新一代天气雷达三维组网技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了充分发挥新一代天气雷达网的作用,本文在雷达资料质量控制的基础上研究了新一代天气雷达网三维拼图技术,得到高分辨率的三维反射率拼图格点(经度、纬度和高度坐标)数据,并对雷达三维反射率数据进行了初步应用研究。本论文工作的开展为新一代天气雷达网资料的深度和广度应用(如强天气监测与临近预警报、雷达网资料的同化、在水文和航空中的应用等)提供了强有力的平台。论文的主要研究内容和初步结果如下:
     1)采用高度约束的反射率垂直梯度和水平纹理检查相结合的方法对非气象杂波进行了抑制,通过用来自不同雷达和不同大气条件下的多个个例进行检验,结果表明该方法能合理地识别非气象杂波。
     2)利用高分辨DEM(digital elevation model)数据计算了雷达波束阻挡率,得到了混合扫描仰角。通过与实测的反射率PPI进行比较,发现计算出来的波束阻挡率和雷达实测的波束阻挡情况具有很好的定性一致性和很强的定量相关性。根据各雷达的混合扫描仰角,绘制了区域雷达网的等射束高度拼图,以便分析雷达网的覆盖能力。
     3)研究了多种把极坐标雷达资料插到笛卡尔坐标系下的插值方法,并用反射率场的空间连续性以及插值前后强降水的中心位置和分级总雨量差作为衡量标准,评估了各种方法插值结果的好坏,结果发现,用斜距和方位的最近邻居与垂直线性内插相结合的插值方法得到的反射率场不仅具有空间连续性而且保留了体扫资料中原有的反射率结构特征。把用dBZ值和Z值插值的结果与实际观测值进行了对比分析,发现用dBZ插值的结果总体上更加接近观测值。
     4)在尽量排除非气象杂波、波束阻挡、距离衰减和波束展宽等因素的影响下,对3个区域雷达网同步观测进行了对比分析,以便检查各雷达之间的系统观测差。结果发现宜昌雷达和其周围的雷达相比观测的回波强度偏强,而武汉雷达和其周围的雷达相比观测的回波强度偏弱;常德雷达(CINRAD-SB型)与其周围雷达(CINRAD-SA型)同步观测相比,回波垂直高度偏低;其它雷达对的观测差异较小。
     5)研究了多种拼图方法(最近邻居法、最大值法、距离指数权重平均法和Cressman权重平均法)处理多雷达重叠覆盖区的数据,结果发现距离指数权重平均法对多雷达资料合成拼图特别有用,它既保留了原始雷达资料中近距离处的高分辨特征,同时确保了雷达能影响到它所覆盖的整个区域。雷达网三维拼图减轻了由雷达波束几何学引起的各种问题,如一定程度上填补了单雷达观测引起的静锥区、最低仰角以下的资料空白区、因波束阻挡以及高仰角间隙等原因引起的资料空白区。
     6)基于三维反射率拼图数据开发了一些雷达网产品,并把它与单站雷达产品拼图进行比较,证明了在雷达网3D拼图反射率数据上生成的各种产品是合理的。研究了层状云和对流云回波的6个特征参数的分布特征,在此基础上提出用模糊逻辑法进行层状云和对流云的识别。经三个个例的试验,证明模糊逻辑法得到的识别结果是合理的。
This paper describes a technique of gridding radar reflectivity observations under quality control from multiple radars and combining them into a unified 3D merged reflectivity grid with high resolution. Then, some preliminary studies on the application of 3D reflectivity grid are made. The 3D mosaic grid is a powerful tool of the deep and wide application of radar network data (e.g. severe weather warning and nowcasting, data assimilations for convective-scale numerical over large domains, the application in hydrology and aviation) . The main contents and conclusions are as follows:
     1 A reflectivity quality control (QC) algorithm has been developed for identifying and removing non-precipitation echoes from the radar base reflectivity fields. The algorithm assumed that precipitation and non-precipitation echoes had different horizontal and vertical reflectivity structures. Two main parameters, vertical gradient of reflectivity with height constraint and horizontal texture of reflectivity, and a set of physically based rules and criteria were developed for the QC algorithm. The reflectivity QC algorithm has been tested using some volume scans of base level data from different radar sites and from different atmosphere conditions. Results have shown that the reflectivity QC algorithm is very successful in identifying non-precipitation echoes.
