基于毫米级移动微机器人的微装配系统运动控制与路径规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着移动微机器人技术的发展,其各方面的性能都得到了很大提高,尤其在运动灵活性和运动精度方面。相应地,基于移动微机器人的应用研究也逐渐开展起来。其中,利用移动微机器人进行微小零件的装配操作研究受到了很多关注。
     在国家相关项目的资助下,课题组研制了毫米级全方位移动微机器人,并搭建了基于微机器人的微装配系统,进行了零件微装配操作的探索性研究。对微装配系统而言,微装配的准确度和精度是重要的性能指标。目前,该系统在微机器人运动控制和微装配路径规划的一些方面存在不足,影响了微装配的准确度和精度。因此,本文以基于移动微机器人的微装配系统作为研究平台,对微机器人运动控制和装配路径规划中涉及的一些问题展开研究,目的是提高系统微装配的准确度和精度,为实现精密的微装配操作奠定基础。
     运动控制研究是进行微装配路径规划研究的基础。运动控制研究包括微机器人的轮结构尺寸设计、运动特性、滑动和稳定步进等。微装配路径规划研究则包括智能路径搜索方法、微机器人状态空间划分方法以及构建路径规划知识库等。
     微机器人动力学分析推导出了运动所需微马达转矩与轮结构尺寸之间的函数关系式,以该关系式作为目标函数,以最小化微马达转矩消耗作为优化目标,利用遗传算法对微机器人轮结构尺寸进行了设计。实验表明微机器人具有良好的驱动能力,从而为运动控制提供了动力保障。
     对微机器人的运动学进行了较为全面的研究。针对微机器人的特殊结构,采用求解、分析运动学约束矩阵秩的方法,阐明了其机动性和全方位特性,为微机器人的结构设计和控制提供了理论依据。此外,分别建立了微机器人本体运动学方程和微装配手臂运动学方程,利用推导的雅克比矩阵分析了微机器人的运动特点,分析结果与实际情况一致。
     建立了微机器人滑动动力学模型。从微机器人结构特点出发,分析了产生滑动的三种因素及其滑动效果,并基于滑动动力学模型进行了滑动效果的仿真验证。采用了基于视觉反馈控制的滑动克服方法,以减小滑动造成的运动偏移,仿真验证了控制效果。
     分析了基于转矩自平衡特性的微马达步进定位原理,推导了用于微机器人步进驱动的转矩表达式。基于微机器人动力学方程建立了步进运动仿真模型,并对步进运动过程进行了仿真研究。研究表明微马达转矩对步进稳定性有较大影响,针对这一的情况,采用了反馈控制微马达电流的方法来实现微机器人较为稳定的步进和均匀的步距。
     微机器人携带零件前往微装配区域进行装配操作涉及到运动路线的选择问题,常规路径规划方法不能实现较高的微装配准确度和精度。因此设计了一种监督—增强式混合学习方法,并将其应用到微装配操作的路径规划中。该方法以增强式学习算法为主体,以监督学习算法为辅助。同常规方法和单一的增强式学习方法相比,该混合学习方法实现了较高的微装配准确度和精度。此外,设计了三种微机器人状态空间的划分模型,分别称为均匀Grid-tile模型、非均匀Grid-tile模型和蛛网形Tile模型,并比较了它们的应用效果。比较结果显示后两种模型的学习效率远远高于第一种,其中蛛网形模型的性能最好。最后,构建了路径规划知识库,用于提高在线路径规划的速度。
     总之,本文的研究针对一种基于毫米级移动微机器人的微装配系统,对其运动控制与路径规划中存在的一些问题进行了分析,提出了相应的解决方法,并进行了仿真或实验验证,也取得了一定的成果。但在一些方面还需进一步研究,如多移动微机器人协作微装配等。
With the technology development of mobile microrobot, various performances of the mobile microrobot are improved greatly, especially on the mobility and motion precision. Relatively, the mobile microrobot based application researches become warm and warm. And much attention is paid on the micro parts assembly using mobile microrobot.
