雷达信号时空多参量估计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着雷达技术的广泛应用和发展,现代雷达的信号形式、传播环境已发生了很大的改变。现代雷达在时域、频域、空域的分布很广,非平稳、相干干扰、短时间序列也是常常面临的问题。研究能够适用于现代雷达信号环境且性能优良的多参量估计方法是信息探测领域的前沿课题之一。本文深入研究了处于现代电磁环境中的雷达信号时空多维参量估计算法。归纳起来,主要包括以下几个方面:
     1.研究了时频分析工具在非平稳雷达信号分析中的应用。提出了一种适合线性调频信号(LFM)的交叉项抑制时频分布。该分布是对Wigner-Ville分布的改进,通过分段补偿平滑的方式来抑制Wigner-Ville分布中产生的交叉项。
     2.研究了线性调频雷达信号的时频检测方法与基于解线调原理的特征参数估计方法。并针对超低信噪比的情况,提出一种非线性的弱LFM雷达信号的检测与参数估计方法。该方法利用Duffing振子构建广义滤波器组,并以其最大Lyapunov指数的符号作为系统状态的判断标准。根据信号特征,将LFM信号的检测问题转化为一个周期检测的问题,使其满足Duffing振子的检测条件。为提高信噪比,本文还提出分段相关平滑的方法,使检测和估计性能得到提高。
     3.分析了窄带阵列信号模型,研究了将时频分析与传统子空间测向方法结合的时频子空间测向算法。针对相干干扰问题,利用脉冲雷达的特点,提出一种新的估计相干信号源到达角(DOA)估计方法。本算法只需要K+1个阵元即可实现K个相干信号的DOA估计。而且,该算法对阵列形式约束较小。研究了短时间序列的波达方向估计问题,提出改进的伪协方差矩阵以及相应的DOA估计算法。
     4.分析了宽带阵列信号模型,并结合具体的非平稳雷达信号,推导了宽带线性调频信号的简化模型、完整模型以及宽带对称三角线性调频(STLFM)信号的阵列输出模型。提出了基于虚拟WVD的宽带LFM信号的到达角估计方法、基于模糊变换的宽带LFM信号的到达角估计方法以及基于数据分段虚拟阵元的宽带STLFM信号的到达角估计方法。仿真表明,提出算法比传统的TF-CSM方法精度更高,计算量更小。
     5.研究了极化敏感阵列多参量估计问题。分别提出演变周期谱与正交偶极子阵列结合算法,以及分数阶傅里叶变换与矢量阵元阵列结合算法,高精度地实现了LFM信号DOA与极化参数的联合估计。提出空间—极化分维方法,利用矢量天线阵元实现了相干信号的DOA与极化联合估计。研究了正交偶极子阵列的信息构成,提出基于该阵列的宽频段信号DOA与极化联合估计算法。为避免极子之间存在的互耦效应,提出一种由分离偶极子构成的阵列形式,实现了信号DOA与极化联合估计。
     6.研究了DOA与时延联合估计问题。针对雷达多目标回波信号,提出了一种新的高分辨、高精度的到达角和时延联合估计算法。
The signal system and propagation envirment of the modern radar were changed greatly, along with the application and development of the radar techniques. Furthermore, the spans of the time, frequecy and space of the modern radar are very large, non-stationary and the coherent interference or short sequences appear frequently. The researches on multi-parameter estimation methods applied in the circumstance of the modern radar signals were advanced problem in the information domain. The estimation algorithms of spatio-temperal multi-parameters in the modern electromagnetic envirment were focused in this dissertation. The main contributions of this dissertation concentrate in a few aspects as follows:
     1. The time-frequency analysis tools applied in the nonstationary radar signals is discussed. And a new reduced crossterm distribution for linear frequency modulated(LFM) signals is presented. This approach is the modification of the Wigner-Ville distribution(WVD), which surppresses crossterm by segment compensation and smoothing.
     2. The time-frequency detection methods and character parameters estimation methods based on the dechirping are analysed. In order to deal with the LFM signals in the ultra-low signal-noise-ratio(SNR) case, a nonlinear algorithm for weak chirp signal detection and parameters estimation is presented. The generalized filter array is constructed by the Duffing oscillator, and Lyapunov exponential is exploited to judge the state of the system. According to the characteristic of the chirp signal, the problem of chirp signal detection is transformed to the period detection problem, which is satisfied the demand of Duffing oscillator system. Moreover, the segmented correlation smoothing method is proposed to enhance the SNR that improved the performance of the method.
