [14] Bimal k. Bose, "Recent advances in power electronics", IEEE Tran. on Power Electronics, 1992, Vol. 7, No. 1, pp. 2-16
    [15] P. J. Carlson, "Reliability implications in using intelligent power integrated circuits (PICs)", Proceedings of Power Conversion, 1989, pp. 450-454
    [16] David L. Blackburn, "Status and trends in power semiconductor devices", IEEE IAS Conference, 1993, pp. 619-624
    [17] B. Jayant Baliga, "Trends in power discrete devices", Proc. of ISPSD, 1998, pp. 5-10
    [18] Stephen P. Robb and Judy L. Sutor, "Recent advance in power integrated circuits with high level integration", Proc. of ISPSD, 1994, pp. 342-348,
    [19] J. G. Kassakian, Automotive electrical systems-the power electronics market of the future, IEEE Proc. APEC'00, 2000, pp. 3-9
    [20] 石涌泉,SOI技术的发展及其在航天技术领域的应用,微电子学与计算机,1995,2,pp.1-5
    [21] Y. S. Huang, B. J. Baliga, et. al., "Comparison of DI and JI lateral IGBTs", Proc. of ISPSD92, 1992, pp. 40~43
    [22] Y. S. Huang, S. Sridhar and B. J. Baliga, "Junction and dielectrically isolated lateral ESTs for power ICs", Proc. of ISPSD92, 1992, pp. 259~263
    [23] Y. Hiraoka, S. Matsumoto, et al., "Application of the thin-film SOI power MOSFET fabricated by sub-urn-rule COMS/SOI process for the DC-DC converter", Proc. of ISPSD98, 1998, pp.145~148
    [24] Y. K. Leung, S. C. Kuehne, et al. , "High voltage, high speed lateral IGBT in thin SOI for power IC" , Proc. IEEE Int. SOI Conference, 1996, pp.132~133
    [25] A. Nakagawa, Recent advances in high voltage SOI technology for motor control and antomotive applications, IEEE Proc. BCTM'96, 1996, pp.69-72
    [26] Ghavam G. Shahidi, Mainstreaming SOI CMOS technology, IEEE Proc.SPIE'99, 1999, pp. 15-21
    [27] E. Arnold, "Silicon-on-lnsulator devices for high voltage and power IC applications" , Electrochem. Soc., 1985, pp. 1983~1988
    [28] A. Nakagawa, "Impact of dielectric isolation technology on power ICs" , Proc. of ISPSD91, 1991,pp.16~21
    [29] D. Dufourt, J. L. Pelloie, SOI design challenges, Microelectronics Reliability, 2003, No.43, pp.1361-1367
    [30] D. Bearden, SOI design experiences with Motorola's high-performance processors, IEEE International SOI Conference, 2002, pp.6-9
    [31] Amaury N., Denis F., Jean -J., SOI technology for future high-performance smart cards, IEEE Micro, Vol.23, No.3, pp.58-67
    [32] http://www.soisic.corn/SOI_keys_benefits.htm
    [33] H. M. Manasevit, W. I. Simpson, Single-crytai silicon on a sapphire substrate, Journal of Applied Physics, 1964, Vol.35, pp.1349-1351
    [34] M. L. Burgener, R. E. Reedy, Minimum charge FET fabricated on a ultrathin silicon on a sapphire wafer, United States Patent, No.5416043, 1995
    [35] T. Nakamura, H. Matsuhashi, Y. Nagatomo, Silicon on sapphire (SOS) device technology, Oki Technical Review, 2004, Vol.71, No.4, pp.66-69
    [36] B. K. Celler, Frontiers of silicon-on-insulator, Journal of Applied Physics, 2003, Vol. 93, No.9, pp. 4955-4978.
    [37] Makoto Yoshimi, Current status and future directions of SOI technology, Solid-State Electronics, 2002, No.46, pp. 951-958.
    [38] Takagi S., Strained-Si- and SiGe-on-insulator (strained-SOI and SGOI) MOSFETs for high performance/low power CMOS application, 60th Device Research Conference, 2002, pp.37 - 40.
