Slit_2-siRNA玻璃体腔注射对急慢性高眼压大鼠模型视网膜神经节细胞凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立稳定的SD大鼠的急性和慢性青光眼模型,检测大鼠视网膜上BDNF和slit_2mRNA的表达以及RGC凋亡的状况,利用RNAi干扰技术下调slit_2mRNA的表达,以期通过上调BDNF的途径降低RGC的凋亡达到视神经保护的目的。
     方法:①采用大鼠眼前房灌注生理盐水和不同大鼠视神经夹持时间来选择前房稳定的急性高眼压大鼠模型作为视神经保护的研究;②巩膜表面血管结扎联合角巩缘血管网电凝制作慢性高眼压大鼠模型;③造模成功后摘除眼球,固定包埋后切成5-μm的视网膜切片。免疫组织化学SP法检测大鼠视网膜上的BDNF的表达和核酸分子原位杂交法检测slit_2mRNA在大鼠视网膜上的表达;④slit_2SiRNA模型鼠的右眼玻璃体腔内,取大鼠眼球固定切片进行BDNF的免疫组化检查、TUNEL检查RGC的凋亡以及核酸分子原位杂交检测slit_2mRNA的表达。
     结果:①选用模型是选用20秒(s)的大鼠视神经夹持模型作为视神经保护研究的模型,不仅可以达到生理盐水前房灌注的急性高眼压模型的RGC凋亡水平,而且保持了眼球的完整性;②巩膜表面血管结扎联合角巩缘血管网电凝可以制作稳定的大鼠慢性高眼压模型。③BDNF的免疫染色见于节细胞层、内网层、内核层和视锥视杆层,其中视网膜节细胞层(GCL)可见大量胞浆深染的BDNF阳性细胞。Slit_2mRNA在视网膜RGC层和内核层均有表达,在急性和慢性高眼压模型的视网膜RGC层上的表达是上调的;④急性高眼压模型中和慢性高眼压模型中运用各浓度的slit_2mRNA玻璃体腔注射后视网膜上slit_2mRNA下调,同时BDNF的表达上调,RGC的凋亡减少,但没有显著性意义。而慢性高眼压模型中表现更为明显,在200nmol组中表现最为明显,并与其他组别有显著性差异。
     结论:在大鼠高眼压模型中,Slit_2siRNA注入玻璃体腔中可通过下调slit_2mRNA在视网膜节细胞层的表达,从而上调BDNF途径减少RGCs的凋亡,以达到保护视网膜视神经的作用,在慢性高眼压模型中更为有效。
Objectives: To establish stable acute and chronic rat glaucoma models, clarify theexpression of BDNF and Slit_2mRNA in retina of rat glaucoma model, and observe theeffect of RNAi technique usage in retinal neuroprotection, we aim to upregulate theexpression of BDNF and reduce the apoptosis of RGC in retina by downregulating theexpression of slit_2mRNA in retina.
     Methods:①To select a stable rat nerve damage mode between high intraocularpressure model and rat nerve crush model;②To establish a rat chronic elevated intraocularpressure glaucoma model combined with ligation of episcleral veins and cauterization oflimbus arcades;③The eyes of rats after successful being made model were enucleated andprocessed for paraffin sectioning. Each eye was oriented so that the sections (5-μmthickness) were cut from the superior to the inferior edge. BDNF was traced byimmunohistochemistry SP method and Slit_2mRNA was evaluated by In situ hybridizationmethod;④we used 32 gauges needle to inject the given slit_2mRNA in differentconcentration into vitreous body of the acute and chronic rat glaucoma models. Eyes wereenucleated and processed for paraffin sectioning. Each eye was oriented so that the sections(5-μm thickness) were cut from the superior to the inferior edge. BDNF was traced byimmunohistochemistry SP method and Slit_2mRNA was evaluated by In situ hybridizationmethod and TUNEL assays were performed on 5-um slides of rat eye to detect the RGCapoptosis.
     Results①We selected the nerve crush 20s as the model for neuroprotection research;②we established a reliable glaucoma rat model by episcleral veins ligation combined withcauterization of limbus arcades;③Expressions of BDNF were detected in retinal ganglioncell layer and inner nuclear layer. In situ hybridization studies indicated that the slit_2mRNAwas specifically expressed in the RGC layer of rat retina and upregulated in the glaucoma rat model;④Different concentration of srSlit_2mRNA in acute and chronic rat model led todownreguiate Slit_2mRNA in retina and upregulate BDNF in retina and alleviate theapoptosis of RGCs, however, the outcomes were more abvious in chronic glaucoma model.
     Conclusions Introvitreal injection slit_2mRNA in glaucoma rat models could benefitfor neuroprotection through upregulating BDNF expression and downregulating theapoptosis of RGCs in the retina.