     2 The beam occultation, which is the percent of the radar beam power lost due to beam blockage, was calculated using an algorithm that used high resolution DEM(digital elevation model) data, radar beam pattern (Gaussian beam approximation), and radar beam propagation path (assuming radar beams propagate under standard atmospheric refraction conditions). Hybrid elevation angles and hybrid scan reflectivity were generated using based on beam occultation. Comparison of model-calculated beam occultation with radar observations indicated very good qualitative agreement and strongly quantitative correlation. In order to know the coverage capability of weather radar network, the standard refractive index beam heights (4/3 earth) were calculated for hybrid elevation angles for every radar in radar network, which were combined to produce a mosaicked beam height map.
     3 Four interpolation approaches were investigated to remap raw radar reflectivity fields onto a 3D Cartesian grid with high resolution. Through comparison of vertical and horizontal reflectivity cross section and estimated one-hour precipitation obtained by use of the four interpolation schemes, it was found that the vertical interpolation scheme with nearest neighbor on the range-azimuth plane was the most reasonable analysis scheme that provided consecutive reflectivity fields and retains high-resolution structure comparable to the raw data. Comparing reflectivity observation with corresponding reflectivity analysis obtained respectively by interpolation using reflectivity factor in dBZ and in mm6/m3 , results have shown that on the whole, the analysis field obtained by interpolation using reflectivity factor in dBZ was more accordant with observation field.
     4 In order to check spatial coherence and calibration differences of three regional radar network when they detected synchronously atmosphere, horizontal and vertical structure of reflectivity fields on equidistant line from radar-pairs were analyzed. Results have shown Wuhan radar’s echo intensities were weaker than that of adjacent radar, whereas, Yichang radar’s were stronger. Echo’s vertical structures are quite large variation on equidistant line when Changde radar simultaneously observes with around 3 radars, its echo height is obviously lower. Nevertheless, the others’echoes are consistent well.
     5 Four approaches of combining multiple-radar reflectivity fields were investigated. Results have shown the distance- exponential-weighted mean scheme provided a spatially consistent reflectivity mosaics while retaining the magnitude of the observations from the close radar. Mosaics could mitigate various problems that caused by the geometry of radar beam such as data voids with the cone of silence above the radar and in regions below the lowest beam.
     6 Based on 3D merged reflectivity grid, some radar network products used for warning effectively severe weather were developed, which were proved to be reasonable through Comparing radar network products with single radar product mosaics. The distribution characteristics of the six preparative reflectivity-morphological parameters from convective and stratiform rain were presented. Based on three of them, a fuzzy logic method for the partitioning of radar reflectivity into convective and stratiform rain classifications has been developed and tested using volume scan radar reflectivity data. Results have shown that the fuzzy logic method could separate reasonably stratiform and convective rain.
引文
[1] Atlas D. Radar in Meteorology. Amer Meteor Soc, 1990, 806pp
    [2] Serafin R J, Wilson J W. Operational weather radar in the United States: Progress and opportunity. Bull Amer Meteor Soc, 2000, 81:501-518
    [3] 阮均石.气象灾害十讲[M].北京:气象出版社,2000,1992,9(5):588-598
    [4] 郑媛媛, 俞小鼎, 方翀等. 一次典型超级单体风暴的多普勒天气雷达观测分析. 气象学报, 2004 ,62 (3) :317-328
    [5] 孙建华, 张小玲, 齐琳琳等. 2002 年 6 月 20-24 日梅雨锋中尺度对流系统发生发展分析. 气象学报, 2004, 62(4):423-438
    [6] Lilly D K. Numerical prediction of thunderstorms—Has its time come? Quart J Roy Meteor Soc, 1990, 116:779-798
