超宽带雷达目标电磁特征抽取与识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带雷达是一种新体制雷达,已成为现代雷达系统发展的重要方向之一。在这种新体制下,雷达获取目标和环境信息的能力在频域大幅度扩展,可同时激励目标瑞利区、谐振区及光学区散射特性,进而使提取目标和环境更为丰富的电磁波谱信息成为可能。UWB雷达目标电磁特征抽取与识别方法的研究对于探求雷达目标识别的新机理、新方法,提高精导武器和战场侦察系统目标识别能力具有重要理论意义和实用价值。
     本文系统研究了UWBR导体目标识别的理论和技术,主要工作包括:
     ①开展了基于UWBR导体目标散射回波数学模型特征提取方法的研究。本文深入分析了导体目标散射回波后时、前时以及整体回波的数学模型,分别给出了导体目标散射回波后时的精确表示方法和散射回波的统一模型;接着,针对传统极点提取方法存在的前后时回波分割问题,通过对目标整体散射回波的ARMA模型逼近,结合SVD和TLS技术提出了一种基于ARMA模型目标极点提取算法,有效改善了极点提取的精度;随后,基于给出的散射回波统一模型开展了UWBR导体目标散射中心特性分析以及特征提取的研究,提出了一种GTD模型参数提取新方法,通过实验手段揭示了UWBR导体目标散射中心存在主散射分量这一物理现象,并分析了利用GTD模型提取导体目标主散射分量和散射回波建模的可行性。
     ②针对基于模型特征抽取方法存在的不足,开展了基于UWBR导体目标散射回波稀疏特性的无模型约束特征抽取方法的研究。本文定义了信号的欠完备原子库稀疏表示问题,理论证明了欠完备原子库对信号空间的二元划分能力,给出了欠完备原子库的几点重要性质以及求解具有最小分解残差能量欠完备原子库的训练算法;随后,根据欠完备原子库的有关特性,提出了一种目标识别新特征——原子库特征、相应的抽取方法以及原子库特征最优原子库个数的搜索方法,并通过大量实验证明了该新特征的有效性。
     ③利用导体目标极点特征开展了基于UWBR散射回波后时目标识别方法的研究。本文首先理论分析了导体目标回波后时的互相关特性,推导了回波后时互相关处理后信号交叉项不产生新极点分量的条件,给出了一种新的信号互相关函数估计方法,并针对Blanco等人提出的渐近无偏E脉冲目标识别方法存在的缺陷,结合新的互相关算法,提出了MAUAE目标识别方法;随后,针对低信噪比目标识别问题,理论分析了BE脉冲识别方案具有的优势及存在的问题,分别研究了BE脉冲方案的改进方法、实现技术以及快速目标识别方法,相继提出了MBE脉冲识别方法、E脉冲发射端合成技术以及BEGLRT快速目标识别方法,形成了基于极点特征的目标识别理论与系统实现框架,为基于目标回波后时的低信噪比目标识别提供了理论基础和工程化实现的初步方案。
     ④针对基于回波后时目标识别存在的不足,分别使用提出的导体目标散射中心特征和原子库特征开展了基于目标整体散射回波目标识别方法的研究。基于似然比检测和匹配追踪理论,本文分别使用第二、三章提出的回波散射中心主散射分量GTD模型参数和原子库作为特征,提出了两种不同的目标回波重构方法以及相应的目标识别方案,并利用电磁计算和实测数据证实了这两种方法的有效性。
Recently, the ultra wide-band radar, as a new system, has been an important development direction of the modern radar system. With the new system, radar target and environment scattering information will be excited more completely in frequency domain. The scattering characteristics in Rayleigh, resonance and optics domains can be measured together and more complete electromagnetic information of radar target and environment can be extracted. The theory investigation of feature extraction and target identification of ultra wide-band radar is of much theoretical and applicable significance in the exploitation of novel mechanisms and methods for target identification, as well as the improvement of the target identification performance in the precise guidance weapon and battlefield surveillance system.