     Supported by research programs of China, our research team designs the millimeter size omnidirectional mobile microrobots, and develops the microrobot based microassembly system. The exploratory research on the micro parts microassembly with this system has carried on. For a microassembly system, the microassembly accuracy and precision are important performance indices. At present, there are some drawbacks on the aspects of microrobot motion control and microassembly path planning method, which influences the microassembly accuracy and precision. This paper presents the microrobot motion control and microassembly path planning of the microassembly system. The research objective is to improve the microassembly accuracy and precision, and to lay a foundation for realizing the precise microassembly operation.
     The research on motion control is the foundation of microassembly path planning research. The motion control research includes the wheel structure size design, motion characteristic, slip and stable step movement. The path planning research includes the intelligent path searching method, and partitioning of microrobot state space and path planning knowledge database.
     The dynamic analysis derives the function relationship between the needed micromotor torque for movement driving and the wheel structure sizes. Therefore, the genetic algorithm (GA) is employed to design the wheel structure sizes. The target function of GA is the relation equation of the torque and wheel sizes, and the optimal target is to minimize the torque consumption. The experiments show that the microrobots have good driving ability, which provides the guarantee of motion control.
     This paper presents more comprehensive research on the microrobot kinematics. Considering the microrobot special structure, the kinematic constraint matrix is derived and employed to analyze the maneuverability and omnidirectional characteristic. Besides, the kinematic equations of the microrobot chassis and microassembly arm are found. And the Jacobian matrixs are derived and used to analyze the microrobot and arm motion characteristics, and the analyzed results are same as the real
     ? Supported by National Natural Science Foundation of China (No. 60475037), and Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20060248057), Hi-Tech Research and Development Program of China (No. 2007AA04Z340). situation.
     The microrobot slip dynamic model is found. According to the microrobot structure characteristic, three factors which can generate slip are analyzed, and their slip effects are also analyzed and demonstrated based on the slip dynamic model. A vision based slip control method is developed to reduce the motion deviation.
     The micromotor step positioning principle based on torque self balance is analyzed, and then the torque expression for microrobot step movement driving is drived. The simulation model of step movement is found based on the microrobot dynamic equation. With this model, the step movement process is simulated. The simulation shows that the micromotor torque has great influence on the step movement stability. Therefore, the feedback control of micromotor current is used to obtain stable step movement and uniform step displacement.
     There is the problem of motion path selection during the microassembly process. The conventional path planning method can not ensure high microassembly accuracy and precision. Therefore, a mixed learning method that integrates the supervised learning and the reinforcement learning is developed and then employed for the microassembly path planning. Compared with the conventional method and the single reinforcement learning, the mixed learning method achieves higher microassembly accuracy and precision. Three models, named uniform grid tile, uneven grid tile and cobweb tile, are designed to partition the microrobot state space. Their application effects are compared, which show that the learning efficiencies of the later two models are much higher than that of the first model. The performance of the cobweb tile is best. Finally, the path planning knowledge database is found to improve the on-line path planning speed.
     Above all, according to the millimeter size microrobot based microassembly system, this paper presents the microrobot motion control and microassembly path planning. Some problems of them are analyzed, and relative solutions are developed and then demonstrated by simulations or experiments. Though some achievements are obtained, deep research is needed on some directions, e.g. multi microrobots cooperation for microassembly.
引文
[1] Arai, F., Fukuda, T. Adhesion-type micro end effector for micromanipulation[C]. Proceeding of the 1997 IEEE international conference on Robotics and Automation. Albuquerque, New maxico, 1997:1472-1477.
    [2] Kladitis P.E., and Bright, V.M. Prototype microrobots for micro-positioning and micro-unmanned vehicles[J]. Sensor and Actuator. 2000, 80(2):132-137.
    [3] Driesen, W., Varidel, T., R′egnier, S., et al. Micro manipulation by adhesion with two collaborating mobile micro robots[J]. Journal of Micromechanics and Microengineering. 2005, 15: S259–S267.
    [4] Caprari, G. Autonomous micro-robots: applications and limitations[Dissertation]. Switchland: PhD Thesis of EPFL. 2003.
    [5]张琛,赵小林,张寿柏,等.微型直流无刷电动机及其控制电路的研制[J].仪器仪表学报, 1996, 17(1):368-370.
