基于MEMS技术的Fabry-Perot腔可调光学滤波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可调谐光学滤波器是现代光通信系统和传感器网络的关键器件,利用微机电系统(MEMS)技术的法布里—珀罗(Fabry-Perot)腔可调光学滤波器以其体积小、性能高、成本低等优点成为众多解决方案中有力的竞争者之一。本论文以该类型滤波器为研究对象,从理论与实际工艺制备等方面对其进行了探索。
     论文阐述了F-P干涉仪的一般理论,利用矩阵法计算了多种的四分之一波堆光学介质薄膜的反射率和反射相移。以此为基础,较为系统地研究了高反射镜面的反射相移及其色散对短腔长的F-P干涉仪光学性能的影响。首次从理论上解释了由高反射镜面的反射相移和色散导致的短腔长的法布里—珀罗干涉仪自由谱域缩短效应,并由实验得到了验证。
     论文研究将压电驱动精密、稳定的特点同MEMS批量制造优势相结合,自主设计了一种新型的压电驱动F-P腔可调光学滤波器,设计中采用了独特的阻挡块结构将两镜面的平行度保持在一个合适的范围。制备中先后尝试了普通硅片湿法腐蚀工艺、选择性外延工艺和利用SOI材料制作三种路线方案。
     本论文首次利用湿法腐蚀工艺制备了F-P腔。经测试其插入损耗约为8dB,半波宽1.5~2nm,精细因子在50以上,两镜面无需静电调节机构即可保持良好的平行度。
     本论文在国内首先开展了选择性外延工艺在MEMS领域的前期研究,尝试利用选择性外延工艺制作法布里—珀罗腔光学器件,总结了在选择性外延工艺当中的一些重要现象和效应,包括一些尚未见文献报道的现象。
     本论文利用SOI硅片制备了新型的压电驱动F-P腔体可调光学滤波器并进行了初步的光学测试。在制备中笔者利用简单的各向异性湿法腐蚀工艺和金属溅射(或真空蒸发)工艺实现了将电极从硅片的一面引到另一面,该电极导引方法在本实验之前未见相关报道。
     经初步测试可调滤波器的插入损耗约为8dB,半波宽5nm,加电驱动后透射峰值
    
    //
    摘要
    波长移动量可达2压un。笔者对实验结果进行了分析,对下一步的工作进行了展望,
    确定了改进方向与措施。
Tunable optical filter is the key device of modern optical communication and sensor systems. With the advantages of small volume, high performance, and low cost, the Fabry-Perot (F-P) tunable filter employing the Micro-Electro-Mechanical systems (MEMS) technology is one of the most challenging among all optical tunable filter solutions. This thesis focused on the related theories of the MOEMS tunable filter as well as its fabrication techniques.
    The conventional theory of the F-P Interferometer was introduced firstly, and then the reflectivity and reflection phase shift of quite a few kinds of dielectric films consisting of quarter wave stacks were calculated. The influence of the reflection phase shift and its dispersion on the optical performance of the short-cavity (SC) F-P interferometer was analyzed in details. The free spectral range (FSR) shortening effect in the SCF-P interferometer was theoretically proved for the first time, which matched the experimental data very well.
    By combining with the precise and stabile characteristics of piezoelectric driving and the batch fabrication advantage of the MEMS technology, a novel F-P tunable filter was proposed and designed. The parallelism of the two F-P reflection mirrors can be well controlled by the proposed structure. Three fabrication processes, including (i) wet etching, (ii) the selective epitaxial growth (SEG) on silicon wafers, and (iii) using silicon on insulator (SOI) wafers, were studied.
    The F-P cavities employing the wet etching process was fabricated for the first time. The insertion loss were about 8dB, the full width at half maximum (FWHM) about 1.5-2 run, and the finesse more than 50. The high parallelism of the two reflection mirrors was automatically achieved without applying addition electrostatic control.
    The application of the SEG process on the MEMS field was explored and the effort to fabricate F-P based optical devices employing the SEG technology was made. The phenomenon appeared in the SEG experiments were summarized, some of which were first
    
    
    
    ABSTRACT
    observed.
    A novel F-P tunable filter driven by using piezoelectrics was fabricated with the SOI material. By employing simple wet anisotropic etching process and metal sputtering (or evaporating) process, the electrical interconnect between the electrodes on both sides of the silicon wafer was realized for the first time.
