基于IEM的多波段、多极化SAR土壤水分反演算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为陆面生态系统水循环的重要组成,土壤水分是植物生长发育的基本条件,也是研究植物水分胁迫、进行旱情监测、农作物估产等的一个重要指标。因此,大面积监测土壤水分在水文、气象和农业科学领域具有较大的意义,土壤水分监测一直是人们十分关注的问题。应用遥感技术进行土壤水分等地表参数的反演在过去的几十年间取得了显著进展,微波遥感尤其是主动微波遥感具有全天时、全天候观测的优点,并且对地表具有一定的穿透能力,能够弥补其他遥感方式在土壤水分监测应用中的不足,为流域尺度土壤水分监测提供了新的方法和途径。
     目前的星载SAR系统在向多极化、多角度方向发展,因此采用不同极化方式及不同入射角条件下的后向散射系数组合类研究雷达后向散射系数与地表参数之间的关系成为可能。本研究在比较三种典型的地表微波散射模型(Oh模型、Dubois模型、IEM模型)的基础上,用理论模型IEM模型对地表的微波散射特征进行了模拟和分析,提出了用多极化SAR后向散射系数数据来反演地表粗糙度参数和土壤水分的经验模型。本研究的主要研究成果包括以下几方面:
     (1)对Dubois模型、Oh模型和IEM模型的比较结果表明,Dubois模型对介电常数、入射角变化的响应与实际情况呈截然不同,因此在用雷达数据进行土壤水分反演研究时不推荐选择Dubois模型。Oh模型能够模拟交叉极化的后向散射特征,而IEM模型只能模拟同极化的后向散射数据,因此如果需要模拟交叉极化微波后向散射特征时,可以选择Oh模型。理论模型IEM模型对同极化后向散射特征的模拟能够比Oh模型更好地刻画地表微波散射特征,因此在进行同极化模拟时应选择IEM模型。
     (2)分析了均方根高度、相关长度、土壤含水量等地表参数以及入射角、极化方式等系统参数对雷达微波后向散射特征的影响,揭示了雷达后向散射系数随这些参数的变化而变化的规律,对雷达反演地表土壤水分的理想系统参数设置进行了探讨。
     (3)提出了利用同极化(VV或HH)后向散射系数在小入射角和大入射角情况下的差来反演地表组合粗糙度参数Z_s的经验模型;基于该模型,建立了利用雷达后向散射系数反演地表土壤水分的经验模型。
     (4)提出了利用VV和HH极化相同角度的后向散射系数差来反演地表均方根高度的经验模型,该模型可以在较大的地表粗糙度范围内实现地表均方根高度的反演,从而使建立雷达后向散射系数与地表粗糙度之间像元尺度的对应关系成为可能。
     (5)首次对S波段地表微波散射特征进行了模拟与分析,并针对该波段提出了相应的地表粗糙度参数及土壤含水量反演经验模型,从而为将来S波段星载SAR系统发射升空后在环境监测及防旱减灾方面的应用提供技术支持。
     (6)利用获取的ENVISAR-ASAR数据,对建立的经验模型在河北平原南部进行了应用与验证,结果表明本研究建立的地表粗糙度参数反演模型和土壤水分反演模型均能取得较好的应用效果。
Soil moisture content plays a critical role in the surface energy balance at the soil-atmosphere interface and can be considered as a key state variable that influences the distribution of the radiant energy, the runoff generation and the percolation of water into the soil. Soil moisture monitor is always a focus in hydrology, meteorology and agriculture researches. In the past several decades, large scale soil moisture monitor by remote sensing, such as optical, infrared, and microwave methods have developed rapidly. Common methods and optical remote sensing have their own shortcoming in soil water monitor, thus cannot reach the need of soil water monitor. Active microwave techniques, particularly Synthetic Aperture Radar (SAR), take advantage of their all-weather and night-and-day measurement capacities, so it offers a new way to monitor soil moisture in drainage scale.
     Multi-polarization and multi-incidence angle is the tendency of space-borne SAR, so it is possible to reveal the relationship between radar backscatter coefficient and surface parameters by using different backscatter coefficient under different polarization mode and incidence angle. First three classical surface microwave backscatter model, i.e. Oh model, Dubois model and IEM model were compared and the IEM model was chosen in the following research. Empirical inversion model of surface roughness and soil moisture content were proposed on the simulation and analysis of surface backscatter characteristic under different input parameters (different bands and different polarizations) by using the IEM model.