    [6]张琛.直径只有两毫米的电磁型微马达[J].机器人技术与应用,1997,(1):12-14.
    [7]张琛,赵小林,杨春生,等.超微型电动机实用化的关键技术及应用前景[J].上海交通大学学报. 2000, 34(3):430-432.
    [8] http://vision.eng.shu.ac.uk/mmvlwiki/index.php/Past_Projects (最近访问2009-4-10)
    [9] Eisinberg, A., Menciassi, A., Dario, P., et al. Teleoperated assembly of a micro-lens system by means of a micro-manipulation workstation[J]. Assembly Automation, 2007, 27(2): 123-133.
    [10] Driesen, W., Varidel, T., Mazerolle, S., et al. Flexible micromanipulation platform based on tethered cm3-sized mobile micro robots[C], IEEE International Conference on Robotics and Biomimetics, Hong Kong, 2005: 145-150.
    [11] Fernandez, J.M., Amavasai, B.P., Othman, W.F.W., et al. Development of physical agents for robot swarms[C], Proceedings of the IEEE SMC UK-RI Chapter Conference on Applied Cybernetics, London, UK, 2005: 123-128.
    [12] Martel, S. Fundamental principles and issues of high-speed piezoactuated three-legged motion for miniature robots designed for nanometer-scale operations[J]. The International Journal of Robotics Research. 2005, 24 (7):575-588.
    [13] Aoyama, H, Fuchiwaki, O, Misaki, D., et al. Desktop micro machining system by multiple micro robots[C]. IEEE Conference on Robotics, Automation and Mechatronics. Bangkok, Thailand, 2006:1-6.
    [14] Fatikow, S., Thomas, W., Hülsen, H., et al. Microrobot system for automatic nanohandling inside a scanning electron microscope[J], IEEE/ASME Transactions on Mechatronics. 2007, 12(3): 244-252.
    [15] Kortschack, A., Shirinov, A., Trüper, T. et al. Development of mobile versatile nanohandling microrobots: design, driving principles, haptic control[J]. Robotica. 2005, 23: 419–434.
    [16] Takeda, M. Applications of MEMS to industrial inspection[C]. The 14th IEEE International Conference on Micro Electro Mechanical Systems. Piscataway, NJ, USA: IEEE, 2001: 182-191
    [17] http://www.rta.org.cn/newEbiz1/EbizPortalFG/portal/html/main.html《机器人技术与应用》杂志社, 2006. (访问日期2007-12-28)
    [18] Yesin, K.B., Vollmers, K., Nelson, B.J. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields[J]. The International Journal of Robotics Research. 2006, 25(5-6): 527-536.
    [19] http://www.rta.org.cn/newEbiz1/EbizPortalFG/portal/html/main.html《机器人技术与应用》杂志社,2006 (访问日期2007-12-28)
    [20] Song, Y., Li, M.T., Sun, L.N. Global visual servoing of miniature mobile robot inside a micro-assembly station[C]. IEEE International Conference on Mechatronics and Automation. Niagara Falls, Canada, 2005, 3: 1586-1591.
    [21]宋宇.面向微操作的微小型机器人视觉伺服技术研究[学位论文].哈尔滨:哈尔滨工业大学博士学位论文. 2007.
    [22]华顺明,张宏壮,程光明,等.压电薄膜型精密运动平台研究[J].光学精密工程. 2006, 14(4): 635-640.
    [23]穆晓枫,顾大强,陈柏,等.血管微型机器人无损伤体内驱动方法[J].浙江大学学报(工学版). 2005, 39(5): 618-623.
    [24]迟冬祥,颜国正,林良明.基于蚯蚓运动原理的肠道检查微小机器人内窥镜系统[J].机器人. 2002, 24: 222-238.
    [25]杨杰,中村仁彦,吴月华,等.医用微型机器人—SMA内窥镜与SMA腹腔手术钳子[J].中国科学技术大学学报. 1996, 26(4): 444-449.
    [26]钟映春.在液体中运动的新型微机器人动力学模型研究[J].中国机械工程. 2007, 18(5): 524-527.
    [27]孙麟治,陆林海,秦新捷,等.微型机器人用于检查管道内的缺陷[J].光学精密工程. 2003, 11(1): 11-16.