    The measured results showed that the insertion loss of the tunable filter was about 8 dB, the FWHM about 5 nm, and the transmitted peak red shifted about 20 nm. The test results were analyzed. The further measures to improve the performance were also discussed in this thesis.
引文
1.黄章勇编著,光纤通信用新型光无源器件,北京邮电大学出版社,2003
    2. Kurt E.Petersen, Silicon as a mechanical material, Proceeding of The IEEE, 1982(70): 420-457.
    3. Gregory T.A.Kovacs, Nadim I.Maluf, and Kurt E.Peterson, Bulk micromachining of silicon, Proceedings of The IEEE, 1998(86): 1536-1551.
    4. James <.Bustillo, Roger T.Howe, and Richard S.Muller, Surface micromachining for microelectromechanical systems, Proceedings of The IEEE, 1998(86): 1552-1574.
    5. David A.Koester, Ramaswamy Mahadevan, Alex Shishkoff, and Karen W.Markus, MUMPs Design Handbook, MEMS Technology Applications Center, MCNC, 1996
    6. L.S.Fan and Y.C.Tai, Pin joints, gears, springs, cranks and other novel micromechanical structures, Transducer'87, 1987 849-852.
    7. W.Kuehnel and S.Sherman, A surface micromachined siliconaccelerometer with on-chip detection circuitry, Sensors and Actuators A-Physical, 1994(45): 7-16.
    8. S.E.Miller, Integrated Optics: An introduction, Journal of Bell System Technology, 1969(48): 2059-2068.
    9. Ming C.Wu, Micromachining for Optical and Optoelectronic Systems, Proceeding of The IEEE, 1997(85): 1833-1856.
    10. Production of Texas Instruments.http://www.ti.com/, 2004
    11. Xiaohong Zhou, Jianguo Chen, and Yuchun Lu, Analytical characterization of grating-tuned external-cavity semiconductor lasers, Applied Optics, 1997(36): 4138-4141.
    12. Haiyin Sun, Steve Menhart, and Alois Adams, Calculation of spectral linewidth reduction of external-cavity strong-feedback semiconductor lasers, Applied Optics, 1994(33): 4771-4775.
    13. Hill, K. O. et al., Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication, Applied Physics Letters, 1978(32): 647-651.
    14. Hill K O and Meltz G., Fiber Bragg grating technology fundamentals and overview, Journal of Lightwave Technology, 1997(15): 1263-1274.
    15. Eggleton, B. J., Stephens, T., Krug, P. A., Dhosi, G., Brodzeli, Z., and Ouellette, F., Dispersion compensation using a fibre grating in transmission, Electronics Letters, 1996(32): 1610-1611.
    16. Reid, D. C. J., Ragdale, C. M., Bennion, I., Buus, J., and Stewart, W. J., Phase-shifted Moire grating fibre resonators, Electronics Letters, 1990(26): 10-12.
    17. Legoubin, S, Fertein, E, Douay, M., Bernage, P., Niay, P., Bayon, F., and Georges, T., Formation of moire grating in core of germanosilicate fibre by transverse holographic double exposure method, Electronics Letters, 1991(21): 1945-1947.
    18. Huishi Li and River Huang, The application and technical approaches of interleaver, proc.SPIE, 2001(4581): 79-87.
    19. Vengsarkar A M, Lemaire P J, Judkins J B, and et al, Long period fiber gratings as band-rejection filters, Journal of Lightwave Technology, 1996(14): 58-65.
    20. Yuzo Yoshikuni, Semiconductor Arrayed Waveguide Gratings for Photonic Integrated Devices, IEEE Journal of Selected Topics in Quantum Electronics, 2002(8): 1102-1114.
    21. L.Grave de Peralta, A.A.Bernussi, S.Frisbie, R.Gale, and H.Temkin, Reflective Arrayed Waveguide Grating Multiplexer, IEEE Photonics Technology Letters, 2003(15): 1398-1400.
    
    
    22. Mark G.Thompson, Dominic Brady, and Stephen W.Roberts, Chromatic Dispersion and Band shape Improvement of SOI Flat band AWG Multi/Demultiplexers by Phase error correction, IEEE Photonics Technology Letters, 2003(15): 924-926.
    23. N.Keil, H. H. Yao, C.Zawadzki, J.Bauer, M.Bauer, Dreyer, and J.Schneider, Athermal All-Polymer Arraryed-Waveguide Grating Multiplexer, Electronics Letters, 2001(37): 579-580.
    24. T.Yano and A.Watanabe, Acoustooptic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction, Applied Optics, 1976(15): 2250-2258.