     In this thesis the theory and technique of conducting target identification based on the new radar system are investigated, and main works are accomplished as follows:
     Firstly, the feature extraction methods based on the mathematics models of the conducting target’s ultra wide-band scattering echo are investigated. The mathematics models of the whole scattering echo, late-time and early-time components are analyzed respectively in this thesis. A uniform scattering model and exact expression are given respectively for the whole scattering echo and its late-time component. Then, in view of the difficult partition to the late- and early-time component of the scattering echo, through an ARMA representation to approximate the whole target scattering echo a pole feature extraction method is proposed with SVD and TLS (Total least square) techniques, which improves the pole extraction precision. Subsequently, based on the uniform scattering model, the characteristic analysis of UWBR conducting target scattering center and feature extraction are investigated respectively. An extraction method of GTD model parameter is proposed, and then based on the proposed method a physical phenomenon that there exists a main scattering component among complicated scattering behaviors of the scattering center of conducting target illuminated by ultra wide-band radar is indicated in the experimental manner. Furthermore, the feasibilities of GTD model for main scattering component extracting and the whole scattering echo modeling are analyzed respectively.
     Secondly, aiming at the deficiencies in feature extraction based on the model, the construction and extraction techniques based on the sparse property of the whole scattering echo are investigated for the feature without the model restriction. The signal sparse representation with the undercomplete atom dictionary is defined, the binary partition capability of the undercomplete atom dictionary to the signal space is theoretically proved and several important properties of the undercomplete atom dictionary are given, as well as a training algorithm for the undercomplete atom dictionary with least decomposition residual energy. Furthermore, a novel feature for target identification, named as atom dictionary feature is proposed and validated, including an extraction algorithm for the atom dictionary feature and a search algorithm for atom number optimization of the atom dictionary feature.
     Thirdly, pole feature-based target identification using late-time component of the UWBR conducting target scattering echo is mainly investigated. The cross correlation characteristic of the target late-time component is theoretically analyzed, the condition not producing the new pole component is concluded, and then a new cross-correlation estimator is proposed. According to the new cross-correlation estimator, aiming at the deficiencies in the asymptotically unbiased E-pulse target identification method proposed by Blanco, a method named as MAUAE is proposed. Subsequently, with a view to the deficiencies in the MAUAE method, the superiority and shortcoming of the BE-pulse scheme are theoretically analyzed. The modified BE-pulse identification scheme, engineering realization technique of the E-pulse waveform, and the fast target identification method named as BEGLRT are proposed in succession. As a result, the pole feature-based theory and system sechmes for target identification are established, which provide the pole feature-based target identification in low SNR with the theory basis and elementary engineering realization scheme.
     Finally, in view of the deficiencies in target identification based on late-time component, the whole scattering echo-based target identification is investigated with the proposed scattering center and atom dictionary features for ultra wide-band radar. Using the likelihood ratio test and matching pursuit technique, the echo reconstruction and target identification methods with the GTD model parameters of the main scattering component of the scattering center and atom dictionary from chapter 2 and 3 as features are proposed in this thesis respectively. Furthermore, based on the calculated and measured transient response by author, the proposed echo reconstruction and target identification methods are validated.
引文
[1] Bruce Noel. Ultra-wideband radar: Proceedings of the First Los Alamos symposium [M]. USA: CRC Press, Boca Raton, 1991.
    [2] N Osuni, K Ueno. Microwave holographic imaging of underground objects [J]. IEEE Transactions on AP, 1985, 33 (2): 152-159.
    [3] Bashforth M, Koppenjan S. Ground penetrating radar applications for hazardous waste detection. In: Grande N K D, Cindrich I and Johnson P B. Orlando, USA: SPIE, 1993. 56-64.
    [4] Fleischman J G., et al. Foliage penetration experiment, part I-III [J], IEEE Trans. Aerospace and Electronic Systems, 1996,32(l):134-165
    [5] Merwe A, Gupta I J. A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines [J]. IEEE Transactions on Geoscience and remote sensing. 2000,38(6):2627-2637.
    [6] Gader P D, Frigui H, Nelson B N, et al. New results in fuzzy set based detection of land mines with GPR. SPIE Conference on Detection and Remediation Technologies for Minelike Targets. Vol. 3710: 1075-1083.