    [28]钱晋武,章亚男,沈林勇,等.微小管道探测机器人系统[J].高技术通讯. 2001, (2): 92-94.
    [29] Aoyama H, Iwata F, Sasaki A. Desktop flexible manufacturing system by movable miniature robots-miniature robots with micro tool and sensor[C]. Proceedings of IEEE International Conference on Robotics and Automation. Nagoya, Japan, 1995, 1: 660-665.
    [30]刘京诚.微小步行爬壁机器人驱动与位置检测技术及系统[学位论文].重庆:重庆大学博士学位论文. 2003.
    [31] Jang, M., Dawson, F., Bailak, G. Control system for multiple join t robotic arm powered by ultrasonic motor [C] Applied Power Electronics Conference and Exposition, APEC’04, Nineteen the Annual IEEE. USA , NJ , Piscataway: IEEE Publisher, 2004, 3: 1844-1848.
    [32] Dembele, S., Rochdi, K., Sandoz, P., et al. Development of a microrobot-based micropositioning station: the microrobot and its position and orientation measurement method[C]. Proceedings of SPIE Microrobotics and Microassembly III, 2001, 4568: 318-324.
    [33] McLurkin, J.D. Using cooperative robots for explosive ordnance disposal[C]. Technical Document, Massachusetts Institute of Technology. Artificial Intelligence Laboratory, Cambridge, MA, USA 02139.
    [34] Byrne, R.H., Adkins, D.R., Eskridge, S.E., et al. Miniature mobile robots for plume tracking and source localization research [J]. Journal of Micromechatronics. 2001, 1(3): 253-261.
    [35] Caprari, G., Estier, T., Siegwart, R. Fascination of down scaling-Alice the sugar cube robot [J]. Journal of Micromechatronics. 2002, 1(3): 177-189.
    [36] Dario, P., Carrozza, M.C., Stefanini, C., et al. A mobile microrobot actuated by a new electromagnetic wobble micromotor[J]. IEEE/ASME Transactions on Mechatronics, 1998, 3(1): 9-16.
    [37] Vartholomeos, P., Papadopoulos, E. Dynamics, Design and simulation of a novel microrobotic platform imploying vibration microactuators[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2006, 28(3):122-133.
    [38] Dario, P., Valleggi, R., Carrozza, M.C., et al. Microactuators for microrobots: a critical survey[J]. J. Micromech. Microeng. 1992, 2(3); 141-157.
    [39]华顺明,程光明,阚君武,等.压电型精密位移驱动器的研究进展[J].压电与声光. 2004,26(3): 192-195.
    [40] Bergander A, Driesen W, Varidel T, et al. Mobile cm3-microrobots with tools for nanoscale imaging and micromanipulation[C]. Proceedings of the 2004 Mechatronics & Robotics Conference. Aachen, Germany, 2004: 1041-1047.
    [41] Breguet, J.M., Pernette, E., Clavel, R. Stick and slip actuators and parallel architectures dedicated to microrobotics[C]. Microrobotics: Components and Applications, SPIE’s Photonics. East, Boston, 2906: 13–24.
    [42]华顺明.压电式粘滑精密运动机构驱动理论与实验研究[学位论文].长春:吉林大学博士学位论文. 2005
    [43] Takaoka, S., Horikawa, H., Kobayashi, J., et al. Applications and development of shape-memory and superelastic alloys in Japan[C]. Materials Science Forum (Switzerland). 2002, 394-395: 61-68.
    [44] Reynaerts. D., Van Brussel, H. Design aspects of shape memory actuators[J]. Mechatronics. 1998, 8(6): 635-656.
    [45]秦昌骏,马培荪,姚沁.一种基于SMA的微小型蠕动机器人[J].机械工程师. 2004,(1):23-26.
    [46] Qin, C. J., Ma, P. S., Yao, Q. A prototype micro-wheeled-robot using SMA actuator[J]. Sensors and Actuators. 2004, A113: 94-99.
    [47]蒋新松.机器人学导论.辽宁科学技术出版社.沈阳. 1994
    [48] Son C. Comparison of intelligent control planning algorithms for robot's part micro-assembly task[J]. Engineering Applications of Artificial Intelligence. 2006, (19)1: 41-52.