    [39] Z. Y. Cheng, Currie M. T., Leitz C. W., SiGe-On-Insulator (SGOI): substrate preparation and MOSFET fabrication for electron mobility evaluation, IEEE International SOI Conference, 2001, pp.13 -1.4
    [40] Mishra U. K., Parikh P., Chavarkar P., GaAs on insulator (GOI) for low power applications, Frontiers in Electronics, 1997.. IEEE Proc. WOFE'97, 1997, pp.21 -25
    [41] http://www.csip.cn/new/ip/ins/2005/0303/6604.htm
    [42] Ishimaru M, Dickerson R. M., Scanning transmission electron microscopy-energy dispersive X-ray/electron energy loss spectroscopy studies on SiC-on-inlulator structures, Journal of Electrochem Soc2000, Vol.147, No.5, pp. 1979-1981
    [43] D. Cioccio L., L. Tiec Y., Letertre F., Silicon carbide on insulator formation using the Smart Cut process, Electronics Letters ,1996, Vol.32, No.12, pp.1144-1145
    [44] Bengtsson S., Choumas M., Maszara W. P., Silicon on aluminum nitride structures formed by wafer bonding, Proc. IEEE Int. SOI Conference, 1994, pp. 35- 36
    [45] C. L. Men, Z. Xu, Z. H. An, et al., Preparation of large area AIN films on silicon and its application to the SOI structure, Proc. IEEE ICSICT01, 2001, pp. 1460-1463
    [46] M. Zhu, Q. Lin, X. H. Liiu, et al., Reduction of self-heating effect in SOI MOSFET by forming a new buried layer structure, Nuclear Science and Techniques, 2003, Vol. 14, No. 2, pp. 119-123
    [47] J. M. Tendler, J. S. Dodson, J. S. Fields, et al., Power4 system microarchitecture, IBM Journal of Research and Development, 2002, Vol. 46, No. 1, pp. 5-25
    [48] http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_9485_9487^10248,00.html
    [49] Tsu-Jae King, Taking silicon to the limit: challenges and opportunities, IEEE Proceedings of ICSICT04, 2004, pp. 1-6
    [50] Nakagawa A., Yamaguchi Y., Ogura T, 500V three phase inverter ICs based on a new dielectric isolation technique, IEEE Proc. ISPSD'92, 1992, pp. 328-332
    [51] Sumida H., Hirabayashi A., Shimabukuro H., et al., A high performance plasma display panel driver IC using SOI, IEEE Proc. ISPSD'98, 1998, pp. 137-140
    [52] Y. Sugawara, et. al., "New dielectric isolation for high voltage power Ics by single silicon poly silicon direct bonding(SPSDB) technique", Proc. of ISPSD'92, 1992, pp. 316~321
    [53] Auberton H., Andre J., In just 20 years: an SOI journey, Semiconductor International, 2004, Vol. 27, No. 1, pp. 74-75
    [54] L. P. Allen, W. Skinner, A. Cate, et al., Status and technology of SOI substrate material, IEEE International SOI Conference, 2001, pp.5-7
    [55] J. B. Jasky, Wafer Bonding for silicon-on-insulator technologies, Applied Physics Letters, 1986, Vol. 48, No. 1, pp. 78-80
    [56] C. Harendt, W. Wondrak, U. Apel, et al., Wafer bonding for intelligent power ICs: integration of vertical structures, Proc. IEEE Int. SOI Conference, 1995, pp. 152-153
    [57] A. Ogura, Highly uniform SOI fabrication by applying voltage during KOH etching of bonded wafers, Proc. IEEE Int. SOI Conference, 1995, pp. 58-59
    [58] http://www.canon.com/about/history/main10.html
    [59] http://www.sibond.com/main_products.htm
    [60] http://www.sisc.com.cn/study/study.asp
    [61] J. P. Colinge, The development of CMOS/SIMOX technology, Microelectronic Engineering, 1995, Vol. 28, No. 1, pp. 423-430
    [62] Aspar B., Builhalmenc C., Pudda C., et al., Buried oxide layers formed by low dose SIMOX processes, Microelectronic Engineering, 1995, Vol. 28, No. 1, pp. 411-414
    [63] 郑望,陈猛,陈静,低剂量SIMOX圆片线缺陷合针孔的研究,功能材料与器件学报,2001,Vol.7,No.4,pp.431-433
    [64] 郑望,陈猛,陈静,低剂量SIMOX圆片表层硅缺陷密度,半导体学报,2001,Vol.22,No.7,pp.871-874
    [65] X. L. Cheng, Z. L. Lin, Y. J. Wang, et al., A study of Si epitaxial layer growth on SOI wafer prepared by SIMOX, 2004, Vacuum, No. 7, pp. 25-32