    [7] Legarsky J J, Broach J T and Bishop S S. Processing of GPR data from NIITEK landmine detection system.In: Harmon R S, Holloway J H and Broach J T. Proceedings of SPIE. Bellingham: SPIE, 2003. 1375-1382.
    [8] Liseno A, Tartaglione F, Pierri R, et al. GPR-based shape reconstruction of metallic objects. In: Proceedings of International Geoscience and Remote Sensing Symposium. IEEE, 2003.
    [9] Zhou H and Sato M. Subsurface cavity imaging by crosshole borehole radar measurement [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42 (2): 335~341.
    [10] Chunlin H and Yi S. A new GPR calibration method for high accuracy thickness and permittivity measurement of multi-layered pavement. 2005 IEEE International Geoscience and Remote Sensing Symposium, Aug. 2005 :1729-1733.
    [11] Wentai L, Yi S and Chunlin H, et al. A UWB impulse surface penetrating radar system for pavement evaluation. 2004 2th International Workshop on UltraWideband and Ultrashort Impulse Signals(UWBUSIS) Proceedings, Sep. 19-22, 2004 Sevastopol, Ukraine, pp.195-197
    [12] Wentai L, Chunlin H and Yi Su. Optimization based underground cylindrical objects position and electromagnetic parameters joint reversion. 2005 IEEE International Geoscience and Remote Sensing Symposium, Aug. 2005: 1772-1776
    [13] Gill G S. Ultra-wideband radar using Fourier synthesized waveform [J]. IEEE Trans. on Electromagnetic Compatibility, 1997, 39(2):124-131.
    [14] Vitebskiy S, Carin L, Ressler M, et al. Ultra-wideband, short-pulse ground-penetrating radar: theory and measurement [J]. IEEE Trans. Geoscience and Remote Sensing, 1997, 35(5):762-772.
    [15] Wong D and Carin L. Analysis and processing of ultra-wideband SAR imagery for buried landmine detection [J]. IEEE Trans. Antennas Propagat. 1998, 46(10): 1747-1748.
    [16] Carin L, Geng N, McClure M, et al. Ultra-wideband synthetic aperture radar for mine field detection [J], IEEE Antennas and Propagation Magazine, 1999, 41(2): 18-33.
    [17] Collins L, Yao P, and Carin L. A bayesian theoretic algorithm for detection of land mines [J]. IEEE Trans. Geoscience and Remote Sensing, 1999, 37(5): 811-819.
    [18] Geng N and Carin L. Ultrawideband, short-pulse scattering from a dielectric body of revolution buried in a lossy, dispersive layered medium [J]. IEEE Trans. Antennas Propagat., 1999, 47(4):610-619.
    [19] Gao P, Collins L M, Garber P, et al. Classification of landmine-like metal targets using wideband electromagnetic induction [J]. IEEE Trans. Geoscience and Remote Sensing, 2000, 38(5):1352-1361.
    [20] Dogaru T, Collins L, and Carin L. Optimal detection of a deterministic target buried under a randomly rough interface [J]. IEEE Trans. Antennas Propagat., 2001,49(3): 313-326.
    [21] Morgan M A. Time-domain impulse scattering measurements [J]. IEEE Trans. antennas and propagation, 1994, 42(6):840~846.
    [22] Astanin L and Kostylev A. Radar target characteristics measurement and application [M]. USA: CRC Press, 1994.Wideband and Ultrashort Impulse Signals(UWBUSIS) Proceedings, Sep. 19-22, 2004 Sevastopol, Ukraine, pp.195-197
    [12] Wentai L, Chunlin H and Yi Su. Optimization based underground cylindrical objects position and electromagnetic parameters joint reversion. 2005 IEEE International Geoscience and Remote Sensing Symposium, Aug. 2005: 1772-1776
    [13] Gill G S. Ultra-wideband radar using Fourier synthesized waveform [J]. IEEE Trans. on Electromagnetic Compatibility, 1997, 39(2):124-131.