引文
1 Quigly HA, Addicks EM , Green WR, Maumenee AE. Optic nerve damage in human glaucoma. Ⅱ. The site of injury and susceptibility to damage. Am J Ophthalmol. 1981;99: 635-649
    2 Quigly HA, Nickells RW, Kerrigan LA, et al. Rentinal ganglion cell death in exprimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol vis Sci.l995;36: 774-786
    3 Gupta N,Ang LC, Noel de Tilly, et al. Human glaucoma and neural degeneration in intracranial optic nerve,lateral geniculate nucleus,and vision cortex.Br J Ophthalmol. 2006;90:674-8
    4 Mansour - robeay S, Clarke DB , Wang YC, et al. Effect fo ccular injury and administration of brain derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA.1994;91:1632-1636
    5 Klocker N , Kermer P, Weishaupt JH, et al. Brain - derived neurotrophic factor - mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl - inositol - 3 - kinase/protein kinase B signaling. J Neurosci .2000; 20:6962-6987
    6 Fournier AE, Beer J , Arregui CO , et al. Brain - derived neurotrophic factor modulates GAP- 43 but not T alpha 1 expression in injured retinal ganglion cells of adult rats. J Neurosci Res .1997 47: 561-572.
    7 Mansour - Robaey S, Clarke DB , Wang YC, et al. Effects of ocuar injury and administration of brain - derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl.Acad Sci USA. 1994 91:1632-1636
    8 Polo AD, Aigner LJ , Dunn RJ , et al. Prolonged deliveryof brain -derived neurotrophic factor by adenovirus- infected Miiller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci USA.1998 ;95: 3978-3983.
    9 Frank L , Ventimiglia R, Anderson K, et al. BDNF down - regulates neurotrophin responsiveness, TrkB protein and TrkB mRNA levels in cultured rat hippocampal neurons. Eur J Neurosci .1994;6: 550-557 .
    10 10. Klocker N, Cellerino A, Bahr M. Free radical scavenging and inhibition of nitric oxide synthase potentiates the neurotrophic effects of brain-derived neurotrophic factor on axotomized retinal ganglion cells in vivo. J Neuro sci. 1998 ;18: 1038-1046
    11 Richardson PM, McGuimess UM, Aguayo AJ.Axons from CNS neurons regenerate. into PNS grafts. Nature.1980;284:264-265
    12 Benfey M, Aguayo AJ, Extensive elongation of axons from rat brain into peripheral nerve grafts. Nature. 1982;296:150-152
    13 Prinjha R,Morrow SE,Vinson M,et al.Inhibitor of neurite outgrowth in humans. Nature. 2000;403.:383-384
    14 Tessier-Lavigne M. Goodman CS, The molecular biology of axon guidance. Science. 1996; 274(5290):1123-33
    15 Brahr M, Bonhoeffer F.Perspectives on axonal regeneration in the mammalian CNS. Trends in Neurosci.1998,17:472-487
    16 都爱莲,程虹,丁新生,等.神经生长的诱向因子与中枢神经再生.中华神经科杂志.2000:33:121-122
    17 Simpson JH, Bland KS, Fetter RD, et al. Short-range and long-range guidance by slit and its robo receptors: a combinatorial code of robo receptors controls lateral position .Cell. 2000;103:1019-1032.
    18 Bashaw GJ, Goodman CS. Chimeric axon guidance receptors: the cytoplasmic domains of slit and netrin receptors specify attraction versus repulsion .Cell. 1999;97:917-926.
    19 Flanagan JG, Vactor DV. Through the looking glass: axon guidance at the midline choice point .Cell;1998;92:429-432.
    20 Erskine L, Williams SE, Brose K, Kidd T, Rachel RA, Goodman CS, Tessier-Lavigue M, Mason CA. Retinal ganglion cell axon guidance in the mouse optic chiasm: expression and function of robos and slits.J Neurosci.2000;20(13):4975-82.
    21 Sretavan DW. Specific routing of retinal ganglion cell axons at the mammalian optic chiasm during embryonic development. J Neurosci. 1990; 10(6):1995-2007.
    22 Niclou SP, Jia L, Raper JA. Slit_2 is a repellent for retinal ganglion cell axons.J Neurosci. 2000 1;20(13):496274
    23 Hannah Thompson, Olivier Camand, David Barker, LyndaErskine. Slit Proteins Regulate Distinct Aspects of Retina 1Ganglion Cell Axon Guidance within Dorsa.land Ventral Retina. The Journal of Neuroscience, August 2,2006; 26(31):8082-8091
    24 Thompson H, Camand O, Barker D, Erskine L. Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within dorsal and ventral retina.J Neurosci. 2006 Aug 2;26(31):8082-91.
    25 William D. Andrews, Melissa Barbe, John G. Pamavelas. Slit-Robo interactions during cortical development. Journal of anatomy. 2007;211(2):188-98.