    [7] Droegemeie K K. Toward a science of storm-scale prediction. Preprints, 16th Conf on Severe Local Storms, Kananaskis Park, Alberta, Canada, Amer Meteor Soc, 1990, 256-262
    [8] 许小峰. 中国新一代多普勒天气雷达网的建设与技术应用. 中国工程科学, 2003, 05(6):7-14
    [9] Department of Commerce and Department of Defense. Federal Meteorological Handbook 7. Weather radar observation: Part A: National weather radar network observing and reporting procedures,1980,218-220
    [10] Office of the Federal Coordinator for Meteorology(OFCM). Federal Meteorological Handbook 11. Doppler radar meteorological observations: Part C: WSR-88D products and algorithms. OFCM, NOAA, U.S. Department of Commerce,1991,1-7
    [11] Lewis J and F Mosher. National editing of the WSR-88D Radar Coded Message. In: Preprints Eighth Conference interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology. Atlanta, Amer. Meteor.Soc., 1992.18-21
    [12] 张培昌,李晓正,顾松山.天气雷达组网拼图的四维同化方法.南京气象学院学报, 1989, 12(3): 22-28
    [13] 万玉发,陈少林,罗建国. 数字化天气雷达联网拼图与卫星云图综合实时处理系统. 气象, 1994, 20(8): 26-31
    [14] 杜惠良,腾卫平,王志武.用于台风定位的雷达回波拼图方法.气象科学, 1997, 17(1): 89-95
    [15] 王庆东,严卫,马宁.数字化天气雷达组网拼图算法. 解放军理工大学学报(自然科学版), 2002, 3(2): 90-93
    [16] 胡胜,伍志方,刘运策,冯民学,顾松山. 新一代多普勒天气雷达广东省区域拼图初探. 气象科学, 2006, 26(1): 74-80
    [17] Zhang J, Howard K, and Gourley J J. Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J Atmos Oceanic Tech,2005,22:30~42
    [18] Carrie L, Zhang J, Howard K. Four-Dimensional Dynamic Radar Mosaic. The 11th Conference on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer Meteor Soc,CD-ROM,2004
    [19] Battan, L. J., 1973: Radar Observation of the Atmosphere. The University of Chicago Press, 324 pp.
    [20] 刘黎平, 张沛源, 梁海河, 牛昉, 周海光. 双多普勒雷达风场反演误差和资料的质量控制. 应用气象学报, 2003, 14(1):17-29
    [21] 史锐, 程明虎, 崔哲虎, 王柏忠. 长江流域多普勒雷达回波强度资料对比分析. 气象, 2004, 30(11):27-31
    [22] Huuskonen, A., Final report on the nordrad quality-assurance project, Tech. rep., Finnish Meteorological Institute, P.O. Box 503, FIN 00101Helsinki, Finland, 2002
    [23] Sekhon, R. S., and D. Atlas, 1972: Doppler radar structure of the melting zone and ground clutter effects. Preprints, 15th Radar Meteorology Conf., Champaign–Urbana, IL, Amer. Meteor. Soc., 222-227.
    [24] Johnson, G. N., P. L. Smith Jr., F. E. Nathanson, and L. W. Brooks, 1975: An analysis of techniques for dealing with anomalous propagation. Preprints, 16th Radar Meteorology Conf., Houston, TX, Amer. Meteor. Soc., 374-377.
    [25] Sirmans, D., and J. T. Dooley, 1980: Ground clutter statistics of a 10 cm ground based radar. Preprints, 19th Conf. on Radar Meteorology,Miami Beach, FL, Amer. Meteor. Soc., 184-191.
    [26] Moszkowicz, S., G. J. Ciach, and W. F. Krajewski, 1994: Statistical detection of anomalous propagation in radar reflectivity patterns.J. Atmos. Oceanic Technol., 11, 1026-1034.
    [27] Lee, R., G. Della Bruna, and J. Joss, 1995: Intensity of ground clutter and of echoes of anomalous propagation and its elimination. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer.Meteor. Soc., 651-652.
    [28] Joss, J., and H.Wessels, 1990: Ground clutter suppression for weather radar data. COST Tech. Rep. 73/WD/130, 6 pp.
    [29] Keeler, R. J., and R. E. Passarelli, 1990: Signal processing for atmospheric radars. Radar inMeteorology, D. Atlas, Ed., Amer.Meteor. Soc., 199-230.
    [30] Pratte, J. F., R. J. Keeler, R. Gagnon, and D. Sirmans, 1995: Clutter processing during anomalous propagation conditions. Preprints,27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc.,139-141.
    [31] Steiner, M., and J. A. Smith, 2002: Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J. Atmos. Oceanic Technol., 19, 673-686.
    [32] Hogg, W. D., 1978: Quality control and analysis of an archive of digital radar data. Preprints, 18th Conf. on Radar Meteorology,Atlanta, GA, Amer. Meteor. Soc., 150-154.
    [33] Smith, P. L., 1990: Precipitation measurement and hydrology: Panel report. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 607-618.