    [49]孙波.多移动机器人团队的系统设计与编队问题研究[学位论文].上海:上海交通大学博士学位论文. 2006.
    [50]范红.智能机器人路径规划及避障的研究[学位论文].浙江:浙江大学博士学位论文. 2003.
    [51]庄慧忠.学动态不确定环境下移动机器人的在线实时路径规划[学位论文].浙江:浙江大学博士学位论文. 2005.
    [52]沈猛.轮式移动机器人导航控制与路径规划研究[学位论文].西安:西北工业大学博士学位论文. 2006.
    [53] Masehian E, Sedighizadeh D. Classic and heuristic approaches in robot motion planning– a chronological review[C]. Proceedings of World Academy of Science Engineering and Technology. 2007, 23: 101-106.
    [54] Lozano-perez T, Jones J, Mazer E, et al. Task-level planning of pick-and-place robot motions[J]. Computer. 1989, 22(3): 21-29.
    [55]付庄,赵言正. Path planning of the robot assembly based on Voronoi diagram[J]. Journal of Harbin Institute of Technology. 2008, 19(1): 39-44.
    [56]黄心汉,吕遐东,王敏.面向微装配机器人的TSB分级智能控制结构[J].华中科技大学学报(自然科学版),2004, 32(S1): 61-64.
    [57] Shuang B, Chen JP, Li ZB. Microrobot based micro-assembly sequence planning with hybrid ant colony algorithm[J]. International Journal of Advanced Manufacturing Technology. 2008, 38(11-12): 1227-1235.
    [58] Fatikow S, Munassypov R, Rembold U. Assembly planning and plan decomposition in an automated microrobot-based microassembly desktop station[J]. Journal of Intelligent Manufacturing. 1998, 9(1): 73-92
    [59]郭继峰,王平,程兴,等.一种用于空间在轨装配的两级递阶智能规划算法[J].宇航学报. 2008, 29(3): 59-63.
    [60]刘维来,干方建,张平,等.基于遗传算法的机器人装配顺序规划的研究[J].系统仿真学报. 2005, 17(9): 2199-2202.
    [61] Son C. An optimal planning technique for an intelligent robot's part assembly in partially unstructured environments[J]. Robotica. 1998, 16:47-57.
    [62] Son C. Correlation between learning (probability of success) and fuzzy entropy in control of intelligent robot's part macro-assembly tasks with sensor fusion techniques[J]. Robotics and Computer-Integrated Manufacturing. 2007, 23(1): 47-62
    [63] Antonelli G., Chiaverini S. A fuzzy approach to redundancy resolution for underwater vehicle-manipulator systems[J]. Control Engineering Practice. 2003, 11: 445-452.
    [64]李瑞峰,陈辉.七自由度双作业臂无碰轨迹规划[J].制造业自动化. 2005, 27(10): 41-44
    [65]芦俊,朱兴龙,颜景平.双臂机器人轴孔装配的分级控制[J].制造业自动化. 2002, 24(6): 22-25.
    [66] Byun, K.S., Song J.B. Design and construction of continuous alternate wheels for an omnidirectional mobile robot[J]. Journal of Robotic Systems. 2003, 20(9): 569-579.
    [67] Chen, C., Angeles, J. Optimum kinetimatics design of drives for wheeled mobile robots based on cam-roller pairs[J]. Journal of Mechanical Design. 2007, 129: 7-16.
    [68] Park, T.B., Lee, J.H., Yi, B.J. Optimal design and actuator sizing of redundantly actuated omni-directional mobile robots[C]. IEEE Int. Conf. on Robotics & Automation, Washington, USA. 2002: 732-737.
    [69] Yu, H.Y., Spenko, M., Dubowsky, S. Omni-directional mobility using active split offset castors, journal of mechanical design[J]. Trans. of the ASME. 2004, 126: 822-829.
    [70] Yuan, J., Huang, Y.L., Sun, F.C., et al. Optimization design for connection relation of tractor-trailer mobile robot with variable structure[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China. 2006,1-12: 4971-4976.