    26 Lynda Erskine, Scott E. Williams, Katja Brose, Thomas Kidd, Rivka A.et,al. Retinal Ganglion Cell Axon Guidance in the Mouse Optic Chiasm:Expression. and Function of Robos and Slits. The Journal of Neuroscience. 2000;20(13):4975-4982
    27 肖卫东,易成腊,陈安民,陈娟,廖光军,周海宇.成年大鼠脊髓损伤后Slit2的表达及免疫荧光激光共聚焦定位.武汉大学学报(医学版).2006;9(27):5
    28 周友清,陈亮,顾玉东.不同年龄大鼠坐骨神经损伤后表达的差异.中华医学杂志.2004;7(84)13:1110-3
    29 Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double2stranded RNA in Caenorhabdits elegans. Nature .1998 ;(391) :806-811.
    30 Ashraf Dallol, Dion Morton, Eamonn R. Maher, and Farida Latif. SLIT2 Axon Guidance Molecule Is Frequently Inactivated in Colorectal .Cancer and Suppresses Growth of Colorectal Carcinoma Cells. Cancer Research. 2003;3(63): 1054-1058
    1 1 B(u|¨)chi ER , Suivaizdis I , Fu J . Pressure induced retinal ischemia in rats: an experimental model for quantitative study. Ophthalmological 1991;203:138-147.
    2 刁金关,冯国栋,钱新宏等.用于中枢神经系统Waller变性研究的新型大鼠视神经夹伤模型 神经解剖学杂志.2008;(03):239-244
    3 Yoles E, Schwartz M. Degeneration of spared axons following partial white matter lesion: implications for optic nerve neuropathies.Exp Neurol, 1998; 153:127
    4 刘红,詹桂林,徐亮.青光眼的动物模型 国际眼科纵览.2007;4(31):103-107
    1 1 Weinreb RN, Khaw PT. Primary open angle glaucoma. Lancet 2004; 363:1711-20.
    2 2. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90:262-7.
    3 Morrison JC, Johnson EC, Cepurna WO, et.al. Understanding mechanisms of pressure-induced optic nerve damage. Prog Retin Eye Res. 2005;24:217-240.
    4 Morrison JC . Elevated intraocular pressure and optic nerve injury models in the rat J Glaucoma. 2005;14:315-317
    5 Hosseini A, Lattanzio F.A, Williams P.B. et.al. Chronic topical administration of WIN-55-212-2 maintains a reduction in IOP in a rat glaucoma model without adverse effects. Exp Eye Res 2006:82; 753-759
    6 Morrison JC, Fraunfelder FW, Milne ST, Moore CG Limbal microvasculature of the rat eye. Invest Ophthalmol Vis Sci. 1995;36: 751-756.
    7 Morrison JC, Moore CG, Deppmeier LMH, et.al. A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 1997;63:85-96.
    8 Ueda J, Sawaguchi S, Hanyu T, et.al. Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn J Ophthalmol. 1998;42:337-344;
    9 Lam TT, Kwong JM, Tso MO. Early glial responses after acute elevated intraocular pressure in rats. Invest Ophthalmol Vis Sci.2003;44:638-645.
    10 Ishii Y, Kwong JM, Caprioli J. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44: 1982-1992.)
    11 Shareef SR, Garcia-Valenzuela E, Salierno A, et.al.Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res. 1995;61:379-382
    12 Saiyuu Yu, Teruyo Tanabe, Nagahisa Yoshimura. A rat model of glaucoma induced by episcleral vein ligation. Expl Eye Res.2006; 83: 758-770
    13 Grozdanic SD, Betts DM, Sakaguchi DS, et.al. Temporary elevation of the intraocular pressure by cauterization of vortex and episcleral veins in rats causes functional deficits in the retina and optic nerve. Exp Eye Res. 2003;77:27-33.
    14 Jia L, Cepurna WO, Johnson EC, et.al. Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats. Invest Ophthalmol Vis Sci. 2000 May;41(6):1380-5
    15 Laquis S, Chaudhary P, Sharma SC. The patterns of retinal ganglion cell death in hypertensive eyes. Brain Res. 1998 Feb 16;784(1-2):100-4
    16 Mittag TW, Danias J , Pohorenec G , Yuan HM. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glacoma model . Invest Ophthalmol Vis Sci 2000; 41: 3451-3459.
    17 Pang, I.H., Clark, A.F., 2007. Rodent models for glaucoma retinopathy and optic neuropathy. J Glaucoma. 16, 483-505
    18 Yu S, Tanabe T, Yoshimura N. A rat model of glaucoma induced by episcleral vein ligation. Exp Eye Res. 2006;83:758-770
    19 Bonomi L, Marchini G, Marraffa M et.al. The relationship between intraocular pressure and glaucoma in a defined population: data from the Egna-Neumarkt Glaucoma Study. Ophthalmologica.2001;215:34-38.