     3. The narrow band model of the array output is analysed, and the conventional subspace methods combining the time-frequency analysis are introduced. To coherent interference, a novelty direction-of-arrival(DOA) estimation method is proposed exploiting the characteristic of pulse radar. K coherent signals can be processed with K+1 arrays sensors in this method. Moreover, the algorithm exhibits litte astrict to array geometries. The direction finding of the short sequences is investigated, and a modified pseudo-covariance and DOA estimation algorithm is presented.
     4. The wideband models of the array output were discussed, according to the alternative nonstationary radar signals, the simplified model and complete model of the wideband LFM signals are derived respectively, as well as wideband symmetric triangle LFM(STLFM) signals. And then, the DOA estimation methods for wideband LFM signals based virtual WVD, for wideband LFM signals based ambiguity transformation and for wideband STLFM signals based data segment virtual elements are proposed respectively. The simulations illustrate that the proposed approaches have higer precision and less computation than conventional TF-CSM methods.
     5. The multi-parameters estimation problems with polarization sensitivith anttenas array are studied. The algorithms of evolutionary period spectrum combing crossed dipole array and fractional Fourier transformation(FRFT) combing vector sensor array are presented respectively, which can implement the hgier accurate joint DOA and polarization estimations for LFM signals. The space-polarization freedom degree dividation was proposed, thus, the DOA and polarization of coherent signals are estimated with vector sensor array. Analysing the information strcture of the cross diploes, a DOA and polarization estimation method is presented for broadband signals. An new array with separated dipoles is proposed to obtain the joint DOA and polarization estimation for avoiding the mutual coupling of co-center poles.
     6. The problem of the joint DOA and time-delay estimation is discussed. For estimating the DOA and time-delary of the radar echo signals, a novelty high resolution and presicion algorithm is presented.
引文
[1] Abatzoglou TJ. Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE Trans. AES, 1986, 22(6): 708-715.
    [2] Djuric PM, Kay SM. Parameter estimation of chirp signals. IEEE Trans. ASSP, 1990, 38(12): 2118-2126.
    
    [3]李宏伟.Chirp信号频率估计.信号处理,1993,9(3):183~187.
    [4] Besson O, Ghogho M, Swami A. On estimating random amplitude chirp signals. IEEE Proc. ICASSP, 1999,3: 1561-1564.
    [5] Georgiou PG, Kyriakakis C, Tsakalides P. Robust time delay estimation for sound source localization in noisy environments. Applications of Signal Processing to Audio and Acoustics, IEEE Workshop on ASSP, 1997 :4
    [6] Peleg S, Porat B. Linear FM signal parameter estimation form discrete-time observations. IEEE Trans. AES, 1991, 27(4): 607-614.
    [7] Morelande M. Optimal phase parameter estimation of random amplitude linear FM signals using cyclic moments. IEEE Proc. ICASSP, 1999, 3: 1557-1560
    [8] Ikram MZ, Meriam KA, Hua YB. Estimation the parameters of chirp signal: An iterative approach. IEEE Trans. SP, 46(12): 3436-3441.
    [9] Li HT, Djuric PM. MMSE parameter estimation of multiple chirp signals. IEEE Proc. ICASSP, 1996,5:2606-2609.
    [10] Knowles SH, Waltman WB. Linear least-squares determination of Doppler time derivative for NAVSPASUR-like signals. IEEE Trans. Instrumentation and Measurement, 1985, 34(1): 64-69.
    
    [11] Qian S. Wigner distribution decomposition and cross-terms representation. Signal Processing, 1992,25(2): 125-144.
    
    [12] S. Qian, D. Chen. Decompostion of the Wigner-Ville distribution and time-frequency distribution series. IEEE Trans. SP, 1994,42(10): 2836-2842.
    [13] Coates M, Fitzgerald W. Time-frequency signal decomposition using energy mixture models. IEEE Proc. ICASSP, 2: 633-636.
    [14] Pasquier M, Goncalves P, Baraniuk R. Hybrid linear/bilinear time-scale analysis. IEEE Trans. SP, 47(1): 254-259.
    [15] Baraniuk R, Coats M, Steeghs P. Hybrid linear/quadratic time-frequency attributes. IEEE Proc. ICASSP, 2:681~684.
    [16] Swindlehurst, A. A maximum a posteriori approach to beamforming in the presence of calibration errors. IEEE Proc. ICSSAP, 1996:82-85.
    [17] Czerwinski RN. Adaptive short-time Fourier analysis. IEEE SPL 1997, 4(2): 42~45.
    [18] Moulines E, Cardoso J. direction finding algorithm using fourth-order statistics: Asymptotic performance analysis. IEEE Proc. ICASSP, 1992,2: 437-440.