     The results and innovations of this dissertation are mainly in the following aspects:
     (1) The comparison of Dubois model, Oh model and IEM model indicates that the Dubois model cannot describe the real backscatter character of surface under different dielectric constant or incidence angle, so it was not preferred in soil moisture inversion. Oh model can be used in cross polarization backscatter simulation. IEM model is preferred in co-polarization simulation because it can describe the backscatter character perfect.
     (2) On the basis of analysis of backscatter character under different surface roughness, soil water content, incidence angle and polarization conditions, the response of radar backscatter coefficient to these parameters was revealed.
     (3) An empirical model to inverse mixed surface roughness Z_s was proposed by using the backscatter coefficient difference between little and large incidence angles; then the empirical soil moisture inversion model was proposed based on the mixed surface roughness inversion model.
     (4) An empirical model to inverse RMS height was proposed by using the difference between VV and HH polarization backscatter coefficients under the same incidence angle. This model can inverse RMS height in a large roughness ranges. The use of the new empirical model can avoid tedious ground measurements to a great extent, and makes it possible to represent soil surface in pixel scale.
     (5) The backscatter characteristic at S band was simulated and analyzed for the first time, and the empirical modes for surface roughness and soil moisture were proposed. This research work provides technical support for the applications of S band space borne SAR of our country in the near future.
     (6) The surface roughness and soil moisture inversion models were applied in south Hebei Plain by using the ENVISAT-ASAR data and in situ experimental data. The inversion results of both parameters fitted the in situ data well.
引文
1.F.T.乌拉比等著,侯世昌等译.微波遥感·第一卷:微波遥感基础和辐射测量学.北京:科学出版社.1988
    2.F.T.乌拉比等著,黄培康等译.微波遥感·第二卷:雷达遥感和面目标的散射、辐射理论北京:科学出版社.1987
    3.M.I.Skolnik,左群声等译.雷达系统导论(第三版).北京:电子工业出版社.2006
    4. T.M.Lillesand,R.W.Kiefer.彭望碌等译.遥感与图像解译(第四版).北京:电子工业出版社.2003
    5.蔡斌,陆文杰,郑新江.气象卫星条件植被指数监测土壤状况.国土资源遥感,1995,7(4):45-50
    6.陈权.环境小卫星s波段SAR监测土壤水分变化应用分析.国土资源遥感,2005,17(2):12-15
    7.崔新明.河北平原农业持续发展的技术对策.河北农业科学,1996,(2):14-17
    8.范天锡.风云三号气象卫星的特点和作用.气象科技,2002,30(6):321-327
    9.冯强,田国良,柳钦火.全国干旱遥感监测运行系统的研制.遥感学报,2003,7(1):14-19
    10.高峰,王介民,李新等.青藏高原地表参数的被动微波遥感反演研究.兰州大学学报(自然科学版),2004,40(6):86-91
    11.戈建军,王超,张卫国.土壤湿度微波遥感中的植被散射模型进展.遥感技术与应用,2002,17(4):209-214
    12.简莉.“风云三号”气象卫星简介.新疆气象,2006,29(4):45-46
    13.李承绪.河北土壤.石家庄:河北科学技术出版社,1990
    14.李茂松,李森,李育慧.中国近50年旱灾灾情分析.中国农业气象,2003,24(1):7-10
    15.李天杰,郑应顺,王云等.土壤地理学.北京:高等教育出版社.2004
    16.李宗谦,冯孔豫.从雷达后向散射系数反演土壤湿度与复介电常数.中国科学(E辑),1997,27(3):243-248
    17.舒宁.微波遥感原理.武汉:武汉大学出版社.2003
    18.隋洪智,田国良.遥感旱灾模型综合分析.自然灾害学报,1996,5(3):109-115
    19.田国良.黄河流域典型地区遥感动态研究.北京:科学出版社.1990 161-177
    20.田国良.土壤水分的遥感监测方法.环境遥感,1991,6(2):89-98
    21.汤明.裸地散射特性分析.电波科学学报,1994,9(4):69-75
    22.王飞跃,王俊锋,吴军虎,万余庆.西部干旱区卫星雷达遥感找水试验研究.国土资源遥感,2000,12(4):14-20
    23.吴发启,郑子成.坡耕地地表糙度的量测与计算.水土保持通报,2005,25(5):71-74
    24.武晓波,阎守邕,田国良等.在GIS支持下用NOAA/AVHRR数据进行旱情监测.遥感学报,1998,2(4):280-284
    25.徐京.我国环境与灾害监测预报小卫星系统概况.中国航天,2002,(7):10-15
    26.曾琪明,焦健.合成孔径雷达遥感原理及应用简介(一).遥感信息,1997,(4):41-45
    27.曾琪明,焦健.合成孔径雷达遥感原理及应用简介(二).遥感信息,1998,(1):41-45
    28.曾琪明,焦健.合成孔径雷达遥感原理及应用简介(三).遥感信息,1998,(2):43-47
    29.曾琪明,焦健.合成孔径雷达遥感原理及应用简介(四).遥感信息,1998,(4):42-46
    30.张俊荣.我国微波遥感现状及前景.遥感技术与应用,1997,12(3):58-64
    31.郑子成,何淑勤,吴发启.降雨对地表糙度影响的研究.水土保持研究,2003,10(2):151.153
    32.中国科学院南京土壤研究所.中国土壤图集.北京:地图出版社.1986