    [34] Mueller, E. A., and A. L. Sims, 1975: Statistics of high radar reflectivity gradients. Preprints, 16th Radar Meteorology Conf., Houston,TX, Amer. Meteor. Soc., 401-403.
    [35] Riley, G. F., Jr., and P. M. Austin, 1976: Some statistics of gradients of precipitation intensity. Preprints, 17th Conf. on Radar Meteorology,Seattle, WA, Amer. Meteor. Soc., 492-497.
    [36] Collier, C. G., S. Lovejoy, and G. L. Austin, 1980: Analysis of bright bands from 3-D radar data. Preprints, 19th Conf. on Radar Meteorology,Miami Beach, FL, Amer. Meteor. Soc., 44-47.
    [37] Rosenfeld, D., E. Amitai, and D. B. Wolff, 1995: Classification of rain regimes by the three-dimensional properties of reflectivity fields. J. Appl. Meteor., 34, 198-211.
    [38] Joe, P., 1991: Classification of radar imagery using texture analyses. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 107-110.
    [39] Giuli, D., M. Gherardelli, A. Freni, T. A. Seliga, and K. Aydin, 1991:Rainfall and clutter discrimination by means of dual-linear polarization radar measurements. J. Atmos. Oceanic Technol., 8,777-789.
    [40] Pratte, J. F., R. Gagnon, and R. Cornelius, 1993: Ground clutter characteristics and residue mapping. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 50–52.
    [41] Cornelius, R., 1994: Detecting ground clutter contamination of weather radar data with neural networks. Preprints, World Congress on Neural Networks, San Diego, CA, International Neural Network Society.
    [42] Grecu, M., and W. F. Krajewski, 1999: Detection of anomalous propagation echoes in weather radar data using neural networks. IEEE Trans. Geosci. Remote Sens., 37,287-296.
    [43] Grecu, M., and W. F. Krajewski,, 2000: An efficient methodology for detection of anomalous propagation echoes in radar reflectivity data using neural networks. J. Atmos. Oceanic Technol., 17, 121-129.
    [44] VanAndel, J., 2001: Radar echo classifier algorithm development using Python. Preprints, 30th Int. Conf. on Radar Meteorology,Munich, Germany, Amer. Meteor. Soc., 704-706.
    [45] Kessinger, C., S. Ellis, and J. VanAndel, 2001: NEXRAD data quality: The AP clutter mitigation scheme. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc.,707-709.
    [46] Zhang J, Wang S, Clarke B. WSR-88D reflectivity quality control using horizontal and vertical reflectivity structure. Preprints, the 11th Conference on Aviation, Range, and Aerospace Meteorology, AMS, 2004, P5.4.
    [47] 刘黎平, 吴林林, 杨引明. 基于模糊逻辑的分布式超折射地物回波识别方法的建立和效果分析. 2006年海峡两岸气象科学技术研讨会论文集, 42-52.
    [48] Lakshmanan V, Hondl K, tumpf G, et al. Quality control of WSR-88D data. Preprints, 31st Int. Conf. on Radar Meteorology, AMS. 2003,522-525.
    [49] Lakshmanan V, Hondl K, Stumpf G, et al. Quality control of weather radar data using texture features and a neural network. 5th Int’l Conf. on. Adv. in Patt. Recogn., IEEE, Kolkota, 2003.
    [50] Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132-140.
    [51] Blackman, M., and A. J. Illingworth, 1993: Differential phase measurement of precipitation. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 745-747.
    [52] Zrnic, D. S., and R. V. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454-464.
    [53] Ryzhkov, A. V., and D. S. Zrnic, 1998: Polarimetric rainfall estimation in the presence of anomalous propagation. J. Atmos. Oceanic Technol., 15, 1320-1330.
    [54] Collier, C. G., 2000: COST-75 final report—A summary. Phys. Chem.Earth, 25B, 817-822.
    [55] 刘黎平, 王致君.双线偏振雷达探测的云和地物回波的特征及其识别方法,高原气象,1996,15(3),303-310.
    [56] Mann, D. R., J. E. Evans, and M.W. Merritt, 1986: Clutter suppression for low altitude wind shear detection by Doppler weather radars.Preprints, 23d Conf. on RadarMeteorology, Vol. 1, Snowmass,CO, Amer. Meteor. Soc., R9-R13.