    25. H.Gnewuch, N.K.Zayer, and P.G.R.Smith, Broadband monolithic acousto-optic tunable filter, Optics Letters, 2000(25): 305-307.
    26. W.Warzanskyj, F.Heismann, and and R.C.Alferness, Polarization-independent electro-optically tunable narrow-band wavelength filter, Applied Physics Letters, 1988(53): 13-15.
    27. D.A.Pinnow, R.L.Abrams, J.ELotspeich, D.M.Henderson, T.K.Plant, R.R.Stephens, and and C.M.Walker, An electro-optic tunable filter, Applied Physics Letters, 1979(34): 391-393.
    28. Seh-Won Ahn and Sang-Yung Shin, Grating-assisted codirectional coupler filter using electro-optic and passive polymer waveguides, Optics Communications, 2001(197): 289-293.
    29. Akhlesh Lakhtakia and Martin McCall, Sculptured thin films as ultranarrow-bandpass circular-polarization filters, Optics Communications, 1999(168): 457-465.
    30. G.H.Singh, V.K.Sharma, A.Kapoor, and K.N.Tripathi, Four layer polymeric mode polarization filter for integrated optics, Optics and Laser Technology, 2001(33): 455-459.
    31. J.Heppner and J.Kuhl, Intracavity chirp compensation in a colliding pulse mode-locked laser using thin-film interferometers, Applied Physics Letters, 1985(47): 453-455.
    32. Ch.Fabry and A.Perot, Sur les franges des lames minces argentees etleur application a la mesure de petites epasseurs d'air, Ann.Chim.Phys., 1897(12): 459-501
    33.赵凯华 钟锡华,光学,北京大学出版社,2001
    34. M.Born and E.Wolf, Principles of Optics(Cambridge), 1999
    35. B.Bates, J.K.Conway, G.R.Courts, C.D.Mckeith, and N.E.Mckeith, A stable, high finesse scanning Fabry-Perot interferometer with piezoelectric transducers, Journal of Physics E: Scientific Instruments, 1971(4): 899-901.
    36. Petuchowski, S., Giallorenzi, T., and Sheem, S., A sensitive fiber-optic Fabry-Perot Interferometer, IEEE Journal of Quantum Electronics, 1981(17): 2168-2170.
    37. J.Stone, Optical-fiber Fabry-Perot interferometer with finesse of 300, Electronics Letters, 1985(21): 504-505.
    38. J.Stone and L.W.Stulz, Pigtailed high-finesse tunable fibre Fabry-Perot interferometers with large, medium and small free spectral ranges, Electronics Letters, 1987(23): 781-783.
    39. J.Stone, L.W.Stulz, and A.A.M.Saleh, Three-mirror fibre Fabry-Perot filters of optimal design, Electronics Letters, 1990(26): 1073-1074.
    40. Stephen R.Mallinson, Wavelength-selective filters for single-mode fiber WDM systems using Fabry-Perot interferometers, Applied Optics, 1987(26): 430-436.
    41. http://www.micronoptics.com/, 2004
    42. Youngmin Kim and Dean P.Neikirk, Design for manufacture of micromachined Fabry-Perot cavity-based sensors, Sensors and Actuators A-Physical, 1995(50):
    
    141-146.
    43. Steven J.Walker and David J.Nagel, Optics and MEMS, Naval Reasearch Laboratory, 1999(NRL/MR/6336--99--7975)
    44. James D.Patterson, Micro-mechanical voltage tunable Fabry-Perot filters formed in(111) silicon, NASA Technical Paper, 1997(3702):
    45. S.R.Mallinson and J.J.Jerman, Miniature micromachined Fabry-Perot interferometers in silicon, Electronics Letters, 1987(23): 1041-1043.
    46. J.J.Jerman, D.J.Clift, and S.R.Mallinson, A mininature Fabry-Perot interferometer with a corrugated silicon diaphragm support, Sensors and Actuators A-Physical, 1991(29): 151-158.
    47. S.Kurth, K.Hiller, N.Neumann, M.Heinze, W.Dotzel, and T.Gessner, Tunable Fabry-Perot-Interferometer for 3-4.5 um wavelength with bulk micromachined reflector carrier, Saxony State Ministry Annual Report 2002, 62-65.
    48. M.Bartek, J.H.Correia, and R.F.Wolffenbuttel, Silver-based reflective coatings for micromachined optical filters, Journal of Micromechanics and Microengineering, 1999(9): 162-165.