    [14] Vitebskiy S, Carin L, Ressler M, et al. Ultra-wideband, short-pulse ground-penetrating radar: theory and measurement [J]. IEEE Trans. Geoscience and Remote Sensing, 1997, 35(5):762-772.
    [15] Wong D and Carin L. Analysis and processing of ultra-wideband SAR imagery for buried landmine detection [J]. IEEE Trans. Antennas Propagat. 1998, 46(10): 1747-1748.
    [16] Carin L, Geng N, McClure M, et al. Ultra-wideband synthetic aperture radar for mine field detection [J], IEEE Antennas and Propagation Magazine, 1999, 41(2): 18-33.
    [17] Collins L, Yao P, and Carin L. A bayesian theoretic algorithm for detection of land mines [J]. IEEE Trans. Geoscience and Remote Sensing, 1999, 37(5): 811-819.
    [18] Geng N and Carin L. Ultrawideband, short-pulse scattering from a dielectric body of revolution buried in a lossy, dispersive layered medium [J]. IEEE Trans. Antennas Propagat., 1999, 47(4):610-619.
    [19] Gao P, Collins L M, Garber P, et al. Classification of landmine-like metal targets using wideband electromagnetic induction [J]. IEEE Trans. Geoscience and Remote Sensing, 2000, 38(5):1352-1361.
    [20] Dogaru T, Collins L, and Carin L. Optimal detection of a deterministic target buried under a randomly rough interface [J]. IEEE Trans. Antennas Propagat., 2001,49(3): 313-326.
    [21] Morgan M A. Time-domain impulse scattering measurements [J]. IEEE Trans. antennas and propagation, 1994, 42(6):840~846.
    [22] Astanin L and Kostylev A. Radar target characteristics measurement and application [M]. USA: CRC Press, 1994.2001, 39(6):1259-1270.
    [39] Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry [J]. IEEE Trans on GRS, 1996, 34(2):407-418.
    [40] Lee J S, et al. Unsupervised classification using polarimetric decomposition and complex wishart classifier[J]. IEEE Trans on GRS, 1999, 37(5):2249-2258.
    [41] Banerjee A, et al. Frequency dependence of ATD performance in foliage-penetrating SAR images. Proceedings of international conference on image processing, 1998:578-582
    [42] Lee S W and Leung B. The natural resonance frequency of a thin cylinder and its application to EMP studies, AFWL Interaction Notes, Note96, 1972
    [43] Baum C E. Damping transmission line and cavity resonance, AFWL Interaction Notes, Note503, 1994
    [44] 徐海. 散射体外部振荡特性的研究及其在目标识别中的应用[D]. 博士论文, 西安:西安交通大学,1988.
    [45] 王少刚. 雷达目标极点的物理意义分析. 硕士论文, 长沙:国防科学技术大学,2003.
    [46] 王少刚, 陈夏萌, 粟毅. 求解导体球极点的等效电路法[J]. 微波学报, 2004, 20 (1):23-25.
    [47] S. G. Wang, X. P. Guan, D. W. Wang, X. Y. Ma, and Y. Su. Electromagnetic Scattering by Mixed Conducting-Dielectric Objects Using Higher-Order MoM [J]. Progress in Electromagnetic Research, PIER 66, 51-63, 2006.
    [48] S. G. Wang, X. P. Guan, D. W. Wang, X. Y. Ma, and Y. Su. Fast calculation of wide-band responses of complex radar targets [J]. Progress in Electromagnetics Research, PIER 68, 185-196, 2007.
    [49] 王少刚,关鑫璞,王党卫,马兴义,粟毅.任意形状导体目标的极点求解[J].电子学报,(待刊)
    [50] 王少刚,关鑫璞,王党卫,马兴义,粟毅.求解电场积分方程的高阶矩量法[J]. 电子与信息学报(待刊)
    [51] 关鑫璞,王少刚,王党卫,马兴义,粟毅. 一种解决 MOO 算法求解任意形状导电目标瞬态散射稳定性的方法[J].电子学报(待刊).