    20 Moore CG, Milne ST, Morrison JC. Noninvasive measurement of rat intraocular pressure with the TonoPen. Invest Ophthalmol Vis Sci ,1993;34:363- 369
    21 Pease ME,Hammond JC,Quigley HA. Manometric calibration and comparison of TonoLab and TonoPen tonometers in rats with experimental glaucoma and in normal mice.J Glaucoma ,2006;15:512- 519
    22 Coban BE, Bohr DF. Measurement of intraocular pressure in awake mice.Invest Ophthalmol Vis Sci ,2001;42:2560- 2562
    23 Rasmussen CA , Kaufman PL. Primate glaucoma models. J Glaucoma 2005; 14:311-314
    24 Uchida H, Brigatti L, Caprioli J. Detection of structural damage from Glaucoma with confocal laser image analysis. Invest Ophthalmol Vis Sci 1996;37:2393-2401
    25 Wolstein G, Garway-Heath DF, Hitchings RA. Identification of early Glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology.1998; 105;1557-1563
    26 Choplin NT, I.undy DC, Dreher AW. Diferentiating patients with glaucoma from glaucoma suspects and normal subjects by nerve fiber layer-assessment with scanning laser polarimetry. Ophthalmology 1998;10 5:2068-2076
    27 Hoh ST, Greenfield DS, Mistlberger A, et al. Optical coherence tomography and scanning laser polarimetry in normal, ocular hypertensive, and glaucomatous eyes. Am J ophthahmol 2000;12 9; 129-135
    28 Johnson Z K, Siddiqui R, Azuara-Blanco A. The quality of reporting of diagnostic accuracy studies of optical coherence tomography in glaucoma., ophthalmology 2007;114:1607-1612
    29 Cheung CY, Leung CK, Lin D, et.al. Relationship between Retinal Nerve Fiber Layer Measurement and Signal Strength in Optical Coherence Tomography. Ophthalmology. 2008;2:20-25
    30 Jia LJ, Cepurna WO, Johnson EC, Morrison JC. Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in Rats. Invest Ophthalmol Vis Sci. 2000;41:1380-1385
    31 KimDH, Kim HS, Ahn MD, Chun MH. Ganglion cell death in rat retina by persistent intraocular pressure elevation. Korean J ophthalmol.2004;18:15-22
    32 Caprioli JD, Ishii Y, Kwong JM. K. Retinal ganglion cell protection with geranyl geranylacetone, a heat shock protein inducer, in a rat glaucoma model. Trans Am Ophthalmol Soc 2003;101:39-52
    33 Ben Simon GJ, Bakalash S, Aloni E, Rosner M. A rat model for acute rise in intraocular pressure: immune modulation as a therapeutic strategy. Am J Ophthalmol. 2006 Jun;141(6):1105-11
    34 Danias J, Shen F, Goldblum D, Chen B, Ramos-Esteban J, Podos SM, Mittag T. Cytoarchitecture of the retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci. 2002 Mar;43(3):587-94
    1 Kap lan DR, Miller FD. Neurotrophin signal transduction in the nervous system . CurrOp in Neurobiol, 2000,10: 381-391
    2 Chen H, WeberAJ. Brain2derived neurotrophic factor reduces TrkB p rotein and mRNA in the normal retina and following op tic nerve crush in adult rats . Brain Res, 2004,1011(1) : 99-106
    3 Alsina B,Vu T, Cohen2Cory S. Visualizing synap se formation in arborizing op tic axons in vivo: dynamics and modulation by BDNF. Nat Neurosci, 2001, 4: 1093 -1101
    4 Lorn B, Cogen J, S(?)nchezAL, et al. Local and target derived brain derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo . J Neurosci, 2002, 22: 7639 - 7649
    5 Mo XF, Akiko Y, ToshiyukiO, et al. Rescue of axotomized retinal ganglion cells by BDNF gene electroporation in adult rats . Invest Ophthalmol Vis Sci, 2002,43: 2401 - 2405
    6 Alessandrini A, Namura S, Moskowitz MA. et al. MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc NatI Acad Sci USA 1999; 96(22): 12866-12869
    7 Zhu D, W u X, Strauss K I, et al. N 2methyl2D2aspartate and TrkB receptors protect neurons against glutamate excito toxicity th rough an extracellular signal2regulated k inase pathway. J N euro sci Res, 2005; 80 (1) : 1042113
    8 Borse K ,T essier-Lavigne M . Slit proteins : key regulators of axon guidance , axonal branching and cell migration. Curr Opin Neuorbiol. 2001;(10) :95-102
    9 WangK H,B orseK ,A nrottD ,et a l.Biochemical purification of amammalian slit protein as a positive regulator of sensory axon elongation and branching.Cell.l 999, 96771-784
    10 Tear G ,H arirs R ,Sutaria S ,et al.Commissureless controls growth cone guidance across the CNS midline in Dorsophila and encodes a novel membrane protein. Neuron.l996,16:501-14
    11 WhitfordK L,M arillatV ,S teinE ,et a l.Regulation of cortical dendrited evelopment by Slit-Robo interactions. Neuron.2 002,33:47.