    [66] Giles L. F., Kunii Y., Characterization of crystallographic defects in thermally oxidized SIMOX materials, Microelectronic Engineering, 1996, Vol. 41, No. 1, pp. 182-185
    [67] Gosele U., Reiche M., Tong Q. Y., Properties of SIMOX and bonded SOI material, Microelectronic Engineering, 1995, Vol. 28, No. 1, pp. 391-397
    [68] http://www.ibis.com/simox.htm
    [69] 林成鲁,SOI技术的新进展,半导体技术,2003,Vol.28,No.9,pp.39-43
    [70] http://www.simgui.com.cn/zw/product.asp
    [71] Carlos M., lan C., Bruno G., et al., Moving from today's SOI to advanced substrate engineering, Solid-State Technology, 2003, July, pp. 111-115
    [72] Y. J. Wu, M. Zhang, Z. H. An, et al., Fabrication of thick BOX SOI by smart-cut technology, Nuclear Science & Techniques, 2003, Vol. 14, No.2, pp. 115-118
    [73] A. J. Auberton-Herve, C. Maleville, 300nm ultra thin SOI material usig Smart-Cut technology, IEEE International SOI Conference, 2002, pp. 1-5
    [74] C. Maleville, C. Mazure, Smart-Cut technology: for 300nm ultra thin SOI production to advanced engineered substrates, Solid-State Electronics, 2003, No. 47, pp. 1055-1063.
    [75] C. Mazure, G. K. Celler, C. Maleville, et al., Advanced SOI substrate Manufacturing, Proc. IEEE ICICDT04, 2004, pp. 105-111
    [76] 张苗,林成鲁,陈立凡等,硅中注H+的退火行为及智能剥离SOI新材料的微结构分析,固体电子学研究与进展,1998,Vol.18,No.2,pp.181-187
    [77] http://www.soitec.com/en/products/p_1.htm
    [78] Yonehara T., Epitaxial layer transfer by bond and etch back. of porous Si, Applied Physics Letters, 1994, Vol. 68, No. 16, pp. 2108-2110
    [79] Plool A., Silicon-on-insulator:materials aspects and applications, Solid-State Electronics, 2000, Vol. 44, No.5, pp. 775-782
    [80] K. Sakaguchi, SOI wafers based on eptaxial technology, Solid-State Technology, 2000, Vol. 43, No. 6, pp. 88-92
    [81] http://www.canon.com/technoiogy/detail/device/soi/
    [82] http://www.canon.fr/about_us/news/corporate_releases/reseach_and_development.asp
    [83] Y. S. Huang, B. J. Baliga, Extension of resurf Principle to dielectrically isolated power devices, Proceeding of IEEE ISPSD91, 1991, pp. 27-30
    [84] R. Sunkavalli, A. Tamba, B. J. Bbaliga, Step drift doping profile for high voltage DI lateral power devices, IEEE International SOI Conference, 1995, pp. 139-140
    [85] J. Luo, G. Cao, S. N. E. Madathil, et al., A high performance RF LDMOSFET in thin film SOI technology with step drift profile, Solid-State Electronics, 2003, No. 47, pp. 1937-1941
    [86] S. D. Zhang, J. K. O. Sin, T. M. L. Laim, et al, Numerical model of linear doping profiles for high-voltage thin-film SOI devices, IEEE Transactions on Electron Devices, 1999, Vol. 46, No. 5, pp. 1036-1041
    [87] R. P. Zingg, I. Weijland, H. V. Zwol, et al, 850V DMOS-switeh in silicon-on insulator with specific Ron 13Ω-mm2, IEEE International SOI Conference, 2000, pp. 62-63
    [88] S. K. Chung, An analytical model for breakdown voltage of surface implanted SOI RESURF LDMOS, IEEE Transactions on Electron Devices, 2000, Vol. 47, No. 5, pp. 1006-1009
    [89] H. W. Kim, Y. 1. Choi, S. K. Chung, Linearly-graded surface-doped SOI LDMOSFET with recessed source, Microelectronic Engineering, 2000, No. 51-52, pp. 547-554
    [90] W. S. Son, Y. H. Sohn, S. Y. Choi, RESURF LDMOSFET with a trench for SOI power integrated circuits, Microelectronics Journal, 2004, No. 35, pp. 393-400
    [91] Shuming Xu, K. P. Gan, G. S. Samudra, et al., 120V interdigitated-drain LDMOS(IDLDMOS) on SOI substrated breakding power LDMOS limit, IEEE Transactions on Electron Devices, 2000, Vol. 47, No. 10, pp. 1980-1985
    [92] R. Ng, F. Udrea, K. Sheng, et al., Lateral unbalanced super junction(USJ)/3D-RESURF for high breakdown voltage on SOI, Procs. IEEE ISPSD01, 2001, pp. 395-398