    [57] Schmid, W., D. Ho¨gl, A. Vckovski, and J. Joss, 1991: Test of clutter suppression techniques in the Swiss Alps. Preprints, 25th Int.Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc.,875-878.
    [58] Joss, J., and R. W. Lee, 1993: Scan strategy, clutter suppression, calibration and vertical profile corrections. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 390-392.
    [59] Moores, W., and T. W. Harrold, 1975: Estimating the distribution and intensity of ground clutter. Preprints, 16th Radar Meteorology Conf., Houston, TX, Amer. Meteor. Soc., 370-373.
    [60] Delrieu, G., J. D. Creutin, and H. Andrieu, 1995: Simulation of radar mountain returns using a digitized terrain model. J. Atmos. Oceanic Technol., 12, 1038-1049.
    [61] Archibald, E., 2000: Enhanced clutter processing for the UK weather radar network. Phys. Chem. Earth, 25B, 823-828.
    [62] Fabry, F., C. Frush, I. Zawadzki, and A. Kilambi, 1997: On the extraction of near-surface index of refraction using radar phase measurements from ground targets. J. Atmos. Oceanic Technol.,14, 978-987.
    [63] Atkinson, N. C., and P. K. James, 1991: Quality control of data from overlapping weather radars. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 206-209.
    [64] Klingle-Wilson, D., E. Mann, and R. Boldi, 1995: An algorithm to remove anomalous propagation clutter returns from ASR-9 weather channel data using pencil beam radar data. Preprints,Sixth Conf. on Aviation Weather Systems, Dallas, TX, Amer. Meteor. Soc., 366-371.
    [65] Fiore, J. V., R. K. Farnsworth, and G. Huffman, 1986: Quality control of radar-rainfall data with VISSR satellite data. Preprints, Joint Sessions 23d Conf. on Radar Meteorology and Conf. on Cloud Physics, Vol. 3, Snowmass, CO, Amer. Meteor. Soc., JP15-JP18.
    [66] Pamment, J. A., and B. J. Conway, 1998: Objective identification of echoes due to anomalous propagation in weather radar data. J.Atmos. Oceanic Technol., 15, 98-113.
    [67] 万玉发,杨洪平,肖艳姣,吴翠红,徐向明.多普勒天气雷达站址视程的客观分析技术. 应用气象学报,2000,11(4): 440-447.
    [68] Joss, J., and A. Waldvogel, 1990: Precipitation measurement and hydrology, A review. Radar in Meteorology, D. Atlas, Ed., Amer.Meteor. Soc., 577-606.
    [69] Sauvageot, H., 1994: Rainfall measurement by radar: A review. Atmos. Res., 35, 27-54.
    [70] ollier, C. G., 1996: Applications of Weather Radar Systems. Wiley,390 pp.
    [71] Westrick, K. J., C. F. Mass, B. A. Colle, 1999: The Limitations of the WSR-88D Radar Network for Quantitative Precipitation Measurement over the Coastal Western United States. Bull.Amer. Meteor. Soc.: Vol. 80, No. 11, pp. 2289-2298.
    [72] Pellarin, T., G. Delrieu, G. M. Saulnier, H. Andrieu, and J. D. Creutin, 2002: Hydrologic visibility of weather radars operating in mountainous regions: Case study for the Arde`che catchment (France). J. Hydrometeor., 3, 539-555.
    [73] Harrold, T., E. English, and C. Nicholass, 1974: The accuracy of radar-derived rainfall measurements in hilly terrain. Quart. J.Roy. Meteor. Soc., 100, 201-208.
    [74] Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Quart. J. Roy.Meteor. Soc., 120, 1231-1254.
    [75] Joss, J.,, and R. Lee, 1995: The application of radar–gauge comparisons to operational precipitation profile corrections. J. Appl. Meteor.,34, 2612-2630.
    [76] Fulton, R. A., J. P. Breidenbach, D.-J. Seo, D. A. Miller, and T.O'Bannon, 1998: The WSR-88D rainfall algorithm. Wea.Forecasting, 13, 388-395
    [77] Seltmann, J. E. E., and J. Reidl, 1999: Improved clutter treatment within the German radar network: First results. Proc. COST 75 Int. Seminar on Advanced Weather Radar Systems, Locarno, Switzerland, European Commission, EUR 18567 EN 267-279.