    [19] Namias. The fractional order fourier transform and its application to quantum mechanics. J. Inst. Math. Application. 1980,2(25):241-265.
    [20] Ozaktas HM, Arikan O, Kutay MA et al. Digital computation of the fractional Fourier transform, IEEE Trans. SP, 1996, 44(9): 2141~2149.
    [21] Huang D F, Chen BS. The filter bank approach for the fractional Fourier transform. IEEE Proc. ICASSP, 1999, 3: 1709~1712.
    [22] Soo-Chang P, Min-Hung Y, Chien-Cheng T. Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans. SP, 1999, 47(5): 1335-1348.
    [23] Priestley MB. Specral Analysis and Time Series. New York:Academic, 1981:87-98
    [24] Kayhan AS, El-Jaroudi A, Chaparro LF. Evolutionary periodogram for nonstationary signals. IEEE Trans.SP, 1994,42(6): 1527-1536.
    [25] Kayhan, AS, El-Jaroudi, A, Chaparro LF. Data-adaptive evolutionary spectral estimation. IEEE Trans. SP, 1995, 43(1):204-213.
    [26] Bohme JF. Array processing in semi-homogeneous random fields. Proc. Septieme Colloque Sur Le Traitement du Signal et Ses Applications, 1979, 104:1-4.
    [27] Kayhan AS, Amin MG. Spatial evolutionary spectrum for DOA estimation and blind signal separation. IEEE Trans. SP, 2000, 48(3):791-798.
    [28] 李宏,王昭,赵俊渭.进化谱估计及其在飞机定位中的应用.西北工业大学学报,1988,16(4):511-515
    [29] Gardner WA. Statistical Spectral Analysis: A Non-probabilistic Theory, New Jersey: Prentice-Hall, 1988:136-148.
    [30] 杨福生.小波变换的工程分析与应用.北京:科学出版社,2000,81-112.
    [31] Schmidt RO. Multiple emitter location and signal parameter estimation. IEEE Trans. AP 1986, 34(3): 276-280.
    [32] Schmidt RO. Multiple source DF signal processing: an experimental system. IEEE Trans. AP 1986, 34(3): 281-290.
    [33] Paulraj A, Roy R, Kailath T. A subspace rotation approach to signal parameters estimation. IEEE Proc. 1989, 7: 1044-1055.
    [34] Wang H, Kaveh M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources. IEEE Trans. ASSP, 1985, 33(4): 823-831.
    [35] Hung, H.; Kaveh, M, Focusing matrices for coherent signal-subspace processing. IEEE Trans. ASSP, 1988, 36(8):1272-1281.
    [36] Valaee S, Champagne B, Kabal P. Localization of wideband signals using least-squares and total least-squares approaches. IEEE Trans. SP, 1999,47(5):1213-1222.
    [37] Krolik J, Swingler D. Focused wide-band array processing by spatial resampling. IEEE Trans. ASSP, 1990, 38(2):356-360.
    [38] Friedlander B, Weiss AJ, Direction finding for wide-band signals using an interpolated array. IEEE Trans. SP, 1993, 41(4):1618-1634.
    [39] Gardner WA. Statistical Spectral Analysis: A Non-probabilistic Theory, New Jersey: Prentice-Hall, 1988, 66-77.
    [40] Gardner WA. Measurement of spectral correlation. IEEE Trans. ASSP, 1986, 34(5): 1111~1123.
    [41] Gardner WA. Spectral correlation of modulated signals: PartⅠ-Analog modulation. IEEE Trans. Communications, 1987, 35(6): 584-594.
    [42] Gardner WA. Spectral correlation of modulated signals: PartⅡ-Digital modulation. IEEE Trans. Communications, 1987, 35(6): 595-601.
    [43] Gardner WA. Signal interception: A unifying theoretical framework for feature detection. IEEE Trans. Communications, 1988, 36(8): 897~906.
    [44] Gardner WA, Spooner CM. Signal interception: Performance advantages of cyclic-feature detectors, IEEE Trans. Communications, 1992, 40(1): 149-159.
    [45] 张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,1998,390-391.
    [46] Belouchrani A, Amin MG. Time-frequency MUSIC. IEEE SPL, 1999, 6(1):109-110.
    [47] Capon J. High-resolution frequency-wavenumber spectrum analysis. IEEE Proc. 1969, 57(8): 1408-1418.
    [48] Jackson LB. Chien HC. Frequency and bearing estimation by two-dimensional linear prediction. IEEE Proc. ICASSP, 1993,4: 37-40.