    [93] G. E V. pathirana, E Udrea, R. Ng, et al., 3D-RESURF SOI LDMOSFET for RF power amplifiers, Procs. IEEE ISPSD03, 2003, pp. 278-281
    [94] S. Merchant, E. Arnold, H. Baumgart, et al., Realization of high breakdown voltage (>700V) in thin sol devices, Procs. IEEE ISPSD91, 1991, pp. 31-35
    [95] S. Merchant, E. Arnold, H. Baumgart, et. al., Dependence of breakdown voltage on drift length and buried oxide thickness in SOI RESURF LDMOS transistors, Procs, IEEE ISPSD93, 1993, pp. 124-128
    [96] T. Matsudai, A. Nakagawa, Simulation of 700V high-voltage device structure on a thin SOI, P Procs. IEEE ISPSD92, 1992, pp. 272-277
    [97] A. Q. Huang, X. Li, N. X. Sun, Novel high voltage SOI structures, Procs. IEEE BCTM99, 1999, pp. 84-88
    [98] P. Ratnam, Novel silicon-in-Insulator MOSFET for high-voltage integrated circuits, Electronics Letter, 1989, Vol. 25, No. 8, pp. 536-537
    [99] Q. Lu, R Ratnam, C. Andre et al., High voltage Silicon-on-Insulator (SOI) MOSFETs, Procs. IEEE ISPSD91, 1991, pp. 36~39
    [100] Udrea F, Popescu A, Breakdown analysis in JI, SOI and partial SOI power structures, IEEE International SOI Conference, 1997, pp. 102-103
    [101] N. Yasuhara, A. Nakagawa, K. Furukawa, SOI device structure implementing 650V high voltage output devices on VLSIs, Procs. IEEE IEDM91, 1991, pp. 141-144
    [102] H. Funaki, Y. Yamaguchi, K. Hirayama, et al., New 1200V MOSFET structure on SOI with SIPOS shielding layer, Procs. IEEE ISPSD98, 1998, pp. 25-28
    [103] I. J. Kim, S. Matsumoto, T. Sakai, et al., Breakdown voltage improvement for thin-film SOI power MOSFET's by a buried oxide step structure, IEEE Transactions on Electron Devices, 1994, Vol. 15, No. 5, pp. 148-150
    [104] R. Plikat, D. Silber, W. Wondrak, Very high voltage integration in SOI based on a new floating channel technology, IEEE International SOI Conference, 1998, pp. 59-60
    [105] H. Kapelsi, R. Plikat, Dielectric charge trap: a new structure element for power devies, Procs. IEEE ISPSD00, 2000, pp. 205-208
    [106] J. A. Appels and H. M. J. Vaes, High-voltage "thin layer devices, IEDM Tech. Dig., 1979, pp. 238-241
    [107] J. Appels, M. Collet, P. Hart, H. Vaes, J. Verhoeven, Thin Layer High Voltage Decices (RESURF DEVICES), Philips J. Res., 1980, Vol. 35, pp. 1-13
    [108] I. J. Kim, S. Matsumoto, T. Sakai, et. al., Analytical approach to breakdown voltages in thin-film SOI power MOSFETs, Solid-State Electronics, 1996, Vol. 39, No. 1, pp. 95-100
    [109] 富力文,阎力大,RESURF原理应用于SOI LDMOS晶体管,半导体学报,1996,Vol.17,No.4,pp.283-288
    [110] W. H. Li, J. S. Luo, A novel analytical physical model for thin film SOI RESURF structure based on 2-D Poisson equation, Procs. IEEE ISPSD98, 1998, pp. 724-727
    [111] Parpia A., Salama C.A.T., Optimization of RESURF LDMOS transistors: an analytical approach, IEEE Transaction on Electron Devices, 1990, Vol. 37, No. 3, pp. 789-796
    [112] S. K. Chung, S. Y. Han, Analytical model for the surface field distribution of SOI RESURF devices, IEEE Transaction on Electron Devices, 1998, Vol. 45, No. 6, pp. 1374-1376
    [113] S. Merchant, Analytical Model for the Electric Field Distribution in SOI Resurf and TMBS Structures, IEEE Transaction on Electron Devices, 1999, Vol. 46, No. 6, pp. 1264-1267
    [114] A. Popeseu, F. Udrea, W. Milne, A Numerical Study of the RESURF effect in Bulk and SOI Power Devices, Procs. IEEE CAS97, 1997, Vol. 1, pp. 127-130
    [115] W. Falck, W. Gerlach, W. Reckel, Calculation of the blocking capability of SOI power devices under the influence of interconnections, Microelectronics Journal, 1996, 27: 201-207
    [116] He Jin, Zhang Xing, Huang Ru, et al. A novel Analytical Model for Surface Electrical Field Distribution and Optimization of TFSOI RESURF Devices, Chinese Journal of Semiconductors, 2001, No. 22, pp. 403-408.