    49. J.H.Correia, M.Bartek, and R.F.Wolffenbuttel, Bulk-micromachined tunable Fabry-Perot microinterferometer for the visible spectral range, Sensors and Actuators A-Physical, 1999(76): 191-196.
    50. A.T.T.D.Tran, Y.H.Lo, Z.H.Zhu, D.Haronian, and E.Mozdy, Surface Micromachined Fabry-Perot Tunable Filter, IEEE Photonics Technology Letters, 1996(8): 393-395.
    51. C.K.Madsen, J.A.Walker, J.E.Ford, K.W.Goossen, T.N.Nielsen, and G.Lenz, A tunable dispersion compensating MEMS all-pass filter, IEEE Photonics Technology Letters, 2000(12): 651-653.
    52. W.T.Lin, J.C.Chiou, and Bruce C.S.Chou, A photonic device compatible process in fabricating tunable Fabry-Perot filter, Optics Communications, 2002(210): 149-154.
    53. James A.Walker, Keith W.Goossen, and Susanne C.Arney, Fabrication of a mechanical antireflection switch for fiber-to-the-home systems, Journal of Microelectromechanical Systems, 1996(5): 45-51.
    54. A.Spisser, R.Ledantec, C.Seassal, J.L.Leclercq, T.Benyattou, D.Rondi, R.Blondeau, G.Guillot, and Viktorovitch, Highly Selective and Widely Tunable 1.55-m InP/ Air-Gap Micromachined Fabry-Perot Filter for Optical Communications, IEEE Photonics Technology Letters, 1998(10): 1259-1261.
    55. M.Strassner, C.Luber, A.Tarraf, and N.Chitica, Widely tunable-constant bandwidth monolithic Fabry-Perot filter with a stable cavity design dor WDM systems, IEEE Photonics Technology Letters, 2002(14): 1548-1550.
    56. J.Daleiden, V.Rangelov, S.Irmer, F.Romer, M.Strassner, C.Prott, A.Tarraf, and H.Hillmer, Record tuning range of InP-based multiple air-gap MOEMS filter, Electronics Letters, 2002(38): 1270-1271.
    57. M.S.Wu, G.S.Li, w.Yuen, and C.J.Chang-Hasnain, Widely tunable 1.5um micromechanical optical filter using AlOx/AlGaAs DBR, Electronics Letters, 1997(33): 1702-1704.
    58. Carlos F.R.Mateus, Chih-Hao Chang, Lukas Chrostowski, Stenven Yang, Decai Sun, Rajiv Pathak, and Connie J.Chang-Hasnain, Widely tunable torsional optical filter, IEEE Photonics Technology Letters, 2002(14): 819-821.
    59. M.Aziz, J.Pfeiffer, M.Wohlfarth, C.Luber, S.Wu, and P.Meissner, A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems, IEEE Photonics Technology Letters, 2000(12): 1522-1524.
    
    
    60. P.Tayebati, P.Wang, M.Azimi, L.Maflah, and D.Vakhshoori, Microelectromechanical tunable filter with stable half symmetric cavity, Electronics Letters, 1998(34): 1967-1969.
    61. P.Meissner, M.Aziz, H.Halbritter, and F. Riemenschneider, Micromachined two-chip WDM filters with stable half symmetric cavity and their system integration, IEEE Electronic Components and Technology Conference, 2002 34-41.
    62. Parviz Tayebati, Peidong Wang, Daryoosh Vakhshoori, Chih-Cheng Lu, Masud Azimi, and Robert N.Sacks, Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode, IEEE Photonics Technology Letters, 1998(10): 1679-1681.
    63. Dong-Yiel Song and Jae-Seung Lee, Angle-tuned Fabry-Perot etalon filter having Gaussian transmittance curves, IEEE Photonics Technology Letters, 2000(12): 1186-1188.
    64. L.Y.Lin, J.L.Shen, S.S.Lee, M.C.Wu, and A.M.Sergent, Tunable Three-Dimensional Solid Fabry-Perot Etalons Fabricated by Surface-Micromachining, IEEE Photonics Technology Letters, 1996(8): 101-103.
    65. Sung-Sik Yun and Jong-Hyun Lee, A micromachined in-plane tunable optical filter using the thermo-otics effect of crystalline silicon, Journal of Micromechanics and Microengineering, 2003(13): 721-725.