    [49] Wax M, Shan TJ, Kailath T. Spatial-temporal spectral analysis by eigenstructure methods. IEEE Trans. ASSP, 1984.32(4): 817-827.
    [50] Zou LH, Yin L. Spatio-temporal spectral analysis by SVD of signal-matrix. IEEE Proc. ICASSP, 1987,12:2332-2335.
    [51] Yin Q, Zou LH. Separately estimating the frequency-wavenumber of coherent sources by signal eigenvector smoothing technique, IEEE Proc. ICASSP, 1988,5:2905-2908.
     [52] Zoltowski MD, Mathews CP, Real time frequency and 2-D angle estimation with sub-Nyquist spatial-temporal sampling. IEEE Trans. SP, 1994, 42(10): 2781-2794.
    [53] Harrdt MA, Nossek J. 3-D unitary ESPRIT for joint 2-D angle and carrier frequency estimation, IEEE Proc. ICASSP, 1997,1: 255-258.
    [54] Zoltowski, M.D.; Haardt, M.; Mathews, C.P. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE Trans. SP, 1996, 44(2):316 - 328
    [55] Schmidt RO. A signal subspace approach to multiple emitter location and spectral estimation: [PH.D. dissertation], C.A: Stanford University, 1981, 77-123.
    [56] E. Ferrara, T. Parks, Direction finding with an array of antennas having diverse polarization, IEEE Trans. AP 1983, 32(3): 231 -236.
    [57] M. Wax, I. Ziskind, Detection of the number of coherent signals by MDL principle, IEEE Trans. 1989,37(8): 1190-1196
    [58] Hua Y. A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles, IEEE Trans. AP, 1993,41(3):370-375.
    [59] Li J., Compton R.T., Two-dimensional angle and polarization estimation using ESPRIT algorithm. IEEE Trans. AP, 1992, 40(5):550-555.
     [60] Li J., Compton R.T., Direction and polarization estimation using array with small loops and short dipoles. IEEE Trans. AP, 1993, 41(3):379-387.
    [61] Wong KT, Zoltowski MD. Uni-vector-sensor ESPRIT for multi-source azimuth-elevation angle-estimation. IEEE Inter. Symp, Antennas and Propagation Society., 1996. 2: 1368-1371.
    [62] Wong KT, Zoltowski MD. Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation. IEEE Trans. AP, 1997,45(10): 1467-1474.
    [63] Wong KT, Zoltowski MD. High accuracy 2D angle estimation with extended aperture vector sensor arrays. IEEE Proc, ICASSP, 1996, 5: 2789 -2792.
    [64] Wong KT, Li LS, Zoltowski MD. Root-MUSlC-based direction finding and polarization estimation using diversely polarized possibly collocated antennas. IEEE antenna and wireless propagation letters, 2004, 3:129-132,.
    [65] Obeidat, B.A., Yimin Z. and Amin, M.G., Polarimetric time-frequency ESPRIT, IEEE Signals, Systems and Computers Conf., 2003,1: 1178 - 1182.
    [66] Yimin Z., Obeidat, B.A. and Amin, M.G., Polarimetric time-frequency music in coherent signal environment. IEEE Proc, Statistical Signal Processing Workshop, 2003:254 - 257.
     [67] Yimin Z., Obeidat, B.A.; and Amin, M.G. Spatial Polarimetric Time-Frequency Distributions for Direction-of-Arrival Estimations. IEEE Trans. SP, 2006, 54(4): 1327-1340
    [68] Wax M, Leshem A. Joint Estimation of Time delays and direction of arrival of multiple reflections of a known signal. IEEE Trans. SP, 1997, 45(10), 2477-2484
    [69] Vanderveen MC, Papadias CB, Paulraj A. Joint angle and delay estimation for multipath signals arriving at an antenna array. IEEE Comm. Letters, 1997, 1(1), 12-14
    [70] VANDERVEEN A J, VANDERVEEN M C, Paulraj A. Joint angle and delay estimation using shift-invariance techniques. IEEE SPL, 1997,4(5), 142-145
    [71] SWINDLEHURST A L, Time delay and spatial signature estimation using known asynchronous signal. IEEE Trans. SP, 1998, 46(2), 449-462
    [72] Wang Y, Fang W. TST-MUSIC for Joint DOA-Delay estimation. IEEE Trans. SP, 2001,49(4),721-729
    [73] Qin HF, Huang JG, Zhang, QF. A novel joint estimator of direction-of-arrival and time-delay for multiple source localization, IEEE Proc. inter, conf. Neural Networks & Signal. 2003, 2: 1294 - 1297
    
    [74] Gabor D. Theory of communication. J.IEE, 1946, 93: 429-457
    
    [75].Potter RK, Kopp G, Green HC. Visible speech. New York: Van Nostrand, 1947 34-56.