    1 Neville N. Osborne., Glyn Chidlow , et al The potential of neuroprotection in glaucoma treatment. Current Opinion in Ophthalmology. 1999, 10: 82.
    2 Caprioli J. Neuroprotection of the optic nerve in glaucoma. Acta Ophthalmol. 1994, 75:364.
    3 Yoles E, Schwartz M. Potential neuroprotective therapy for glaucomatous optic neuropathy. S urv Ophthalmol, 1998,42: 367.
    4 吴永青,葛坚,等.视网膜神经节细胞培养、纯化及生物学特性研究.中华眼科杂志.1999,35(3):190.
    5 葛坚,吴永青.N-甲基天门冬氨酸和地塞米松对体外培养鼠视网膜神经节细胞凋亡作用观察.眼科学报,1999,15(2):65.
    6 Wax MB. Is there a role for the immune system in glaucomatous optic neuropathy ? Current Opinion in Ophathalmol, 2000,11: 145.
    7 卢艳,张晶瑶.糖尿病对神经系统的损害.国外医学眼科学分册.1999;23(5):306-309.
    8 王泽洪.神经生长因子与视觉神经生物学.眼科研究.1997;15(3):207.
    9 Perez MT, Caninos E.Expression of brain-derived neurotrophicfactor and of its functional receptor inner oataland adult rat retina. Neuro sci Lettle. 995; 183:96-99
    10 YH. Yucel, Q Zhang, L-C Ang, et al. Evidence for neural degeneration in human glaucoma involving the intracranial optic nerve, lateral geniculate nucleus and visual cortex. Annual Association for Research in Vision and Ophthalmology Meeting, Fort Lauderdale, Florida,April 2004.
    11 Emily Bernstein, Amy A. Caudy, Scott M. Hammond, Gregory J. Hannon. Role for abidentate ribo nuclease in the initiation step of RNA interference. Natur.e 409, 363-366
    12 Gregory J. Hannon. RNA interference. Nature. 418, 244-251
    13 孙莉萍,翁建,张秀明,张其清.siRNA的化学修饰和临床应用.生命的化学.2005(04):98-100
    14 梅林,李学军.siRNA在治疗学中的应用.生理科学进展.2006;(04):13
    15 Brubaker RF. Delayed functional loss glaucoma L 11 Edward Jackson memorial lecture. Am J Ophthalmol.l996;121:473-483.
    16 Kerrigam LA, Zack DJ. TUNEL-positive ganglion cellin human primary open-angle glaucoma.ArchOphthalmol1997;115:1031-1035.
    17 Johnson JE, Barde Y-A, Schwab M, Thoenen H. Brain-derived neurotrophic factor (BDNF) supports the survival of cultured rat retinal ganglion cells. J Neurosci. 1986;6:3031-3038.
    18 Thanos S, Bahr M, Barde Y-A, Vanselow J. Survival and axonal elongation of adult rat retinal ganglion cells: in vitro effects of lesioned sciatic nerve and brain-derived neurotrophic factor(BDNF). Eur J Neurosci. 1989;(1):19 -26.
    19 Von Bartheld CS, Williams R, Lefcort F, Clary DO, Reichardt LF,Bothwel M. Retrograde transport of neurotrophins from the eye to the brain in chick embryos: roles of the p75NTR and Trk B receptors. J Neurosci. 1996;16:2995-3008.
    20 Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA.Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron.l995;15:805-819.
    21 Bahr M, Wizenmann A, Thanos S. Effect of bilateral tectum lesions on retinal ganglion cell morphology in rats. J Comp Neurol. 1992;320:370-380.
    22 Harvey AR, Robertson D. Time-course and extent of retinal ganglioncell death following ablation of the superior colliculus in neonatal rats. J Comp Neurol. 1992;325:83-94.
    23 LaVail MM, Yasumura D, Matthes MT, et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci. 1998;39:592-602.
    24 LaVail MM, Unoki K, Yasumura D, Matthes MT, Yancopoulos GD,Steinberg RH. Multiple growth factors, cytokines and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc Natl Acad Sci USA. 1992;89:11249-11253.
    25 Lewis GP, Linberg KA, Geller SF, Guerin CJ, Fisher SK. Effects ofthe neurotrophin brain-derived neurotrophic factor in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci. 1999;40:1530-1544.
    26 Ikeda K, Tanihara H, Honda Y, Tatsuno T, Nocuchi H, Nakayama C.BDNF attenuates retinal cell death caused by chemically induced hypoxia in rats. Invest Ophthalmol Vis Sci.1999;40:2130-2140.