    [71] Woo, C.K., Choi, H.D., Yoon, S. et al. Optimal design of a new wheeled mobile robot based on a kinetic analysis of the stair climbing states[J]. Journal of Intelligent & Robotic Systems. 2007, 49 (4):325-354.
    [72] Sun, C.L., Wang, H.G., Zhao, M.Y., et al. 3D simulation and optimization design of a mobile inspection robot for power transmission lines[C]. Proceedings of Sixth World Congress on Intelligent Control and Automation. 2006, 1-12: 8986-8991.
    [73] Li, Z.B., Zhang, C. Genetic algorithms for the optimal design of electromagnetic micro motors[J]. High Technology Letter. 2000, 6: 50-54.
    [74]蔡自兴,徐光佑.人工智能及其应用(第三版).北京:清华大学出版社, 2004.
    [75] Siegwart, R., Nourbakhsh, I.R.著,李人厚译.自主移动机器人导论.西安:西安交通大学出版社, 2006.
    [76] Siegwart, R., Nourbakhsh, I.R. Introduction to Autonomous Mobile Robots. MA: MIT Press. 2004.
    [77] West, M., Asada, H. Design of a holonomic omnidirectional vehicle[C]. IEEE International Conference on Robotics and Automation. Nice, France. 1992: 97-103.
    [78] West, M., Asada, H. Design of ball wheel mechanisms for omnidirectional vehicles with full mobility and invariant kinematics[J]. Journal of Mechanical Design. 1997, 119(2): 153-161.
    [79] Tadakuma, K., Tadakuma, R., Berengeres, J. Development of holonomic omnidirectional vehicle with "Omni-Ball": Spherical wheels[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA. 2007, 1-9: 33-39.
    [80] Tadakuma, K., Tadakuma, R. Mechanical design of "Omni-Ball": Spherical wheel for holonomic omnidirectional motion[C]. IEEE International Conference on Automation Science and Engineering. Scottsdale, AZ. 2007, 1-3: 1112-1118
    [81] Mourioux, G., Novales, C., Poisson, G., et al. Omni-directional robot with spherical orthogonal wheels: concepts and analyses[C]. IEEE International Conference on Robotics and Automation (ICRA). Orlando, FL. 2006, 1-10: 3374-3379.
    [82] Mourioux, G., Novales, C., Poisson, G., et al. A wireless omnidirectional robotic plateform for medical use[C]. The 6th World Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2002)/8th International Conference on Information Systems Analysis and Synthesis (ISAS 2002). Orlando, FL. 2002: 540-545
    [83] William, R.L., Carter, B. E., Gallina, P., et al. Dynamic model with slip for wheeled omnidirectional robots[J]. IEEE Trans. on Robotics and Automation. 2002, 18: 285-293.
    [84] Low, K.H., Low, Y.P. Kinematic modeling, mobility analysis and design of wheeled mobile robots[J]. Advanced Robotics. 2005, 19: 73-79.
    [85] Korayem, M.H., Bani Rostam, T., Nakhai, A. Design, modelling and errors measurement of wheeled mobile robots[J]. International Journal of Advanced Manufacturing Technology. 2006, 28: 403-416.
    [86] Loh, W.K., Low, K.H., Leow, Y.P. Mechatronics design and kinematic modelling of a singularityless omni-directional wheeled mobile robot[C]. Proceedings of the IEEE International Conference on Robotics & Automation. Taipei, Taiwan, 2003: 3237-3242.
    [87] Doroftei, I., Grosu, V., Spinu, V. Design and control of an omni-directional mobile robot. Novel Algorithms and Techniques In Telecommunications, Automation and Industrial Electronics. Netherlands: Springer, 2008: 105-110.
    [88] Song J.B., Byun, K.S. Design and control of a four-wheeled omnidirectional mobile robot with steerable omnidirectional wheels[J]. Journal of Robotic Systems. 2004, 21(4): 193-208.
    [89] Chung, J.H., Yi, B.J., Kim, W.K. et al. Singularity-free dynamic modeling including wheel dynamics for an omni-directional mobile robot with three caster wheels[J]. International Journal of Control Automation and Systems. 2008,6 (1): 86-100.