    [78] Brown, R.A., Wood, V.T., Barker, T.W., 2002. Improved detection using negative elevation angles for mountaintop WSR-88Ds: simulation of KMSX near Missoula, Montana. Weather and Forecasting 17 (2), 223-237.
    [79] Wood, V.T., Brown, R.A., Vasiloff, S.V., 2003. Improved detection using negative elevation angles for mountaintop WSR-88Ds. Part II: Simulations of the three radars covering Utah. Weather and Forecasting 18 (3), 393-403.
    [80] Bech, J., Codina, B., Lorente, J., Bebbington, D., 2003. The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient. Journal of Atmospheric and Oceanic Technology 20 (6), 845–855.
    [81] Smith, P. L., Jr., 1998: On the minimum useful elevation angle for weather surveillance radar scans. J. Atmos. Oceanic Technol.,15, 841-843.
    [82] 张亚萍,刘均,夏文梅,顾松山. 雷达定量估测区域降水波束阻挡系数的计算. 南京气象学院学报,2002,25(5): 640-647.
    [83] Kucera, P. A., W. F. Krajewski, C. B. Young 2004: Radar Beam Occultation Studies Using GIS and DEM Technology: An Example Study of Guam. J. Atmos. OceanicTechnol.: Vol. 21,No. 7, pp. 995-1006.
    [84] Witold F. Krajewski_, Alexandros A. Ntelekos1, Rados"aw Goska A GIS-based methodology for the assessment of weather radar beam blockage in mountainous regions: two examples from the US NEXRAD network,Computers & Geosciences 32 (2006) 283-302
    [85] Doviak, R.J., and D.S. Zrnic, 1993: Doppler Radar and Weather Observations, 2nd Edition, Academic Press, 562 pp.
    [86] O'Bannon, 1997: Using a 'terrain-based' hybrid scan to improve WSR-88D precipitation estimates. Preprints, The 28th International Conference on Radar Meteorology, September 7-12, 1997, 506-507.
    [87] Fabry, F., and I. Zawadzki. Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos.Sci., 1995, 52, 838-851.
    [88] Smith C J. The reduction of errors caused by bright bands in quantitative rain fall measurements made using radar. J Atmos Sci, 1986,3:129-141.
    [89] Baeck, M. L., and J. A. Smith. Rainfall estimation by the WSR-88D for heavy rainfall events. Wea. Forecasting, 1998,13, 416-436.
    [90] Kitchen, M., and P. M. Jackson. Weather radar performance at long range—Simulated and observed. J. Appl. Meteor., 1993,32, 975-985.
    [91] Harrold, T. W., and P. G. Kitchingman. Measurement of surface rainfall using radar when the beam intersects the melting layer.Preprints, 16th Conf. on Radar Meteorology, Houston, TX,Amer. Meteor. Soc., 1975,473-478.
    [92] Cheng, M., and C. G. Collier. An objective method for recognizing and partially correcting brightband error in radar images. J. Appl. Meteor., 1993,32, 1142-1149.
    [93] Kitchen M, Brown R, Davies A G. Real time correction of weather radar data for the effects of bright band, rang and orographic growth in wide spread precipitation. Q J R Meteor Soc,1994,120:1231-1254.
    [94] Hardaker P J, Holt A R, Collier C G. A melting layer model and its use in correcting for the bright band in single polarisation radar echoes. Quart J R Roy Meteor Soc, 1995,121:495- 525.
    [95] Andrieu, H., and J. D. Creutin. Identification of vertical profiles of radar reflectivities for hydrological applications using an inverse method. Part I: Formulation. J. Appl. Meteor., 1995,34, 225-239.
    [96] Kitchen M. Towards improved radar estimation of surface precipitation at long range. Q J R Meteor Soc, 1997, 123:145-163.
    [97] Borga, M., E. N. Anagnostou, and W. F. Krajewski. A simulation approach for validation of a brightband correction method.J. Appl. Meteor., 1997,36, 1507-1518.
    [98] Sanchez-Diezma, R., I. Zawadzki, and D. Sempere-Torres. Identification of the bright band through the analysis of volumetric radar data. J. Geophys. Res., 2000,105 (D2), 2225-2236.
    [99] White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J. Neiman, 2002: An automated brightband height detection algorithm for use with Doppler radar spectral moments. J. Atmos. Oceanic Technol., 19, 687-697.
    [100] Seo, D. J., J. Breidenbach, R. Fulton, and D. Miller, 2000: Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of reflectivity. J. Hydrometeor.,1, 222-240.