    [52] Shaogang Wang, Xinpu Guan, Xingyi Ma, Dangwei Wang, Yi Su .Calculating thePoles of Complex Radar Targets[J]. Journal of Electromagnetic Waves and Application, 2006, 20(14):2065-2076.
    [53] Wang Shaogang, Guan Xinpu, Ma Xingyi, Wang Dangwei, and Su Yi. A fast method of moment to calculate monostatic RCS of arbitrary shaped conducting objects. 2006 CIE International Conference on Radar, 2006, 10:1660-1662.
    [54] 王少刚, 关鑫璞,马兴义,王党卫,粟毅. 一种雷达目标极点提取方法及极点特性的分析[J]. 信号处理(待刊).
    [55] Blaricum M V and Mittra R. A technique for extracting the poles and residues of a system directly from its transient response [J]. IEEE Transaction on Antennas and Propagation, 1975, 23(10):777-781.
    [56] Kumaresan R and Tuffts D W. Estimating the parameters of exponentially damped sinusiods and pole-zero modeling in noise [J]. IEEE Trans. Antennas and Propagation. 1982, 30(6): 833–840.
    [57] Rahman M A and Yu K B. Total least squares approach for frequency estimation using linear prediction [J]. IEEE Trans. Acoust., Speech, Signal Processing.1987,35(10):1440–1454
    [58] Jain V K, Sarkar T K and Weiner D D. Rational Modeling By Pencil-of-Function Method [J], IEEE Trans. ASSP, 1983,31(3).
    [59] Hua Y and Sarkar T K. Matrix pencil method for estimation parameters of exponentially damped/undamped sinusoids in noise [J]. IEEE Trans. Acoustics, Speech, Signal Processing, 1990,38(5): 814–824
    [60] Rothwell E J and Chen K M. A hybrid E-pulse/least squares technique for natural resonance extraction [J]. Proc. IEEE, 1988, 76(3): 296–298
    [61] Umesh S. Estimation of parameters of exponentially damped sinusoids using fast maximum likelihood estimation with application to NMR spectroscopy data [J]. IEEE Trans. On signal processing. 1996,44(9) : 2245–2259
    [62] Chen K M. Radar waveform synthesis method—A new radar detection scheme [J]. IEEE Transaction on Antennas and Propagation, 1981, 29(4).553-566.
    [63] Chen K M, Nyquist D P, Rothwell E J, et al. Radar target discrimination by convolution of radar return with extinction-pulses and signal-mode extraction signals [J]. IEEE Trans. Antennas Propagat. 1986, 34(7):896-904.
    [64] 韩鸿哲. 基于波形综合法的雷达目标识别. 硕士论文, 长沙:国防科学技术大学, 1999.
    [65] Mooney J E, Ding Z and Riggs L S. Performance analysis of an automated E pulses target discrimination scheme [J]. IEEE Transaction on Antennas and Propagation, 2000, 48(5):616-628.
    [66] Antony L H S and Shuley N. Consequence of incorrect sampling procedures in resonance-based radar target identification [J]. IEE Electronics Letters, 2004, 40(8):507-508.
    [67] Blanco D, Ruiz D P, Alameda E, et al. An asymptotically unbiased E-pulse-based scheme for radar target discrimination [J]. IEEE Transaction on Antennas and Propagation, 2004, 52(5):1348-1350.
    [68] Blanco D, Ruiz D P, Alameda E, et al. Extinction pulses synthesis for radar target discrimination using β -splines, new E-pulse condictions [J]. IEEE Transaction on Antennas and Propagation, 2006, 54(5):1577-1585.
    [69] Moon J E, Ding Z and Riggs L S. Robust target identification in white Gaussian noise for ultra wide-band radar systems [J]. IEEE Transaction on Antennas and Propagation, 1998, 46(10):1817-1823.
    [70] Lee J H and Kim H T. Radar target discrimination using transient response reconstruction [J]. Journal of Electromagn waves and application, 2005, 19(5): 655-669.
    [71] 焦琳琳.超宽带雷达目标的极点特征提取与E脉冲识别方法研. 硕士论文, 长沙:国防科学技术大学,2005.