    [90] Lee, J.H., Kim, B.K., Tanikawa, T., et al. Kinematic analysis on omni-directional mobile robot with double-wheel-type active casters[C]. 2007 IEEE International Conference on Control, Automation and Systems. Seoul, South Korea, 2007, 1-6: 59-63.
    [91] EI-Shenawy, A., Wellenreuther, A., Baumgart, A.S., et al. Comparing different holonomic mobile robots[C]. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Montreal. Cook Islands, 2007, 1-8: 2126-2131.
    [92] Wada, M., Mori, S. Holonomic and omnidirectional vehicle with conventional tires[C]. Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, MN. 1996, 1-4: 3671-3676.
    [93] Ferrière, L. Campion, G. & Raucent, B. ROLLMOBS, a new drive system for omnimobile robots[J]. Robotica, 2001, 19: 1-9.
    [94] Ferriere, L., Raucent, B., Samin, J.-C. Rollmobs, a new omnimobile robot[C]. Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems. Grenoble, France, 1997, 2:913-918.
    [95] Campion, G., Bastin, G., D’Andréa-Novel, B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots[J]. IEEE Transactions on Robotics and Automation. 1996, 12(1): 47-62.
    [96]王卫华.移动机器人定位技术研究[学位论文].武汉:华中科技大学博士学位论文,2005.
    [97] Dugoff, H., Fancher, P., Segel, L. An analysis of tire traction properties and their influence on vehicle dynamic performance[J]. SAE Trans. 1970.
    [98] Balakrishna, R., Ghosal, A. Modeling of slip for wheeled mobile robots[J]. IEEE Transactions on Robotics and Automation. 1995, 11(1): 126-132.
    [99] Chung, J.H., Velinsky, S.A. Robust interaction control of a mobile manipulator - Dynamic model based coordination[J]. Journal of Intelligent & Robotic Systems. 1999, 26(1): 47-63.
    [100] Stonier, D., Cho, S.H., Choi, S.L., et al. Nonlinear slip dynamics for an omniwheel mobile robot platform[C]. Proceedings of IEEE International Conference on Robotics and Automation. Rome, Italy, 2007, 1-10: 2367-2372
    [101] Chakraborty, N., Ghosal, A. Dynamic modeling and simulation of a wheeled mobile robot for traversing uneven terrain without slip[J]. Journal of Mechanical Design. 2005, 127 (5): 901-909.
    [102] Gu, K.F., Wei, Y., Wang, H.G. Dynamic modeling and sliding mode driving control for lunar rover slip[C]. Proceedings of IEEE International Conference on Integration Technology. Shenzhen, China. 2007: 36-41.
    [103]钱志源,付庄,赵言正.一种在驱动轮打滑情况下爬壁机器人动力学建模方法[J].上海交通大学学报. 2007, 41(6): 857-860.
    [104] Gracia, L., Tornero, J. Kinematic modeling of wheeled mobile robots with slip[J]. Advanced Robotics. 2007, 21(11): 1253-1279.
    [105] Li, Y.P., Oetomo, D., Ang, M.H., et al. Torque distribution and slip minimization in an omnidirectional mobile base[C]. 12th International Conference on Advanced Robotics. Seattle USA. 2005: 567-572.
    [106] Song, Z.B., Seneviratne, L.D., Althoefer, K. et al. Slip parameter estimation of a single wheel using a non-linear observer[J]. Robotica. 2008 (doi:10.1017/S0263574708005146): 1-11.
    [107]王卫华,熊有伦,孙容磊.一种移动机器人轮子打滑的实验校核方法[J].机器人. 2005, 27(3): 197-202.
    [108] Ojeda, L., Cruz, D., Reina, G., et al. Current-based slippage detection and odometry correction for mobile robots and planetary rovers[J]. IEEE Transactions on Robotics. 2006, 22 (2): 366-378.
    [109] Yi, J.G., Zhang, J.J., Song, D.Z. IMU-based localization and slip estimation for skid-steered mobile robots[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA. 2007, 1-9: 2851-2856.
    [110] Seyr, M., Jakubek, S. Proprioceptive navigation, slip estimation and slip control for autonomous wheeled mobile robots[C]. IEEE Conference on Robotics, Automation and Mechatronics. Bangkok, Thailand. 2006, 1-2: 121-126.