    [101] Marwitz, J., and J. Toth. The Front Range blizzard of 1990.Part I: Synoptic and mesoscale structure. Mon. Wea. Rev., 1993, 121,402-415.
    [102] Kain, J. S., S. M. Goss, and M. E. Baldwin. The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 2000,15, 700-714.
    [103] Gourley J, Calvert C. Automated detection of the bright band using WSR-88D data. Wea Forecasting,2003,18:585-599.
    [104] 陈明轩,高峰. 利用一种自动识别算法移除天气雷达反射率因子中的亮带. 应用气象学报,2006,17(2): 207-214.
    [105] Jorgensen D P, Hildebrand P H, Frush C L. Feasibility test of an airborne pulse-Doppler meteorological radar. J Appl Meteor, 1983, 22:744-757
    [106] Fulton R. WSR-88D polar to HRAP mapping. Tech Memo, Hydrology Research Laboratory, Office of Hydrology, National Weather Service, Silver Spring, MD, 1998, 33pp
    [107] Mohr C G, Vaughn R L, An economical procedure for Cartesian interpolation and display of reflectivity factor data in three-dimensional space. J Appl Meteor, 1979, 18: 661-670
    [108] Miller L J, Mohr C G, Weinheimer A J. The simple rectification to Cartesian space of folded radial velocities from Doppler radar sampling. J Atmos Oceanic Technol, 1986,3:162-174
    [109] Weygandt S S, Shapiro A, Droegemeier K K. Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part I: Single-Doppler velocity retrieval. Mon Wea Rev, 2002a,130:433-453
    [110] Shapiro A, Robinson P, Wurman J, Gao J. Single-Doppler velocity retrieval withrapid-scan radar data. J Atmos Oceanic Technol, 2003,20:1758-1775
    [111] Askelson M A, Aubagnac J -P, Straka J M, An adaptation of the Barnes filter applied to the objective analysis of radar data. Mon Wea Rev, 2000,128:3050-3082
    [112] Trapp R J, Doswell C A. Radar data objective analysis. J Atmos Oceanic Technol, 2000,17:105-120
    [113] Heymsfield G M. Statistical objective analysis of dual-Doppler radar data from a tornadic storm. J Appl Meteor, 1976,15: 59-68
    [114] Gao J, Xue M, Shapiro A, Droegemeier K K. A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon Wea Rev, 1999,127:2128-2142
    [115] Fabry, F., G. L. Austin, and D. Tees, 1992: The accuracy of rainfall estimates by radar as a function of range. Quart. J. Roy. Meteor.Soc., 118, 435-453.
    [116] Smith, J. A.,D.-J. Seo, M. L. Baeck, and M. D. Hudlow, 1996b: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32, 2035-2045.
    [117] Jameson, A. R., and D. B. Johnson, 1990: Cloud microphysics and radar. Proc. Battan Memorial and 40th Anniversary Radar Meteor. Conf., Boston, MA, Amer. Meteor. Soc., 323–340.
    [118] Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.
    [119] Seo, D.-J., R. A. Fulton, J. P. Breidenbach, M. Taylor, and D. A.Miller, 1996: Final report for interagency memorandum of understanding among the NEXRAD Program, WSR-88D Operational Support Facility, and the National Weather Service Office of Hydrology Hydrologic Research Laboratory. HRL/OH/NWS,Silver Spring, MD, 64 pp. [Available from Hydrologic Research Laboratory, W/OH1, Office of Hydrology, NationalWeather Service, 1325 East–West Highway, Silver Spring, MD 20910.]
    [120] Koistinen, J., 1991: Operational correction of radar rainfall errors due to vertical profile of reflectivity. Preprints, 25th Radar Meteorology Conf., Paris, France, Amer. Meteor. Soc., 91–96.
    [121] Gray, W., 1991: Vertical profile corrections based on EOF analysis of operational data. Preprints, 25th Int. Conf. on Radar Meteorology,Paris, France, Amer. Meteor. Soc., 821–823.
    [122] Andrieu, H., and J. D. Creutin, 1995: Identification of vertical profile of radar reflectivity for hydrological applications using an inverse method. Part I: Formulation. J. Appl. Meteor., 34, 225–239.
    [123] Seo, D.-J., 1996: Nonlinear estimation of spatial distribution of rainfall - An indicatorcokriging approach. Stoch. Hydrol. Hydraul., 10, 127-150.