    33. A. Gatti, F. Mattia, et al.. A comparison between laser needle-like and meshboard techniques for soil roughness measurements. Available from: http://lhwm.ugent.be/~chris/DOCS/roughness sheffield.pdf
    34. A. K. Fung, Z. Li, K. S. Chen. Backscattering from a randomly rough dielectric surface. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 356-369
    35. A. K. Fung. Microwave Scattering and Emission Models and their Applications. Boston: Artech House. 1994
    36. Chanzy. Basic soil surface characteristics derived from active microwave remote sensing. Remote Sensing Review, 1993, (7): 303-320
    37. D. Frate, P. Ferrazzoli, G Schiavon. Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks. Remote Sensing of Environment, 2003, 84(2):174-183
    38. D. P. Lusch. Introduction to microwave remote sensing. Available from: www.trfic.msu.edu/products/profcorner products/Intro Microwave.pdf
    39. D'Haese, N. Verhoest, et al... (2000). Comparison and evaluation of two soil surface roughness measuring techniques: the meshboard method and the ESA - CESBIO laserprofiler. Internal report. LHWM, Faculty of agricultural and applied biological sciences, Ghent University, Belgium.
    40. E.G. Njoku, L. Li. Retrieval of Land Surface Parameters Using Passive Microwave Measurements at 6~18 GHz. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 79-93
    41. E. G. Njoku, P. E. O'Neill. Multifrequency Microwave Radiometer Measurements of Soil Moisture. IEEE Transactions on Geoscience and Remote Sensing, 1982, 20(4): 468-475
    42. E. G. Njoku, W. J. Wilson, S. H. Yueh, et al.. Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during SGP99. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2659-2673
    43. E. P. W. Attema, F. T. Ulaby. Vegetation modeled as water cloud. Radio Science, 1978, 13(2):357-364
    44. E.T. Engman, N. Chauhan. Status of microwave soil moisture measurements with remote sensing. Remote Sensing of Environment, 1995, 51(1): 189-198
    45. F. Mattia, M. W. J. Davidson, et al.. A Comparison between soil roughness statistics used in surface scattering models derived from mechanical and laser profilers. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41 (7): 1659-1672
    46.E T. Ulaby, K. M. Sarabandi, K. McDonald, et al.. Michigan microwave canopy scattering model. International Journal of Remote Sensing, 1990, 11(7): 1223-1253
    47.E T. Ulaby, P.P. Batlivala, M. C. Dobson. Microwave back scatter dependence on surface roughness, Soil Moisture, and Soil Texture, Partl: Bare soil. IEEE Transactions on Geoscience and Remote Sensing, 1978, 16(4): 286-295
    48.F. Wood, D. S. Lin, et al.. Intercomparisons between passive and active microwave remote sensing, and hydrological modeling for soil moisture. Advances in Space Research, 1993, 13(5): 167-176
    49.J. Archer, G. Wadge. On the use of theoretical models for the retrieval of surface roughness from playa surfaces. Available from:http://conferences.esa.int/98c07/papers/P011.PDF
    50.J. B. Boisvert, Q. H. J. Gwyn, A. Chanzy, et al.. Effect of surface soil moisture gradients on modeling radar backscattering from bare fields. International Journal of Remote Sensing, 1997, 18(1): 153-170
    51.J. C. Shi, J. Wang, et al.. Estimation of Bare Surface Soil Moisture and Surface Roughness Parameter Using L-band SAR Image Data. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1254-1266
    52.J. Choudhury, T. J. Schmugge, R. W. Newton, et al... Effect of Surface Roughness on the Microwave Emission from Soils. Journal of Geophysical Research, 1979, 84:5699-5706