    
    [76] Ville J., Theorie et applications de la notion de signal analytique. Cables et Transmission, 1948, 2(A): 61-74.
    [77] Cohen L. Time-frequency analysis: theory and applications. New York: Prentice-Hall, 1995, 78-89.
    
    [78] Cohen L. Time-frequency distributions - a review. IEEE Proc. 1989, 77(7) 941-981.
    [79] Kayhan AS, El-Jaroudi A, Chaparro LF. Evolutionary periodogram for nonstationary signals. IEEE Trans. SP, 1994, 42(6): 1527 - 1536.
    [80] Kayhan AS, El-Jaroudi A, Chaparro LF. Data-adaptive evolutionary spectral estimation. IEEE Trans. SP, 1995, 43(1 ):204-213.
    [81] Shah, SI, Chaparro LF, Kayhan AS. Evolutionary maximum entropy spectral analysis. IEEE Proc. ICASSP, 1994,4:285-288.
    [82] Kayhan AS. Evolutionary biperiodogram. IEEE Inter. Symp. Circuits and Systems, 1994, 2(30):433-436.
    [83] Detka, CS, El-Jaroudi A. The Chirped Evolutionary Spectrum. IEEE Seventh SP Workshop,Statistical Signal and Array Processing, 1994:239-242.
    [84] Emresoy MK, El-Jaroudi A. Evolutionary Burg spectral estimation. IEEE SPL, 1997,4(6):173-175.
    [85] Detka CS, El-Jaroudi A. The generalized evolutionary spectrum. IEEE Trans. SP, 1996, 44(11).:2877-2881.
    [86] 林茂庸,柯有安.雷达信号理论.北京:国防工业出版社,1984:79-87.
    [87] Li WP. Wigner distribution method equivalent to dechirp method for detecting a chirp signal. IEEE Trans. ASSP, 1987, 35(8): 1210~1211.
    [88] Wood JC, Barry DT. Radon transformation of time-frequency distribution for analysis of multi-component signals. IEEE Trans. SP, 1994, 42(11): 3166~3177.
    [89] Wood JC, Barry DT. Tomographic time-frequency analysis and its application toward time-varying filtering and adaptive kernel design for multi-component Linear-FM signals. IEEE Trans. SP, 1994, 42(8): 2094-2104.
    [90] Wang MS, Chan AK, Chui CK. Linear Frequency Modulated Signal Detection Using Radon-Ambiguity Transform. IEEE Trans. SP, 1998,46 (3): 571-586.
    [91] 姚甦甦,何振亚.非平稳信号的频率-切变分布.东南大学学报,1997,27(1):64~67.
    [92] Stankovic L. Auto-term representation by the reduced interference distributions: a procedure for kernel design. IEEE Trans. SP, 1996, 44(6): 1557~1563.
    [93] Ozdemir AK, Arikan O. A high resolution time frequency representation with significantly reduced cross-terms. IEEE Proc. ICASSP, 2000, 2: 693~696.
    [94] 邹虹,保铮.基于信号模糊域自适应核分布的进一步分析.西安电子科技大学学报,1999,26(6):713~717
    [95] 徐春光,谢维信.自适应线性核时频信号分析.系统工程与电子技术,2000,22(6):22~24.
    [96] Sattar F, Salomonsson G. The use of a filter bank and the Wigner-Ville distribution for time-frequency representation. IEEE Trans. SP, 1999, 47(6): 1776~1783.
    [97] 郭福成,皇甫堪.基于滤波器组的改进型Wiger-Ville分布.信号处理,2001,17(1):1~3.
    [98] 孙泓波,顾红,苏卫民等.基于互Wigner-Ville分布的SAR运动目标检测.电子学报,2002,30(3):347~350.
    [99] 李英祥,肖先赐,基于逐次滤波Randon-Ambiguity变换的多线性调频信号时频检测,声学学报,2004,29(6):557-561。
    [100] 刘永红,王宏禹.自适应径向巴特沃思核时频表示.通信学报,1998,19(7):13~17.
    [101] Peleg S, Porat B. Linear FM signal parameter estimation form discrete-time observations. IEEE Trans. AES, 1991, 27(4): 607~614.
    [102] 刘渝.快速解线调技术.数据采集与处理,1999,14(2):175-178.