    [124] Seo, D.-J., F. Ding and R. Fulton, 2002: Final Report Interagency MOU among the NEXRAD Program, The WSR-88D Radar Operations Center, and The NWS Office of Hydrologic Development. Hydrology Laboratory, Office of Hydrologic Development, National Weather Service, Silver Spring, MD.
    [125] Houze R A, Jr. Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 1989, 115: 425-461
    [126] DeMaria M. Linear response of a stratified tropical atmosphere to convective forcing. J. Atmos. Sci., 1985, 42: 1944-1959
    [127] Austin P M, Houze Jr R A, Analysis of the structure of precipitation patterns in New England. J. Appl. Meteor., 1972, 11: 926-935
    [128] Churchill D D, Houze Jr R A. Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 1984, 41: 933-960
    [129] Steiner M, Houze Jr R A, Yuter S E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 1995, 34: 1978-2007
    [130] 潘江, 张培昌. 不同类型降水回波的自动识别方法.南京气象学院学报, 1999, 22(3): 398-402
    [131] DeMott C A, Cifelli R, Rutledge S A. An improved method for partitioning radar data into convective and stratiform components. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 1995, 233-236
    [132] Rosenfeld D, Wolff D B, Amitai E. The window probability matching method for rainfall measurements with radar. J. Appl. Meteor., 1994, 33: 682-693
    [133] Biggerstaff M I, Listenmaa A. In Improved Scheme for Convective/Stratiform Echo Classification Using Radar Reflectivity. J. Appl. Meteorol., 2000, 39: 2129-2150
    [134] 张培昌, 杜秉玉, 戴铁丕编. 雷达气象学. 北京: 气象出版社, 2001, 102-117
    [135] 俞小鼎, 姚秀萍, 熊廷南等编. 多普勒天气雷达原理与业务应用. 北京: 气象出版社, 2005, 22-25.
    [136] 中国气象局培训中心. 新一代天气雷达讲义.
    [137] Lakshmanan, V. and M. Valente, 2004: Quality control of radar reflectivity data using satellitedata and surface observations. 20th Int’l Conference on Information Processing Systems, Amer.Meteo. Soc., Seattle, CD–ROM, 12.2.
    [138] 张培昌,杜秉玉,戴铁丕.雷达气象学, 北京: 气象出版社, 2001.70-73.
    [139] Doviak, R.J., Bringi, V., Ryzhkov, A., Zahrai, A., Zrnic, D., 2000. Considerations forpolarimetric upgrades to operational WSR-88D radar. Journal of Atmospheric and Oceanic Technology 17 (3), 257-278.
    [140] 张培昌, 杜秉玉, 戴铁丕编. 雷达气象学. 北京: 气象出版社, 2001, 314-324
    [141] Greene, D.R. and R.A. Clark, 1972. Vertically integrated liquid water – a new analysis tool. Mon. Wea. Rev., 100, 548-552.
    [142] Klazura, G. E., and D. A. Imy, 1993: A description of the initial set of analysis products available from the NEXRAD WSR-88D system. Bull. Amer. Meteor. Soc., 74, 1293-1311
    [143] Boudevillain, B, and Andrieu, H. (2003). “Assessment of vertically-integrated liquid water content radar measurement”. J. Atmos. Ocean. Technol. 20, 807-819.
    [144] Amburn S A, Wolf P L. VIL density as a hail indicater[J]. Wea Forecasting, 1997, 12(2):473-478
    [145] 肖艳姣,刘黎平. 新一代天气雷达网资料的三维格点化及拼图方法研究.气象学报,2006,64(5):647-657
    [146] Liu Hongping, Chandrasehar V. Classification of hydrometeor based on polarimetric radar measurements: Development of fuzzy logic and neuro2fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 2000, 17: 140-164
    [147] 曹俊武, 刘黎平, 葛润生. 模糊逻辑法在双线偏振雷达识别降水粒子相态中的研究.大气科学, 2005, 29(15): 827-836
    [148] Zadeh L A. Fuzzy sets. Info. & Ctl., 1965, 8(3): 338-353
    [149] Zadeh L A. Fuzzy algorithms. Info. & Ctl., 1968, 12:94-102
    [150] Houze R A, Jr. Mesoscale convective systems. Rev. Geophys., 2004, 42: 1-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700