    66. C.S.Smith, Piezoresistance effect in germanium and silicon, Physical Review, 1954(94): 42-49.
    67. A.D.Kurtz, http://www.kulite.com/techsensor.asp, 2004
    68. R.A.Wolthuis, G.L.Mitchell, E.Saaski, J.C.Hartl, and M.A.Afromowitz, Development of medical pressure and temperature sensors employing optical spectrum modulation, IEEE Transactions Biomedical Enginddring, 1991(38): 974-980.
    69. B.Halg, A silicon pressure sensor with a low-cost contactless interferometric optical readout, Sensors and Actuators A-Physical, 1992(30): 225-229.
    70. Youngmin Kim and D.P.Neikirk, Micromachined Fabry-Perot Cavity Pressure Transducer, IEEE Photonics Technology Letters, 1995(7): 1471-1473.
    71. Don C Abeysinghe, Samhita Dasgupta, Howard E Jackson, and Joseph T Boyd, Novel MEMS pressure and temperature sensors fabricated on optical fibers, Journal of Micromechanics and Microengineering, 2002(12): 229-235.
    72. M.F.Miller, M.G.Allen, E.Arkilic, K.S.Breuer, and M.A.Schmidt, Fabry-Perot pressure sensor arrays for imaging surface pressure distributions, Transducer'97, 1997
    73. Wolfgang Kuehnel and Steven Sherman, A surface micromachined silicon accelerometer with on-chip detection circuitry, Sensors and Actuators A-Physical, 1994(45): 7-16.
    74. Gerold Schrepfer, Wilhelm Elfein, Michel de Labachelerie, Henri Porte, and Sylvain Ballandras, Lateral optical accelerometer micromachined in(100) silicon with remote readout based on coherece modulation, Sensors and Actuators A-Physical, 1998(58): 344-349.
    75. F.Rosenberger Ⅲ, D.Schreiber, and D.De Voe, Micromachined Fabry-Perot Interferometers for Demodulation of Fiber Optic Sensors, Proc.Society of Experimental Mechanics: Mechanics and Measurement Symposium, Portland WA, June, 2001
    76. http://www.vaisala.com/, 2004
    77. H.Alause, F.Grasdepot, J.P.Malzac, W.Knap, and J.Hermann, Micromachined optical tunable filter for domestic gas sensors, Sensors and Actuators B-Chemical,
    
    1997(43): 18-23.
    78. C.J.Oton, L.Pancheri, Z.Gaburro, L.Pavesi, C.Baratto, G.Faglia, and G.Sberveglieri, Multiparametric porous silicon gas sensors with improved quality and sensitivity, Physica Status Solidi(a), 2003(197): 523-527.
    79. P.Bondavalli, T.Benyattou, M.Garrigues, Jean Louis Leclercq, S.Jourba, C.Pautet, and X.Hugon, Opto-mechanical design of tuneable InP-based Fabry-Perot filter for gas analysis, Sensors and Actuators A-Physical, 2001(94): 136-141.
    80. J.Han, D.P.Neikirk, M.Clevenger, and J.T.Mcdevitt, Fabrication and characterization of a Fabry-Perot based chemical sensor, proc.SPIE, 1996(2881): 171-178.
    81. Carlos Calaza, L.Fonseca, M.Moreno, S.Marco, C.Cane, and I.Gracia, A surface micromachining process for the development of a medium infrared tunable Fabry-Perot interferometer, www.eurosensors.cz/fulltexts/Calaza.pdf, 2001
    82. http://www.fiso.com, 2004
    83. Nadim Maluf, An introduction to microelectromechanical system engineering, Artech house Boston London, 1999
    84. R.Amantes, C.M.Knoedler, F.P.Pantuso, V.K.Patel, D.J.Sauer, and J.R.Tower, An uncooled IR imager with 5mK NEDT, proceedings of SPIE, 1997(3061): 210-222.
    85. D.T.Chang, D.M.Chen, F.H.Lin, W.J.Kaiser, and O.M.Stafsudd, CMOS integrated infrared sensors, Transducer'97, 1997(2): 1259-1262.
    86. Manalis S R, Minne S C, and Quate C F, Two-dimensional micromechanical bimorph arrays for detection of thermal radiation, Applied Physics Letters, 1997(70): 3311-3313.
    87.冯飞,焦继伟,熊斌,王跃林,一种新颖的基于MEMS技术的光读出热成像系统性能分析与制作,红外与毫米波学报,2004(23):125-130.