    [72] 庄钊文, 柯有安. 目标识别的频域匹配法. 第五届雷达年会论文集, CIE Radar-89,武汉,1989.
    [73] 庄钊文. 雷达频域极化域目标识别的研究. 博士论文,北京:北京理工大学,1989.
    [74] 许俊刚. 雷达目标识别的人工神经网络方法[D]. 博士论文, 北京:北京理工大学, 1992.
    [75] 许俊刚, 柯有安. 投影法雷达目标识别[J]. 电子学报,1994, 22(7):28-34.
    [76] Li Q, Ilavarasan P, Ross J E, et al. Combination of early-time and late-time based E pulses to improve target identification [J]. IEEE Transaction on Antennas andPropagation, 1998, 46(9):1272-1278.
    [77] Hurst M P andMittra R. Scattering center analysis via prony’s method [J]. IEEE Trans. Antennas Propagat., 1987, 35(8): 986–988.
    [78] Potter L C, Da-Ming C and Carriere R. A GTD-Based Parametric Model for Radar Scattering [J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1055-1066.
    [79] Steedly W M and Moses R L. High resolution exponential modeling of fully polarized radar returns [J]. IEEE Trans. Aerospace Electron. Syst., 1991, 27(5):459-469.
    [80] Moghaddar A, Ogawa Y and Walton E K. Estimation the time-delay and frequency decay parameter of scatering components using a modified MUSIC algorithm [J]. IEEE Trans. Antennas Propagat, 1994, 42(10):1412-1418.
    [81] L i Q, Rothwell E J, Chen K M, et al. Scattering center analysis of radar targets using fitting scheme and genetic algorithm [J]. IEEE Transactions on Antennas and Propagation, 1996, 44(2):198-206.
    [82] Kim K T, Seo D K and Kim H. T. Radar target identification using one-dimensional scattering centres [J]. IEE. Radar, Sonar, and Navigation, 2001, 148: 285–296.
    [83] Kim K T, Seo D K and Kim H. T. Efficient radar target recognition using the MUSIC algorithm and invariant features [J]. IEEE Trans. Antennas Propag. 2002, 50(3):325–337.
    [84] Kim K T and Seo D K. Identification of multiaspect radar signals based on the feature space trajectory concept [J]. IEEE Trans. Antennas Propag. 2005,53(11): 3811-3821.
    [85] Li H J and Yang S H. Using range profiles as feature vectors to identify aerospace targets [J]. IEEE Trans. Antennas Propagat., 1993,41(3):261-268.
    [86] Li H J and Chiou V. Aerospace target identification-Comparison between the matching score approach and the neural network approach [J]. J. Electromagnetic Waves and Appl., 1993, 7(6):873-893.
    [87] Li H J, Wang Y D andWang L H. Matching score properties between range profiles of high-resolution radar targets [J]. IEEE Trans. Antennas Propagat., 1996,44(4):444-452.
    [88] 肖顺平,郭桂蓉,庄钊文,陈曾平.基于散射中心的目标建模与识别[J]. 系统工程与电子技术,1994, 16(6):55-61.
    [89] 陈曾平. 雷达目标结构特征识别的理论与应用[D]. 博士学位论文, 长沙:国防科技大学,1994.
    [90] 何松华,孙文峰,郭桂蓉.基于光学区雷达目标频率响应的结构成像与目标识别的研究[J].电子学报,1996,24(3):32-36.
    [91] 计科峰,匡纲要,粟毅等. 基于 SAR 图像的目标散射中心特征提取方法研究[J]. 国防科学技术大学学报,2003,25(1):45-50.
    [92] 张询,雷达目标的高分辨参数建模及其在自动目标识别中的应用[D].博士论文, 长沙:国防科技大学,1997.
    [93] 卢再奇,肖怀铁,付 强.基于多散射中心模型的雷达目标识别方法[J].系统工程与电子技术,2002,24(10):25-28.