    [111] Nagatani, K., Tachibana, S., Sofue, M., et al. Improvement of odometry for omnidirectional vehicle using optical flow information. Proceedings of IEEE/RSJ International conference on Intelligent Robots and Systems[C]. Takamatsu, Japan. 2000, 1: 468-473.
    [112] Hu, J.S., Cheng, J.H., Chang, Y.J. Spatial trajectory tracking control of omni-directional wheeled robot using optical flow sensors[C]. Proceedings of IEEE International Symposium on Intelligent Control. Singapore. 2007, 1-3: 863-868.
    [113] Angelova, A., Matthies, L., Helmick, D., et al. Learning to predict slip for ground robots[C]. IEEE International Conference on Robotics and Automation. Orlando, FL. 2006, 1-10:3324-3331.
    [114] Reina, G., Ishigami, G., Nagatani, K., et al. Vision-based estimation of slip angle for mobile robots and planetary rovers[C]. IEEE International Conference on Robotics and Automation. Pasadena, USA. 2008, 1-9: 486-491.
    [115] Ward, C.C., Iagnemma, K. Model-based wheel slip detection for outdoor mobile robots[C]. Proceedings of IEEE International Conference on Robotics and Automation. Roma, Italy. 2007, 1-10: 2724-2729.
    [116] Ward, C.C., Iagnemma, K. A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain[J]. IEEE Transactions on Robotics. 2008, 24 (4): 821-831.
    [117] Piedboeuf, J.C., De Carufel, J., Hurteau, R. Friction and stick-slip in robots: simulation and experimentation[J]. Multibody System Dynamics. 2000, 4: 341-354.
    [118]张琛.直流无刷电动机原理及应用(第2版).北京:机械工业出版社, 2004.
    [119] Li Z.B., Chen J.P., Ge X., et al. Novel microstepping control methods for electromagnetic micromotors with star-connected winding [J]. Sensors and Actuators (physical). 2007, 134: 513-518.
    [120] Sutton, R.S. Generalization in reinforcement learning: successful examples using sparse coarse coding[C]. In: Touretzky DS, Mozer MC, Hasselmo ME (ed) Advances in neural information processing systems. 1996, 8: 1038-1044. MIT Press, Cambridge, MA.
    [121] Stone, P., Sutton, R.S., Kuhlmann, G. Reinforcement learning for RoboCup-soccer keepaway[J]. Adaptive Behavior. 2005, 13(3): 165-188.
    [122] Stone, P, Sutton, R.S. Scaling reinforcement learning toward RoboCup soccer[C]. In: Brodley CE, Danyluk AP (ed) Proceedings of the Eighteenth International Conference on Machine Learning. Morgan Kaufmann, San Francisco, CA, USA. 2001: 537-544.
    [123] Tokarchuk, L., Bigham, J., Cuthbert, L. Fuzzy and tile coding function approximation in agent coevolution[C]. In: Deved V (ed) Proceedings of the 24th IASTED International Conference on Artificial Intelligence and Applications. ACTA Press, Anaheim, CA. 2006:353-358.
    [124] Albus J. S. Brains, behavior, and robotics. McGraw-Hill, New York, 1981.
    [125] Sutton, R. S., Barto, A.G. Reinforcement learning: an introduction. MIT Press, Cambridge, MA, USA. 1998.
    [126] Doya, K. Reinforcement learning in continuous time and space[J]. Neural Computation. 2000, 12(1): 219-245.
    [127] Kondo, T., Ito, K. A reinforcement learning with evolutionary state recruitment strategy for autonomous mobile robots control[J]. Robotics and Autonomous Systems. 2004, 46(2): 111-124.
    [128] Bucak, I.O., Zohdy, M.A. Reinforcement learning control of nonlinear multi-link system[J]. Engineering Applications of Artificial Intelligence. 2001, 14(5): 563-575.
    [129] Lee, I.S.K., Lau, H.Y.K. Adaptive state space partitioning for reinforcement learning[J]. Engineering Applications of Artificial Intelligence. 2004, 17(6): 577-588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700