    [103] Kim SY. Bifurcation structure of the double-well doffing oscillation. International Journal of Modern Physics B, 2000, 14(17): 1801-1812
    [104] Parlitz U. Lauterborn W. Superstructure in the bifurcation set of the Duffing equation. Phy. Lett. A, 1985, 107(8): 351-355
    [105] Parlitz U, Lauterborn W. Period-doubling cascades and devil's staircases of the driven van der poloscillation. Phy. Rew. A, 1987, 36(3): 1428-1434
    [106] Scheffczyk C, Parlitz U, Kurz T et al. Comparison of bifurcation sets of driven strictly dissipative oscillators. International Series of Numerical Mathematics, 1991, 97:319-323
    [107] Scheffczyk C, Parlitz U, Kurz T. Comparison of bifurcation structures of driven dissipative nonlinear oscillators. Phy. Rew. A, 1991,43(12): 6495-6502
    [108] Parlitz U. Common dynamical features of periodically driven strictly dissipative oscillators. International Journal of bifurcation and chaos, 1993, 3(3): 703-715
    [109] Kozlowski J, Parlitz U, Lauterborn W. Bifurcation analysis of two coupled periodically driven doffing oscillators. Phy. Rew. E, 1995, 51(3): 1861-1867
    [110] Langer G, Parlitz U. Robust Method for experimental bifurcation analysis. International Journal of bifurcation and chaos, 2002, 12(8): 1909-1913
    [111] 王冠宇,陈大军,林建亚,Duffing振子微弱信号检测方法的统计特性研究,电子学报,1998,26卷,10期,38-44
    [112] Wang GY, Chen D J, Lin JY et al. The Application of Chaotic Oscillators to Weak Signal Detection. IEEE Transactions on Industrial Electronics, 1999, 46(2): 440-444
    [113] 李月,杨宝俊,石要武,色噪声背景下微弱正弦信号的混沌检测,物理学报,2003,52卷,3期,526-530.
    [114] Donald LB, Stephen J P. Chaotic oscillators and CMFFNS for signal detection in noisy environments. IEEE International Joint Conference on Neural networks, 1992, 2:881-888.
    [115] 甘建超,混沌信号处理在雷达和通信对抗中的应用:[博士学位论文].成都:电子科技大学,2004,169-180.
    [116] 李月.混沌振子检测引论北京:工业出版社,2004,70-75.
    [117] Wolf A, Swift Jack B, Swinney Harry L, et al. Determining lyapunov exponents from a time series. Physics D, 1985, 16(3):285-317.
    [118] 李英祥,肖先赐.低信噪比下线性调频信号检测与参数估计.系统工程与电子技术,2002,24(8):43-45.
    [119] Krim H, Viberg M. Two decades of array signal processing research: The parametric approach. IEEE Mag. SP, 1996.13(7): 67-94.
    [120] Jordan C, Balman KG. Electromagnetic waves and radiating systems (second edition). New Jersey, Prentice-Hall, 1968:145-155.
    [121] 陈天麒.阵列参数估计中的假设条件及物理概念初探.电子对抗国防科技重点实验室第六届学术报告会论文集,成都:电子科技大学,1998,235-241.
    [122] Swindlehurst AL, Kailath T. Passive direction-of-arrival and range estimation for near-field sources. Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling, 1988. 123-128.
    [123] Allen JC. Advanced beamforming concepts: source localization using the bispectrum, Gabor transform, Wigner-Ville distribution, and nonstationary signal representations. Record of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, 1991. 2: 818-824.
    [124] Belouchrani A, Amin MG. Blind source separation based on time-frequency signal representation. IEEE Trans. SP, 1998.46(11): 2888-2898.
    [125] 黄克骥.时频分析方法在阵列信号处理中的应用:[博士学位论文].成都:电子科技大学,2004,8-27.
    [126] 田达.非平稳信号阵列多参量估计技术研究:[博士学位论文].成都:电子科技大学,2004,19-70.
    [127] Akaike H. A new look at the statistical model identification. IEEE Yrans. AC, 1974,19(6): 716-723.
    [128] Rissanen J. Modeling by shortest data description. Automatica, 1978,14:465-471.
    [129] Wu HT, Yang J,Chen FK. Source number estimator using Gershgorin disks. IEEE Proc. ICASSP, 1994,4:261-264.
    [130] Amin MG, Zhang Y. Effects of crossterms on the performance of time-frequency MUSIC. IEEE Proc. Sensor array and multichannel signal processing workshop, 2000: 479-483.