    53.J. R. Wang, B. J. Choudhury. Remote Sensing of Soil Moisture Content Over Bare Field at 1.4 GHz Frequency. Journal of Geophysical Research, 1981, 86(C6): 5277-5282
    54.J. R. Wang. Effect of Vegetation on Soil Moisture Sensing Observed from Orbiting Microwave Radiometer. Remote Sensing of Environment, 1985, 17(2): 140-151
    55.J. Wickel, T. J. Jackson. Multitemporal monitoring of soil moisture with RADARSAT SAR during the 1997 Southern Great Plains hydrology experiment. International Journal of Remote Sensing, 2001, 22(8): 1571-1583
    56.K. C. McDonald, M. C. Dobson, F. T. Ulaby. Using MIMICS to model L-band multiangle and multitemporal backscatter from a walnut orchard. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 477-491
    57.K. S. Chen, S. K. Yen, W. P. Huang. A simple model for retrieving bare soil moisture from radar-scattering coefficients Remote Sensing of Environment, 1995, 54(2): 121-126
    58.K. Sarabandi, Y. Oh, F. T. Ulaby. Measurement and calibration of differential Mueller matrix of distributed targets. IEEE Transactions on Geoscience and Remote Sensing, 1992, 40(12): 1524-1532
    59.K. Sarrabandi, E. S. Li. A microstrip ring resonator for non-invasive dielectric measurements. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1223-1231
    60.L. Bruckler, H. Witono, P. Stengel. Near Surface Soil Moisture Estimation from Microwave Measurements. Remote Sensing of Environment, 1988, 26(2): 101-121
    61.L. Cognard, C. Loumagne, et al.. Evaluation of the ERS 1/Synthetic Aperture Radar capacity to estimate surface soil moisture: Two-year results over the Naizin watershed. Water Resources Research,1995,31(4) :975-982
    62. Loew,R.Ludwig,W.Mauser.Derivation of surface soil moisture from ENVISAT ASAR wide swath and image mode data in agricultural areas.IEEE Transactions on Geoscience and Remote Sensing,2006,44(4) :889-899
    63. M.C.Dobson,F.T.Ulaby,M.T.Hallikainen,M.A.El-rayes.Microwave Dielectric Behavior of Wet Soil Part Ⅱ:Dielectric Mixing Models.IEEE Transactions on Geoscience and Remote Sensing,1985,23(1) :35-46
    64. M.C.Dobson,F.T.Ulaby.Active Microwave Soil Moisture Research.IEEE Transactions on Geoscience and Remote Sensing,1986,24(1) :23-36
    65. M.C.Dobson,F.T.Ulaby.Preliminary Evaluation of the SIR-B response to Soil Moisture,Surface Roughness,and Crop Canopy Cover.IEEE Transactions on Geoscience and Remote Sensing,1986,24(4) :517-526
    66. M.Callens,Niko E.C.Verhoest.Analysis of soil roughness measurements using a 25 m laser profiler and a 4 m wide meshboard.Geoscience and Remote Sensing Symposium,2004. IGARSS '04. Proceedings.2004 IEEE International:1653-1656
    67. M.S.Moran,C.D.P.Lidard,et al..Estimating soil moisture at the watershed scale with satellite-based radar and land surface models.Canadian Journal of Remote Sensing,2004,30(5) :805-826
    68. M.T.Hallikainen,F.T.Ulaby,M.C.Dobson,M.A.El-rayes,L.K.Wu.Microwave Dielectric Behavior of Wet Soil Part Ⅰ:Empirical Models and Experimental Observations.IEEE Transactions on Geoscience and Remote Sensing,1985,23(1) :25-34
    69. M.W.J.Davidson,F.Mattia,et al..Joint statistical properties of RMS height and correlation length derived from multisite 1-m roughness measurements.IEEE Transactions on Geoscience and Remote Sensing,2003,41(7) :1651-1658
    70. M.W.J.Davidson,T.Le Toan,et al..On the characterisation of agricultural soil roughness for radar sensing studies.IEEE Transactions on Geoscience and Remote Sensing,2000,38(2) :630-640
    71. M.Zribi,J.Pailleapos,et al..Modelisation of roughness and microwave scattering of bare soilsurfaces based on fractal Brownian geometry.Geoscience and Remote Sensing Symposium Proceedings;IGARSS,1998,3:1213-1215.