    88.林永昌 卢维强 编著,光学薄膜理论,国防工业出版社,1990
    89. Sung-Hak Cho, Isao Yokota, and Minoru Obara, Free spectral range variation of a broadband, high-finesse multi-channel Fabry-Perot filter using chirped fiber bragg gratings, Japanese Journal of Applied Physics, 1997(36, part 1): 6383-6387.
    90. Katherine Kerner, Simon M.Rochester, Valeriy V.Yashchuk, and D.Budker, Variable free spectral range spherical mirror Fabry-Perot interferometer, arXiv: physics/0306144v1, 2003
    91. N.K.Reay, J.Ring, and R.J.Scaddan, A tunable Fabry-Perot filter for the visible, Journal of Physics E: Scientific Instruments, 1974(7): 673-677.
    92. Chandracekhar Roychoudhuri and Michael Hercher, Stable multipass Fabry-Perot interferometer: design and analysis, Applied Optics, 1977(16): 2514-2520.
    93. Jack A.Mckay, Single and tandem Fabry-Perot etalons as solar background filters for lidar, Applied Optics, 1999(38): 5851-5858.
    94. P. D.Atherton, N.K.Reay, and J.Ring, Tunable Fabry-Perot filters, Optical Engineering, 1981(20): 806-813.
    95.张福学主编,现代压电学,北京科学出版社,2001
    96. Juan W H and Pang S W, Controlling sidewall smoothness for micromachined Si mirrors and lenses, Journal of Vaccum Science Technology B, 1998(14): 4080-4084.
    97. K.K.Lee, D.R.Lim, and L.C.Kimerling, Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction, Optics Letters, 2001(26): 1888-1890.
    98. R.B.Marcus, T.S.Ravi, T.Gmitter, K.Chin, Dliu, W..J.Orvis, D.R.Ciarlo, C.E.Hunt, and J.Trujillo, Formation of silicon tips with <1 nm radius, Applied Physics Letters, 1990(56): 236-238.
    
    
    99. Production of Epoxy Technology.http://www.epotek.com/, 2004
    100. Min Xiang, Yanmin Cai, Yarning Wu, Jianyi Yang, and Yuelin Wang, Fabrication and analysis of a Fabry-Perot cavity with a micromechanical wet-etching process, Applied Optics, 2004(43): 3258-3262.
    101. M.Xiang, Y.M.Cai, Y.M.Wu, J.Y.Yang, and Y.L.Yang, Experimental study of the free spectral range(FSR) in FPI with a small plate gap, Optics Express, 2003(11): 3147-3152.
    102. John O.Brland, Advanced dielectric isolation through selective epitaxial growth techniques, Solid State Technology, 1985 141-148.
    103. John Borland, Mehboob Gangani, Rick Wise, Steven Fong, Yoshio Oka, and Yasuhiko Matsumoto, Silicon epitaxial growth for advanced device structures, Solid State Technology, 1988 111-119.
    104. J.W.Osenbach, D.G.Schimmel, A.Feygenson, J.J.Bastek, J.C.C.Tsai, H.C.Praefcke, and E.W.Bonato, Selective epitaxial growth of silicon, Journal of Materials Reasearch, 1991(6): 2318-2323.
    105. R.Bashir, G.W.Neudeck, Y.Haw, E.P.Kvam, and J.P.Denton, Characterization of sidewall defects in selective epitaxial growth of silicon, Journal of Vaccum Science Technology B, 1995(13): 923-926.
    106. Sangwoo Pae, Taichi Su, John P.Denton, and Gerold W.Neudeck, Multiple Layers of Silicon-on-Insulator Islands Fabrication by Selective Epitaxial Growth, IEEE Electron Device Letters, 1996(20): 194-196.
    107. M.Bartek, Selective epitaxial growth for smart silicon sensor applications, Delft University Press, 1995
    108.黄庆安编著,硅微机械加工技术,科学出版社,1996
    109.李昕欣,硅多层微机械结构的无掩模腐蚀技术和硅微机械振动式陀螺的研究,复旦大学博士学位论文,1997
    110. Said F.Al-sarawi, Derek Abbott, and Paul D.Franzon, A review of 3-D packaging technology, IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part B, 1998(21): 2-14.
    111. Eugene M.Chow, Venkataraman Chandrasekaran, Aaron Partridge, Toshikazu Nishida, Mark Sheplak, Calvin F.Quate, and Thomas W.Kenny, Process compatible polysilicon-based electrical through-wafer interconnects in silicon substrates, Journal of Microelectromechanical Systems, 2002(11): 631-640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700