    [117] S. K. Chung, S. Y. Han, J. C. Shin, An analytical model for minimum drift region length of SOI RESURF diodes, IEEE Electron Device Letters, 1996, Vol. 17, No. 1, pp. 22-24
    [118] S. K. Chung, An Analytical Model for Breakdown Voltage of Surface Implanted SOI RESURF LDMOS, IEEE Trans. On Electron Devices, 2000, Vol. 47, No. 5, pp. 1006-1009
    [119] D. Krizaj, G. Charitat, S. Amon, A new analytical model for determination of breakdown voltage of RESURF structures, Solid-state Electronics, 1996, Vol. 39, No. 9, pp. 1353-1358
    [120] S. K. Chung, D. K. Shin, An analytical model for interaction of SIPOS layer with underlying silicon of SOI RESURF devices, IEEE Trans. On Electron Devices, 1999, Vol. 46, No. 8, pp. 1804-1807
    [121] A. W. Ludikhuiza, A Review of RESURF Technology, Procs. IEEE ISPSD00, 2000, pp. 11-18
    [122] R. P. Zingg, New benchmark for RESURF, SOI, and super-junction power devices, Procs. IEEE ISPSD01, 2001, pp. 343-346
    [123] 杨健,功率集成电路中的高压横向MOS晶体管。电子科技大学博士论文,1999
    [124] 陈星弼,《功率MOSFET和高压集成电路》,东南大学出版社,1990
    [125] M. Imam, M. Quddus, J. Adams, et al., Efficacy of charge sharing in eshaping the surface electric field in high-voltage lateral RESURF devices, IEEE Trans. On Electron Devices, 2004, Vol. 51, No. 1, pp. 141-148
    [126] Stengl, R., Gosele U., Variation of lateral doping—a new concept to avoid high voltage breakdown of planar junctions", Procs. IEEE IEDM85, 1985, pp. 154-157
    [127] X. B. Chen, Z. Q. Song, Z. J. Li, Theory of optimum design of reversed-biased p-n junctions using resistive field plates and variational lateral doping, Solid-state Electronics, 1992, Vol. 35, pp. 1365-1370
    [128] X. B. Chen, P. A. Mawby, C. A. T. Salama, Lateral high-voltage devices using a optimized variational lateral doping, I. J. E., 1996, Vol. 80, No. 3, pp. 449-459
    [129] 张盛东,韩汝琦,Tommy Lai等,漂移区为线性掺杂高压高压薄膜SOI器件的研制。电子学报,2001,29(2):164
    [130] G. Amaratunga, F. Udrea, Power devices for high voltage intergrated circuits: new device and technology concepts, Procs. IEEE CAS01, 2001, Vol. 2, pp. 441-448
    [131] J. Roig, M. Vellevhi, D. Flores, et. al., Analysis of the breakdown voltage in SOI and SOS technologies, Solid-State Electronics, 2002, No. 46, pp. 255-261
    [132] 《数学手册》编写组,数学手册,北京,高等教育出版社,1979
    [133] 施敏,半导体器件物理,北京,电子工业出版社,1987
    [134] W. Fulop, Calculation of avalanche breakdown of silicon p-n junction, Solid-State Electron, 1967, No. 10, pp. 39-43
    [135] R. Van Overstraeten, H. De Man, Measurement of the ionization rates in diffused silicon p-n junctions, Solid-State Electron, 1970, No. 13, pp. 583-608
    [136] R. A. Kokosa, R. L. Davies, Avalanche Breakdown of Diffused Silicon p-n Junctions, IEEE Transaction on Electron Devices, 1966, Vol. 13, No. 12, pp. 874-881
    [137] 郭宇锋,张波,方健,李肇基等,界面电荷耐压模型:SOI高压器件纵向耐压新理论,固体电子学研究与进展,已录用