    72. M.Zribi,M.Dechambre.A new empirical model to inverse soil moisture and roughness using two radar configurations.Geoscience and Remote Sensing Symposium,2002:2223-2225
    73. M.Zribi,V.Ciarletti,et al..Characterisation of the soil roughness with a new method based on numerical three dimensional surface representation. Available from:http://conferences.esa.int/98c07/papers/P082. PDF
    74. N.Baghdadi,C.King,et al.An empirical calibration of the integral equation model based on SAR data,soil moisture and surface roughness measurement over bare soils.International Journal of Remote Sensing,2002,23(20) :4325-4340
    75. N.Baghdadi,I.Gherboudj,et al..Semi-empirical calibration of the IEM backscattering model using radar images and moisture and roughness field measurements.International Journal of Remote Sensing,2004,25(18) :3593-3623
    76. N.R.Peplinski,F.T.Ulaby,M.C.Dobson.Corrections to "Dielectric Properties of Soils in the 0. 3-1. 3-GHz Range".IEEE Transactions on Geoscience and Remote Sensing,1995,33(6) :1340
    77. N.R.Peplinski,F.T.Ulaby,M.C.Dobson.Dielectric Properties of Soils in the 0. 3-1. 3-GHz Range.IEEE Transactions on Geoscience and Remote Sensing,1995,33(3) :803-807
    78. P.C.Dubois,J.van Zyl,E.T.Engman.Corrections to "Measuring Soil Moisture with Imaging Radars".IEEE Transactions on Geoscience and Remote Sensing,1995,33(6) :1340
    79. P.C.Dubois,J.van Zyl,E.T.Engman.Measuring Soil Moisture with Imaging Radars.IEEE Transactions on Geoscience and Remote Sensing,1995,33(4) :915-926
    80. P.E.O'Neill.Microwave Remote Sensing of Soil Moisture,A Comparison of Results from Different Truck and Aircraft Platforms.International Journal of Remote Sensing,1985,6(7) :1125-1134
    81. P.O'Neill,A.Joseph,G D.Lannoy,et al..Active/passive microwave remote sensing for soil moisture retrieval through a growing season.In Electromagnetic Wave Interaction with Water and Moist Substances Proceeding,Rotorua,New Zealand,2003:342-349
    82. Quesney,S.Le Hegarat-Mascle,O.Taonet,et al..Estimation of Watershed Soil Moisture Index from ERS/SAR Data.Remote Sensing of Environment,2000,72(3) :290-303
    83. R.Bernard,J.V.Soares,D.Vidal-Madjar.Differential Bare Field Drainage Properties from Airborne Microwave Observations.Water Resources Research,1986,22(6) :869-875
    84. R.Bindlish,W.P.Kustas,A.N.French,et al..Influence of near-surface soil moisture on regional scale heat fluxes:model results using microwave remote sensing data from SGP97. IEEE Transactions on Geoscience and Remote Sensing,2001,39(8) :1719-1728
    85. R.Bryant,M.S.Moran,D.P.Thoma et al..Measuring surface roughness to parameterize radar backscatter models for retrieval of surface soil moisture.IEEE Geoscience and Remote Sensing Letters,2007,4(1) :137-141
    86. R.D.De Roo,Y.Du,F.T.Ulaby,M.C.Dobson.A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion.IEEE Transactions on Geoscience and Remote Sensing,2001,39(4) :864-872
    87. R.D.Magagi,Y.H.Kerr.Retrieval of soil moisture and vegetation characteristics by use of ERS-1 wind scatterometer over arid and semi-arid areas.Journal Of Hydrology,1997,188-189:361-384
    88. R.Hoeben,P.A.Troch,Zhongbo Su,M.Mancini,K.S.Chen.Sensitivity of radar backscattering to soil surface parameters:a comparison between theoretical analysis and experimental evidence.Geoscience and Remote Sensing,1997. IGARSS 97. Remote Sensing-A Scientific Vision for Sustainable Development,1997 IEEE International,1997:1368-1370
    89. R.Ragab.Towards a continuous operational system to estimate the root-zone soil moisture from intermittent remotely sensed surface moisture.Journal of Hydrology,1995,173(1) :1-25
    90. Remond,J.P.Deroin.Empirical And Theoretical Backscattering Behavior As A Function Of Roughness for arid land surfaces.IEEE 1997:1612-1614
    91. S.F.Liu,Y.A.Liou,W.J.Wang,J.P.Wigneron,J.B.Lee.Retrieval of Crop Biomass and Soil Moisture from Measured 1. 4 and 10. 65 GHz Brightness Temperatures.IEEE Transactions on Geoscience and Remote Sensing,2002,40(6) :1260-1268
    92. S.Lin,E.F.Wood,et al..Comparison of remote sensed and model simulated soil moisture over a heterogeneous watershed.Remote Sensing of Environment,1994,48(2) :159-171
    93. S.Mohan,N.S.Mehta,et al..Soil moisture estimation using ERS-1 sar data.In Proceedings of the second ERS-1 symposium on space at the service of our environment.Hamburg,Germany,1993:875-878.