    [131] Amin MG, Zhang Y. Direction finding based on spatial time-frequency distribution matrices. Digital signal processing, 2000. 10(4): 325-339.
    [132] Zhang Y, Mu W, Amin MG. Time-frequency maximum likelihood methods for direction finding. Journal of Franklin Institute. 2000. 337(4): 483-497.
    [133] Zhang Y, Mu W. Subspace analysis of spatial time-frequency distribution matrices. IEEE Trans. SP, 2001.49(4): 747-759.
    [134] 金梁,殷勤业,李盈.时频子空间拟合波达方向估计.电子学报,2001,29(1):71-74.
    [135] Amin MG, Belouchrani A. Blind source separation using the spatial ambiguity functions. IEEE-SP International Syrup. on Time-Frequency and Time-Scale Analysis, 1998.413-416.
    [136] Amin MG, Belouchrani A, Zhang Y. The spatial ambiguity function and its applications. IEEE SPL, 2000, 7(6): 138-140.
    [137] Zhang Y, Amin MG, Obeidat BA. Direction finding using spatial polarimetric time-frequency distributions. IEEE Seventh Inter. Symp. on Signal Processing and Its Applications, 2003.1: 133-136.
    [138] Zhang Y, Amin MG. Beamspace time-frequency MUSIC with application to airborne antenna arrays. IEEE Proc. Signals, Systems & Computers, 1998, 1: 838-841.
    [139] Shen T J, Wax M, Kailath T. On spatial smoothing for estimation of coherent signals. IEEE Trans. ASSP, 1985, 33(4):806-811
    [140] Pillai SU, Kwon BH. Forward-backward spatial smoothing techniques for coherent signal identification. IEEE Trans. ASSP, 1989,37(1):8-15.
    [141] Gao SW, Bao Z. Data-based matrix decomposition technique for high resolution array processing of coherent signals. Electronics Letters, 1987,23(12):643-645.
    [142] 王永良,陈辉,彭应宁等.空间谱估计.北京,清华大学出版社.98-106.
    [143] Stoica P, Ottersten B, Viberg M et al. Maximum likelihood array processing for stochastic coherent sources. IEEE Trans. SP, 1996,44(1): 96-105
    [144] Minghao H., Yixin Y. and Xianda Z. UCA-ESPRIT Algorithm for 2-D Angle Estimation. IEEE Proc. ICASSP, 2000,1: 437-440.
    [145] Sarkar TK, Koh J, Adve R et al. A pragmatic approach to adaptive antennas, IEEE Mag. AP, 2000,42(2): 39-55.
    [146] Kim KJ, Sarkar TK, Palma MS. Adaptive processing using a single snapshot for a nonuniformly spaced array in the presence of mutual coupling and near-field scatters, IEEE Trans. AP, 2002, 50(5):582-590.
    [147] Kim JT, Moon SH, Han DS et al. Fast DOA estimation algorithm using pseudo-covariance matrix, IEEE Trans. AP, 2005, 53(4): 1346 - 1351.
    [148] Monzingo RA, Miller TW. Introduction to Adaptive Arrays, New York: Wiley-Interscience, 1980, 116-122.
    [149] Compton RT. Adaptive Antennas, Concepts, and Performance. Englewood Cliffs, NJ: Prentice-Hall, 1988,71-79.
    [150] B.Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1985, 32-44.
    [151] M. H. Hayes, Statistical Digital Signal Processing and Modeling, New York: Wiley, 1996, 91-102.
    [152] D.N. Swingler, R.S. Walker. Line-array beamforming using linear prediction for aperture interpolation and extrapolation. IEEE Trans.SP, 1989, 37(1): 16 -30.
    [153] Flieller A, Larzabal P, Clergeot H, Study of ambiguities in array manifold: a general framework, Statistical Signal and Array Processing, 8th IEEE SP Workshop, 1996: 574-577
    [154] Chen H, Wang YL, Wan S. Performance improvement of estimation direction-of-arrival via array geometry arrangement. IEEE AP-S International Symposium and USNC/UPSI nation, radio science meeting, 1999,7: 1600-1603.
    [155] Sorelius J, Moses RL, Soderstrom T. Effects of nonzero bandwidth on direction of arrival estimators in array signal processing. IEE Proc. Radar, Sonar and Navigation, 1998,145(6): 317-324.
    [157] Su G, Morf M. Signal subspace approach for multiple wideband emitter location. IEEE Trans. ASSP.1983,31(12):1502-1522.
    [158] Bienvenu G, Eigensystem properties of the sample space correlation matrix. IEEE Proc. ICASSP, 1983, 1:332-335.