    [138] R. P. Zingg, High-voltage, double-gate devices on silicon-on-insulator, Microelectronic Engineering, 2001, No. 59, pp. 461-468
    [139] A. W. Ludikhuize, J. A. Van der Pol, A Heringa, et. al. Extended (180V) Voltage in 0.6μm Thin-Layer-SOI A-BCD3 Technology on 1μm BOX for Display, Automotive & Consumer Applications, Procs. IEEE ISPSD02, 2002, pp. 77-80
    [140] S. Matusmoto, I. J. Kim, T. Sakai, et al., A 30V High-Speed Thin-Film SOI Power MOSFET Having tungsten Polycide Gate, Procs. IEEE ISPSD95, 1995: 466-470
    [141] A. Nakagawa, Y. Yamaguchi, T. Matsudai, et al., 200℃ High-temperature and high-speed operation of 440V lateral IGBTs on 1.5um thick SOI, Procs. IEEE IEDM93, 1993, pp. 687-690
    [142] H. Funaki, N. Yasuhara, A. Nakagawa, High voltage lateral MOS thyristor cascode wwitch on SOI-Safe Operating Area of SOI-resurf devices, Procs. IEEE ISPSD96, 1996, pp. 101-104
    [143] A. Nakagawa, N. Yasuhara, Y. Baba, Breakdown voltage enhancement for devices on thin silicon layer/silicon dioxide film, IEEE Transactions on Electron Devices, 1991, Vol. 38, No. 7, pp. 1650-1654
    [144] Guo Yufeng, Zhang Bo, Mao Ping, et al., A Unified Breakdown Model of SOI RESURF Device with Uniform/Step/Linear Doping Profile, Chinese Journal of Semiconductors, 2005, Vol. 26, No. 2, pp. 63-69
    [145] F. -L. Chang, M. -J. Lin, G. -Y. Lee, et al., Modeling and design of the high performance step SOI-LIGBT power devices by partition mid-point method, Solid-State Electronics, 2003, No. 47, pp. 1693-1698.
    [146] Li W H, Luo J S, Development of Novel Thin-Film SOI High Voltage MOSFET, Chinese Journal of Semiconductors, 2003, 24(12): 1261-1265.
    [147] 李宏文,罗晋生,薄膜SOI RESURF结构击穿电压分析.半导体学报,2000,Vol.21,NO.2,pp.161-168
    [148] 郭宇锋,李肇基,张波等,阶梯分布埋氧层固定电荷SOI高压器件新结构和耐压模型,半导体学报,2004,Vol.25,No.12,PP.1623-1628
    [149] He Jin, Zhang Xing, Huang Ru, et. al., A Novel Analytical Model for Surface Electrical Field Distribution and Optimization of TFSOI RESURF Devices. Chinese Journal of Semiconductors, 2001, Vol. 22, No. 4, pp. 402-406
    [150] Souza M. M. D., Narayanan E. M. S., Double RESURF technology for HVIC, Electronics Letters, 1996, Vol. 32, No. 12, pp. 1092-1093
    [151] Z. Hossain, M. Imam, J. Fulton, et. al. Double-resurf 720V N-channel LDMOS with Best-in-class On-resistance, Procs. IEEE ISPSD02, 2002, pp. 137-140
    [152] Hardikar S., Souza M. M. D., Xu Y. Z., et al., A novel double RESURF LDMOS for HVIC's, Microelectronics Journal, 2004, Vol. 35, No. 3, pp. 305-310
    [153] Imam M, Hossain Z, Quddus M, et. al. Design and Optimization of Double-RESURF high-Voltage Lateral Devices for a Manufacturable Process, IEEE trans. On Electron Devices, 2003, Vol. 20, No. 7, pp. 1697-1701
    [154] V. Parthasarathy, V. Khemka, R. Zhu, SOA improvement by a double RESURF LDMOS technique in a power IC technology, Procs. IEEE IEDM00, 2000, pp. 75-79