    94. T.J.Jackson,A.J.Gasiewski,A.Oldak,et al..Soil moisture retrieval using the C-band polarimetric scanning radiometer during the Southern Great Plains 1999 Experiment.IEEE Transactions on Geoscience and Remote Sensing,2002,40(10) :2151-5161
    95. T.J.Jackson,D.M.Le Vine,A.Y.Hsu,et al..Soil moisture mapping at regional scales using microwave radiometry:The Southern Great Plains Hydrology Experiment.IEEE Transactions on Geoscience and Remote Sensing,1999,37(5) :2136-2151
    96. T.J.Schmugge,P.E.O'Neill,J.R.Wang.Passive Microwave soil moisture research.IEEE Transactions on Geoscience and Remote Sensing,1986,24(1) :12-20
    97. T.J.Schmugge,P.Gloersen,T Wilheit,et al..Remote Sensing of Soil Moisture with Microwave Radiometers.Journal of Geophysical Research,1974,79(2) :317-323
    98. T. J.Schmugge.Remote Sensing of Surface Soil Moisture.Journal of Applied Meteorology,1978,17(10) :1549-1557
    99. T.N.Holah,N.Baghdadi,et al..Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields.Remote Sensing of Environment,2005,96(1) :78-86
    100. U.Wegmuller,C.Matzler,E.Schanda.Microwave signature of bare soil.Advances in Space Research,1989,9(1) :307-316
    101. W.Jester,A.Klik.Soil surface roughness measurement-methods,applicability,and surface representation.Catena,2005,64(2) :174-192
    102. X.Blaes,P.Defourny,et al..Bi-dimensional soil roughness measurement by photogrammetry for SAR modeling of agricultural surfaces.Geoscience and Remote Sensing Symposium,2004. IGARSS '04. Proceedings.2004 IEEE International,2004,6:4038-4041
    103. Y.Du,F.T.Ulaby,M.C.Dobson.Sensitivity to soil moisture by active and passive microwave sensors.IEEE Transactions on Geoscience and Remote Sensing,2000,38(1) :105-114
    104. Y.Kim,J.van Zyl.On the relationship between polarimetric parameters and soil moisture.Proceedings of the IEEE 2002 International Geoscience and Remote Sensing Symposium(IGARSS 2002) ,Toronto,2002:644-646
    105. Y.Oh,J.Y.Hong,S.H.Lee.A Simple Microwave Backscattering Model for Vegetation Canopies. Journal of the KOREA Electromagnetic Engineering Society, 2005, 5(4): 183-188
    106.Y. Oh, K. Sarabandi, F. T. Ulaby. An Empirical Model and an Inversion Technique for Radar Scattering from Bare Soil Surfaces. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 370-381
    107.Y. Oh, K. Sarabandi, F. T. Ulaby. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6): 1348-1355
    108.Y. Oh, Y. C. Kay. Condition for precise measurement of soil surface roughness. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(2): 691-695
    109.Z. Wan, P. Wang, X. Li. Using MODIS land surface temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains. International Journal of Remote Sensing, 2004, 25(1): 61-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700