    27 Mey J, Thanos S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res. 1993;602: 304-317.
    28 Mansour-Robaey S, Clarke DB, Wang YC, Bray GM, Aguayo AJ. Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA. 1994;91:1632-1636.
    29 DiStefano PS, Friedman B, Radziejewski C, et al. The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron. 1992;8:983-993.
    1 Moore CG, Milne S, Morrison JC. Non-invasive measurement of rat IOP with the TonoPen. Invest Ophthalmol Vis Sci. 1993;34:363-369.
    2 Morrison JC, Farrell SK, Johnson EC, et al. Structure and composition of the rodent lamina cribrosa. Exp Eye Res. 1995;60:127-135.
    3 Morrison JC, Johnson EC, Cepurna WO, et al. Understanding mechanisms of pressure-induced optic nerve damage. Prog Retin Eye Res. 2005;24:217-240.
    4 Morrison JC, Johnson EC, Funk R. The microvasculature of the rat optic nerve head. Invest Ophthalmol Vis Sci. 1999;40:1702-1709.
    5 Morrison JC, Moore CG, Deppmeier LMH, et al. A rat model, of chronic pressure-induced optic nerve damage. Exp Eye Res. 1997;63:85-96.
    6 WoldeMussie E, Ruiz G,Wijono M, et al. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest Ophthalmol Vis Sci. 2001;42:2849-2855.
    7 Filippopoulos T, Matsubara A, Danias J,Huang W, Dobberfuhl A,Ren L,Mittag T, Miller JW, Grosskreuz CL. Predictability and limitation of non- invasive murine tonometry: Comparison of two devices. Exp Eye Res. 2006;83;194-201
    8 韩英军,梁天蔚,勇志鹏,等.Tono-Pen眼压计与Goldmann眼压计对穿透性小梁切除术后患者眼压测量的比较.国际眼科杂志.2006;6(6):1424-1426
    9 李奇根,陈龙山,陈家祺,等.TonoPen眼压计与Goldmann眼压计的对比研究.眼科研究.2000;18:191-192
    10 10 Dalkea C, Pleyerb U, Grawa J. On the use of Tono- Pen XL for the measurement of intraocular pressure in mice. Exp Eye Res ,2005;80:295-296
    11 Kontiola AI, Goldblum D, Mittag T, Danias J. The induction/impact tonometer: a new instrument to measure intraocular pressure .Exp Eye Res. 2001;73:781-785
    12 Leiva M, Naranjo C, Pena MT. Comparison of the rebound tonometer (ICare)to the applanation tonometer (Tononpen XL) in normotensive dogs.Vet Ophthalmol 2006;9(1):17-21
    13 Moore CG Milne ST, Morrison JC. Noninvasive measurement of rat intraocularpressure with the Tono- Pen. Invest Ophthalmol Vis Sci .1993;34:363-369
    14 Pease ME,Hammond JC,Quigley HA. Manometric calibration and comparison of TonoLab and TonoPen tonometers in rats with experimental glaucoma and in normal mice.J Glaucoma .2006;15:512-519
    15 Stoiber J,Fernandez V, Lamar PD, Hitzl W, Fantes F, Parel JM.Ex vivo evaluation of TonoPen and pneumotonometry in cat eyes.Ophthalmic Res .2006; 38:13-18
    16 Jia LJ, Cepurna WO, Johnson EC, Morrison JC. Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in Rats. Invest Ophthalmol Vis Sci ,2000;41:1380-1385
    17 Chidlow G, Nash MS, Crowhurst C,Bron AJ,Osborne NN. The ocular blood flow tonograph: a new instrument for the measurement of intraocular pressure in rabbits. Exp Eye Res. 1996;63:463-469
    18 Abrams LS, Vitale S, Jampel H. Comparison of three tonometers for Measuring intraocular pressure in rabbits. Invest Ophthalmol Vis Sci .1996;37:940-944
    19 李平余,王宁利.兔鼠青光眼模型.眼科.2004;13:116-119
    20 Martinez- de- la- Casa JM, Garcia-Feijoo J, Castillo A, Garcia- Sanchez J. Reproducibility and clinical Evaluation of rebound tonometry. Invest Ophthalmol Vis Sci. 2005;46:4578-4580
    21 Cervino A.Rebound tonometry: new opportunities and limitations of non- invasive determination of intraocular pressure. Br J Ophthalmol .2006;90:1444-1446
    22 Shareef SR, Garcia-Valenzuela E, Salierno A, et al. Chronic ocular hypertension following episcleral venous occlusion in rats [letter]. Exp Eye Res. 1995;61:379-382.
    23 Cohan BE, Bohr DF. Goldmann applanation tonometry in the conscious rat. Invest Ophthalmol Vis Sci. 2001;42:340-342.
    24 Goldblum D, Kontiola AI, Mittag T, et al. Non-invasive determination of intraocular pressure in the rat eye. Comparison of an electronic tonometer (TonoPen), and a rebound (impact probe) tonometer. Graefes Arch Clin Exp Ophthalmol. 2002;240:942-946.