    [94] 姜卫东. 陈曾平. 庄钊文. 光学区雷达目标散射中心提取及识别方法研究[J]. 系统工程与电子技术,2000, 22(7):72-74
    [95] Dang-Wei Wang, Xin-Yi Ma and Yi Su. GTD model-based target identification for ultra-wideband radar using matching pursuits and a likelihood-ratio test in the frequency domain [J]. Microwave and Optical Technology Letters, 2006,48(6): 1215-1218
    [96] Liao X. Radar target recognition using high resolution range profiles [D]. Ph.D. dissertation, Xidian Univ., Xi’an, China, 1999.
    [97] Liao X, Bao Z, and Xing M. D. On the aspect sensitivity of high resolution range profiles and its reduction methods. In Conf. Rec. IEEE Int. Radar, May 2000, pp. 310–315.
    [98] Xing M. D, Bao Z, and Pei B. The properties of high-resolution range profiles [J]. Opt. Eng., 2002, 41( 2): 493–504.
    [99] Liao X and Bao Z. Circularly integrated bispectra: Novel shift invariant features for high-resolution radar target recognition [J]. IEE Electron. Lett., 1998, 34(19): 1879–1880.
    [100] Zhang X, Shi Y andBao Z. A new feature vector using selected bispectra for signal classification with application in radar target recognition [J]. IEEE Trans. SignalProcess., 2001,49(9):1875–1885.
    [101] 裴炳南,保铮. 基于目标散射中心和HMM分类的多视角雷达目标识别方法[J]. 电子学报,2003, 31(5):786-789.
    [102] Du L, Liu H W, Bao Z, et al. Radar HRRP target recognition based on higher order spectra [J]. IEEE Trans. Signal Process., 2005,53(7):2359–2368.
    [103] 黄培康等. 雷达目标特征信号[M]. 北京:宇航出版社,1993.
    [104] 黄培康,殷红成,许小剑. 雷达目标特性[M]. 北京:电子工业出版社,2005.
    [105] 毛京红,许小剑.高分辨雷达目标识别研究[J]. 系统工程与电子技术,1994, 10: 11-18.
    [106] Altes R A. Sonar for generalized target description and its similarity to animal echolocation systems [J]. J. Acoust. Soc .Amer., 1976 , 59(1): 97-105
    [107] Carriere R and Roses R L. High resolution radar target modeling using a modified Prony estimator [J]. IEEE Trans. Antennas Propagat., 1992, 40(1):13-18.
    [108] McClure M R and Carin L. Matching pursuits with a wave-based dictionary [J]. IEEE Trans. on Signal Processing, 1997, 45(12):2912-2927.
    [109] Runkle P, Carin L, Couchman L, et al. Multi-aspect target identification with wave-based matched pursuits and continuous hidden markov models [J].IEEE Transactions on pattern analysis and machine intelligence, 1999, 21(12), 1371-1378.
    [110] Bharadwaj P, Runkle P and Carin L. Multiaspect classification of airborne targets via physics-based HMMs and matching pursuits [J]. IEEE Trans. on AES., 2001,37( 2):595-602
    [111] Turhan-Sayan G. Real time electromagnetic target classification using a novel feature extraction technique with PCA-based fusion [J]. IEEE Transaction on Antennas and Propagation, 2005, 53(2):766-776.
    [112] 裴炳南. 高分辨雷达自动目标识别方法研究. 博士学位论文,西安: 西安电子科技大学, 2002.
    [113] Kennaugh E M and Moffatt D L. Transient and impulse response approximations. Proc. IEEE, 1965, 53: 893~901
    [114] Moffatt D L. Interpretation and application of transient and impulse response approximations in electromagnetic scattering problems. The Ohio state UniversityElectroscience Laboratory, Rep.2415-1, Mar.1968.
    [115] Baum C E. On the singularity expansion method for the solution of electromagnetic interaction problems, AFWL Interaction Notes, Note88, Dec, 1971.
    [116] Astanin L Y, Kostylev A A, Zinoviev Y S, et al. Radar target characteristics measurements and applicationas. USA:CRC press,1994.