    [159] Allam M, Moghaddamjoo A. Two-dimensional DFT projection for wideband direction-of-arrival estimation. IEEE Trans. SP, 1995,43(7): 1728-1732.
    [161] Wang H, Kaveh M. Estimation of angles-of- arrival for wideband sources. IEEE Proc. ICASSP, 1984, 7:51-54.
    [162] Valaee S, Kabal P. Wideband array processing using a two-sided correlation transformation. IEEE Trans. SP,1995, 43(1):160-172.
    [163] Doron MA, Weiss AJ. On focusing matrices for wide-band array processing. IEEE Trans. SP, 1992, 40(6):1295-1302.
    [164] Lee TS, Efficient wideband sources localization using beamforming invariance technique. IEEE Trans. SP,1994, 42(6):1376-1386.
    [165] 李平安,孙进才,俞卞章.基于插值圆阵的宽带信号二维空间谱估计.电子科学学刊,1996,18(4):334-348.
    [166] Doron MA, Doron E, Weiss AJ. Coherent wide-band processing for arbitrary array geometry. IEEE Trans. SP, 1993,41(4):1618-1634.
    [167] 雷定中,黄绣坤,张树京等.宽带非高斯信号波达方向的估计方法.电子学报,1998,26(10):45-49.
    [168] Jin L, Yao ML, Yin QY. A novel method for 2-D spatial spectrum estimation of wideband signal. IEEE Proc. ICSP,1998,1:397-400.
    [169] Yang JF, Kaveh M. Wideband adaptive arrays based on the coherent signal-subspace transformation. IEEE Proc. ICASSP, 1987,12:2011-2014.
    [170] Sivanand S,Yang JF, Kaveh M. Time-domain coherent signal-subspace wideband direction-of-arrival estimation. IEEE Proc. ICASSP,1989,4: 2772-2775.
    [171] Gershman AB, Pesavento M. Estimating parameters of multiple wideband polynomialphase sources in sensor arrays. IEEE Trans. SP, 2001,49(12): 2924-2934.
    [172] Gershman A.B. Amin M.G., Wideband direction of arrival estimation of multiple chirp signals using spatial time-frequency distributions. IEEE SPL, 2000, 7(1): 152-155.
    [173] Tuan D.H., Demmel, E, Russer P., A method for wideband direction-of-arrival estimation using frequency-domain frequency-invariant beamformers. IEEE Int. Symp. Antennas and Propagation Society, 2003.3:244-247
    [174] Tuan D.H., Russet, p. Wideband direction-of-arrival estimation using spatially interpolated wideband beamformers. IEEE Int. Symp. Antennas and Propagation Society, 2004, 3: 2647-2650
    [175] Lie, S., Leyman, A.R., Chew, Y.H.,Wideband chirp parameter estimation in sensor arrays through DPT, Electronics Letters, 2003, 39(23):1633-1635
    [176] Wang, G.; Xia, XG., Iterative algorithm for direction of arrival estimation with wideband chirp signals, IEE Proc, Radar, Sonar and Navigation, 2000,147(5):233-238.
    [177] 张容权,杨建宇,熊金涛等.对称三角线性调频连续波信号模糊函数分析.电子学报,2004,32(3):353~3561
    [178] Stove AG. Linear FMCW Radar Techniques. IEE Proceedings F-Radar and Signal Processing, 1992,139(5):343~350.
    [179] 袁伟明,王敏,吴顺君.对称三角线性调频连续波信号的检测与参数估计.电波科学学报,2005,20(5):594-597.
    [180] Wong K.T., Zoltowski M.D. Closed-Form Direction Finding and Polarization Estimation with Arbitrarily Spaced Electromagnetic Vector-Sensors at Unknown Locations. IEEE Trans. AP, 2000, 48(5),671-681
    [181] 庄钊文.极化敏感阵列信号处理.北京,国防工业出版社.2005,15-37.
    [182] Dayan R, Joseph T, Reuven S. Source localization using vector sensor array in a multipath environment. IEEE Trans. SP, 2004, 52(11): 3096-3103.
    [183] Svantesson T. Modeling and estimation of mutual coupling in a uniform linear array of dipoles. IEEE Proc. ICASSP, 1999, 5:2961-2964.
    [184] Turnbull L, Marvin AC. Effect of cross-polar coupling on open area test site measurement correlation and repeatability. IEE Proc. Science, Measurement and Technology, 1996,143(4):202-207.
    [185] 王建英,王激扬,陈天麒.宽频段信号频率、二维到达角和极化联合估计.中国科学(E辑),2001,31(6):526-532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700