    [155] V. Parthasarathy, V. Khemka, R. Zhu, A double RESURF LMDOS with drain profile engineering for improved ESD robustness, IEEE Electron Device Letters, 2002, Vol. 23, No. 4, pp. 212-214
    [156] D. R. Disney, A. K. Paul, M. Darwish, et al., A new 800V lateral MOSFET with dual conduction paths, Procs. IEEE ISPSD01, 2001, pp. 399-402
    [157] Zingg R. P., Weijland I., Zwol H. V., et al., 850V DMOS-Switch in Silicon-on-Insulator with Specific Ron of 13Ω-mm~2, IEEE International SOI Conference, 2000, pp. 62-63
    [158] U. Heinle, J. Olsson, Analysis of the specific on-resistance of vertical high-voltage DMOSFETs on SOI, IEEE trans. On Electron Devices, 2003, Vol. 50, No. 5, pp. 1416-1419
    [159] J. Kim, S. G. Kim, Q. S. Song, et al., Improvement on P-channel SOI LDMOS transistor by adapting a new tapered oxide technique, IEEE Transactions on Electron Devices, 1999, Voi. 46, No. 9, pp. 1890-1894
    [160] J. Kim, S. G. Kim, T. M. Roh, et al., A novel P-channel LMDOS transistor with tapered field oxides, Procs. IEEE ISPSD98, 1998, pp. 375-378
    [161] 方健,李肇基,张波,有n缓冲层SOI RESURF结构的电场分布解析模型,微电子学,2004,Vol.34,NO.2,pp.207-231
    [162] 郭宇锋,方健,张波等,SOI基双级RESURF二维解析模型,半导体学报,2005,Vol.26,NO.4,pp.33-38
    [163] I. -Y. Park, Y. -I. Choi, S. -K. Chung, Numerical analysis on the LDMOS with a Doubleepi-layer and Trench Electrodes, Microelectronics Journal, 2001, Vol. 32, No. 6, pp. 497-502
    [164] Wolfgang Wondrak, Rabab Held, Semiconductor Component with Embedded Fixed Charges to Provide Increased High Breakdown Voltage, United states patent 5767548, 1998.
    [165] 郭宇锋,李肇基,张波等,阶梯分布埋氧层固定电荷SOI高压器件新结构和耐压模型,半导体学报,2004,Vol.25,No.12,PP.1623—1628
    [166] Goetzberger A., Sizt G., Control of Positive Surface Charge in Si-SiO2 Interface by Use of Implanted Cs Ions, Applied Physics Letter, 1971, No. 19, pp. 478-480
    [167] Bruce J., Plummer, James D., Characterization of cesium diffusion in silicon dioxide films using backscattering spectrometry, Applied Physics Letters, 1987, vol. 50, pp. 1200-1202
    [168] Bruce J., Plummer, James D., Range distribution of implanted cesium ions in silicon dioxide films, Journal of Applied Physics, 1988, vol. 63, No. 12, pp. 5887-5889
    [169] Krusin-Elbaum, L., Sai-Halasz, G. A., Shifts in the flatband voltage of metal-oxide-silicon structure due to iodine in SIO2, Applied Physics Letters, 1986, vol. 48, No. 2, pp. 177-179
    [170] Guo Yufeng, Li Zhaoji, Zhang Bo, et al., An Analytical Breakdown Model of High Voltage SOI Device Considering the Modulation of Step Buried-oxide Interface Charges, IEEE Proceedings of ICSICT04, 2004, pp. 357-360
    [171] Q. Y. Liu, Z. J. Li, B. Zhang and J. Fang, The research on breakdown voltage of high SOI LDMOS devices with shielding trench, Procs. 2001 IEEE ICSICT, 2001, pp. 59-61
    [172] 郭永芳,郭宇锋,李肇基等,具有局域空穴槽结构的SOI LDMOS击穿机理,中国电工技术学会电力电子学会第八届学术年会,2002,pp.94-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700