    [117] Wang D W, Y Su, Ma X Y,et al. Natural resonance frequency extraction using an early-time and late-time responses combined technique. 2004 2th International Workshop on Ultra Wideband and Ultrashort Impulse Signals (UWBUSIS) Proceedings, Sep. 19-22, 2004 Sevastopol, Ukraine, pp.201-205.
    [118] 王党卫,马兴义,王少刚, 关鑫璞, 粟毅, 一种基于ARMA模型的目标极点提取新算法[J]. 信号处理, 2006,Vol.22(3):338-342.
    [119] Champeney D C. A handbook of Fourier theorems [M]. Cambridge: Cambridge University Press, 1987.
    [120] Mallat S. A theory for multiresolution signal decomposition: The wavelet decomposition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674-693, July 1989.
    [121] Mallat S and Zhang Z. Matching pursuit with time-frequency dictionaries [J]. IEEE Trans. Signal Processing, 1993, 41(12):3397–3415.
    [122] Jaggi S, Karl W C and Krim H. Feature extraction through high-resolution pursuit [J]. Applied and Computational Harmonic Analysis, 1998, 5 (4): 428-449.
    [123] Elad M, Starck J L and Donoho D L. Image decomposition via the combination of sparse representations and a variational approach [J]. IEEE Trans. On Image Processing, February 2004.
    [124] Shaykh A, Osama K, Miloslavsky, et al. Video compression using matching pursuits [J]. IEEE Transanctions on Circuits and Sysytems for Video Technology, 1999, 9(1): 123-143.
    [125] 杜小勇. 稀疏成份分析及在雷达成像处理中的应用[D], 博士论文, 长沙:国防科技大学,2005.
    [126] 杜小勇, 胡卫东, 郁文贤. 高分辨雷达一维距离像稀疏表示技术[J]. 系统工程与电子技术,2005, 27(6): 968-970.
    [127] 杜小勇, 胡卫东, 郁文贤. 空间目标一维距离像重构的线性规划方法[J]. 中国空间科学技术, 2004,24(6): 19-24.
    [128] Holschneider M.Wavelets: an analysis tool [M]. Oxford: Oxford University Press, 1995.
    [129] Daubechies I, Grossmann A and Meyer Y. Painless non-orthogonal expansions [J]. Journalof mathematical physics, 1986, vol. 27:1271–1283,.
    [130] Huber P J. Projection pursuit [J]. Ann. Stat., 13(2): 435-475.
    [131] Chen S S. Basis pursuit [D]. Standford University Statistics, 1995.
    [132] Goodwin M. Adaptive signal models: theory, algorithms, and audio applications, Boston, Ma: Kluwer, 1998.
    [133] Davis G, Mallat S and Avellaneda M. Adaptive greedy approximations. Constructive approximation, 1997, vol.13:57-98.
    [134] Attneave F. Informational aspects of visual perception [J]. Psychol. Review, 1954, vol.61:183-193.
    [135] Hyvarinen A. Survey on independent component analysis, Neural Computing Surves, 2:94-128, 1999.
    [136] 雄洪允,曾绍标,毛云英. 应用数学基础[M]. 天津:天津大学出版社,1994.
    [137] Liu Q S, Wang Q and Wu L A. Size of the dictionary in matching pursuit algorithm [J]. IEEE Trans. Signal processing, 2004, 52(12):3403-3408.
    [138] Aase S O, Husoy J H, Skretting J, et al. Optimized signal expansions for sparse representation [J]. IEEE Trans. On Acoustics, speech and signal processing, 2001, 49(5): 1087-1096.
    [139] Engan K, Aase S O and Husoy J H. Method of optical directions for frame design. Proc.ICASSP Phoenix, AZ, Mar, 1999, pp:2443-2446.
    [140] 王党卫,粟毅,马兴义. 一种利用互相关处理的极点提取新算法[J]. 电子学报, 2005.33(6): 1015-1018.
    [141] Oppenheim A V, Schafer R W and Buck J R. Discrete-time signal processing, 2nd ed [M]. Englewood Cliffs, Nj: Prentice-Hall, 1999.
    [142] Johnson N L, Kotz S and Balakrishnan N. Continuous univariate distributions [M]. USA:John Wiley& Sons, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700