    25 Moore CG, Johnson EC, Morrison JC. Circadian rhythm of intraocular pressure in the rat. Curr Eye Res. 1996; 15:185-191.
    26 Jia L, Cepurna WO, Johnson EC, et al. Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats. Invest Ophthalmol Vis Sci. 2000; 41:1380-1385.
    27 Levkovitch-Verbin H, Quigley HA, Martin KR, et al. Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci. 2002; 43:402-410.
    28 Chauhan BC, Pan J, Archibald ML, et al. Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Invest Ophthalmol Vis Sci. 2002;43:2969-2976.
    29 Martin KR, Levkovitch-Verbin H, Valenta D, et al. Retinal glutamate transporter changes in experimental glaucoma and after optic nervetransection in the rat. Invest Ophthalmol Vis Sci. 2002;43:2236-2243.
    30 Schlamp CL, Johnson EC, Li Y, et al. Changes in Thy1 gene expression associated with damaged retinal ganglion cells. Mol Vis. 2001;7:192-201.
    31 Sawada A, Neufeld AH. Confirmation of the rat model of chronic, moderately elevated intraocular pressure. Exp Eye Res. 1999;69:525-531.
    32 Danias J, Shen F, Goldblum D, et al. Cytoarchitecture of the retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci. 2002;43:587-594.
    33 CepurnaWO, Johnson EC, Kayton B, et al. Age related optic nerve axonal loss in adult brown Norway rats. Exp Eye Res. (in press).
    34 Mermoud A, Baerveldt G, Mickler DS, et al. Animal model for uveitic glaucoma.Graefes Arch Clin Exp Ophthalmol.1994;232:553-560.
    35 Ueda J, Sawaguchi S, Hanyu T, et al. Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn J Ophthalmol. 1998;42:337-344.
    36 Grozdanic SD, Betts DM, Sakaguchi DS, et al. Temporary elevation of the intraocular pressure by cauterization of vortex and episcleral veins in rats causes functional deficits in the retina and optic nerve. Exp Eye Res. 2003;77:27-33.
    37 Bayer AU, Danias J, Brodie S, et al. Electroretinographic abnormalities in a rat glaucoma model with chronic elevated intraocular pressure. Exp Eye Res. 2001;72:667-677.
    38 Fortune B, Bui BV, Morrison JC, et al. Selective ganglion cell functional loss in rats with experimental glaucoma. Invest Ophthalmol Vis Sci. 2004; 45:1854-1862.
    39 McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, et al. Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci. 2002;43:1077-1087.
    40 Hanninen VA, Pantcheva MB, Freeman EE, et al. Activation of caspase 9 in a rat model of experimental glaucoma. Curr Eye Res. 2002;25:389-395.
    41 Ahmed F, Torradol M, Johnson E, et al. Changes in mRNA levels for the myoc/tigr gene in the rat eye after experimental elevation of intraocular pressure or optic nerve transection. Invest Ophthalmol Vis Sci. 2001;42: 3165-3172.
    42 Ahmed F, Brown KM, Stephan DA, et al. Microarray analysis of changes in mRNA levels in the rat retina after experimental elevation of intraocular pressure. Invest Ophthalmol Vis Sci. 2004;45:1247-1258.
    43 Martin KR, Quigley HA, Zack DJ, et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44:4357-4365.
    44 McKinnon SJ, Lehman DM, Tahzib NG, et al. Baculoviral LAP repeat containing-For protects optic nerve axons in a rat glaucoma model. Mol Ther. 2002; 5:780-787.
    45 Johnson JE, Barde YA, Schwab M, et al.Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells.J Neurosci.1986; 6 :3031-3038
    46 Mansonur-Robaey S, Clarke DB,Wang YC, Bray GM,et al.Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Sci U S A.1994;91:1632-1636
    47 Otori Y, Wei JY, Barnstable CJ. Neurotoxic effects of low doses of glutamate on purified rat retinal ganglion cells. Invest Ophthalmol Vis Sci. 1998; 39:972-981
    48 Nguyen SM, Alexejun CN, Levin LA. Amplification of a reactive oxygen species signal in axotomized retinal ganglion cells. Antioxidants & redox signaling. 2003; 5:629-634
    49 vrabec JP,Lienven CJ,Levin LA.Cell type-specific opening of the retinal ganglion cell mitochondrial permeability transition pore. Invest Opthalmol Vis Sci. 2003; 44:2774-2782
    50 Barres BA,Silverstein BE, Corey DP,et al. Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron. 1988; 1:791-803
    51 Shen S,Wiemelt AP, McMorris FA, et al. Retinal ganglion cells lose trophic responsiveness after axotomy. Neuron. 1999; 23:285-295
    52 Geiger LK, Kortuem KR, Alexejun C, et al.Reduced redox state allows prolonged survival of axotomized neonatal retinal ganglion cells.Neuroscience.2002; 109:635-642
    53 Linsenmeier RA, Braun RD. Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J Gen Physiol. 1992; 99:177-197
    54 Yoon YH, Marmor MR Dextromental induction of retinal against ischemic injury in vivo.ArchOpthalmol.1989; 107:409-411
    55 Li Y, Schlamp CL, Nickells RW. Experimental induction of retinal ganglion cell death in adult mice. Invest Opthalmol Vis Sci. 1999; 40:1004-1008
    56 Sisk DR, Kuwabara T. Hiatologic changes in the inner retina of albino rats following intravitreal injection of monosodium L-glutamate.Graefes Arch Clin Exp Opthamol. 1985; 223:250-258
    57 Seress L, Lazar G,Kosaras B, Robertson RT. Regional effect of monosodium- L-glutamate on the superficial layers of superior colliculus in rat. Cell Tissue Res. 1984; 235:453-457
    58 Siliprandi R, Canella R, Carmignoto G,et al. N-methyl-D-aspartate-induced neurotoxicity in the adult rat retina. Vis Neurosci. 1992; 8:567-573
    59 Dreyer EB. A proposed role for excitotoxicity in glaucoma. J Glaucoma. 1998; 7:62-67.
    60 Vidal-Sanz M, Lafuente MP, Mayor S, de Imperial JM, Villegas-Perez MP. Retinal ganglion cell death induced by retinal inchemia: neuroprotective effects of two alpha-2 agonists. Surv Ophthalmol. 2001; 45:S261-S267.
    61 Cioff GA, Orgul S, Onda E, Bacon DR, Van Buskirk EM. An in vivo model of chronic optic never inchemia: the dose-dependent effects of endothelin-1 on the optic nerve microvasculature. Curr Eye Res. 1995; 14:1147-1153.
    62 Solomon AS, Lavie V, Hauben U, Monsonego A, Yoles E, Schwartz M. Complete transaction of rat optic nerve while sparing the meninges and the vasculature: an experimental model for optic never neuropathy and trauma. J Neurosci Methods. 1996;70:21-25.
    63 Yoles E, Muller S, Schwartz M. NMDA-receptor antagonist protects neurons from secondary degeneration after partial optic nerve crush. J Neurotraunma. 1997; 14:665-675.
    64 Clifford-Jones RE, McDonald WI, Landon DN. Chronic optic nerver compression. An experi-Mental study. Brain. 1985; 108:241-262.
    65 Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res. 1995;61:33-44.
    66 Morrison JC, Moore CG, Deppmeier LMH, et al. A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res. 1997;63:85-96
    67 Schori H, Kipnis J, Yoles E, et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxity and ocular hypertension:Implications for glaucoma. Proc Natl Acad Sci U S A.2001; 98:3398-3403
    68 John SW, Smith RS,Savinova OV,et al. Essential iris atrophy ,pigement dispersion, and glaucoma in DAB/2J mice. Invest Opthalmol Vis Sci.l998;39:951-962
    69 Gaasterland D,Tanishima T, Kuwabara T. Axoplasmic flow during chronic experimental glaucoma.1.Light and electron microscopic studies of the monkey optic nervehead during development of glaucomatous cupping.Invest Opthalmol Vis Sci.l978;17:838-846
    70 Gaasterland D,Kupfer C, Experimental glaucoma in the rhesus monkey. Invest Ophthalmol.l974;13:455-457
    71 Rasmussen CA, Kaufman PL. Primate glaucoma models. J Glaucoma. 2005; 14:311-314
    72 Kwong JM, Lam TT. N-methyl-D-aspartate(NMDA) induced apoptosis in adult rabbit retinas.Exp Eye Res. 2000;71:437-444
    73 Schlamp CL, Johnson EC, Li Y, et al. Changes in Thy1 gene expression associated with damaged retinal ganglion cells. Mol Vis.2001;7:192-201
    74 Heiji A, Leake MC, Bengtsson B,et al. Reduction of intraocular pressure and glaucoma progression: results from the early Manifest Glaucoma Trial. Arch Opthalmol. 2002;120:1268-1279
    75 Neufeld AH, Sawada A, Becker B. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retina ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci U S A. 1999;96:9944-9948
    76 WorldeMussie E, Ruiz G, Wijono M, et al. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest Opthalmol Vis Sci. Nov 2001;42:2849-2855
    77 Ko ML, Hu DN, Ritch R, et al. The combined effect of brain-derived neurotrophic factor and a free radial scavenger in experimental glaucoma. Invest Opthalmol Vis Sci. 2000;41:1967-2971
    78 Ko ML, Hu DN, Ritch R, et al.Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats. Neurosci Lett. Jun 8 2001;305:139-142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700