急性脑梗死血小板高尔基体变化及sCD40L对脑缺血损伤作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分急性脑梗死血小板高尔基体形态变化及其意义
     背景:
     脑梗死是严重危害人类健康和生命的常见疾病之一。然而,脑梗死的病理生理机制极为复杂。目前普遍认为,血小板活化是脑梗死发生的重要因素之一。已有大量研究发现,在梗死形成的整个过程中,血小板的粘附性和聚集性增加,并且能合成和释放多种促炎症因子。短暂性全脑缺血可引起血小板活化和脑内血小板聚集,而急性脑梗死患者血小板形态结构则发生明显改变。
     高尔基体是与血小板合成和分泌功能有关的重要细胞器,是细胞分泌通路的中心环节,在物质的合成和转运方面发挥重要作用。本课题组前期研究发现,短暂性脑缺血后神经细胞高尔基体发生了明显的形态变化。有研究发现血小板无力症患者的血小板高尔基体形态和数量发生了明显的改变。
     研究发现,糖尿病、高血压、高同型半胱氨酸血症等病人血清sCD40L水平增高,上述均为脑梗死常见危险因素。正常血小板胞浆内存在合成的CD40L,当血小板活化后由胞内转移至胞膜,在此分裂为可溶性片段释放,而sCD40L与膜结合性CD40L具有相同生物学效应。血中sCD40L约95%来自活化血小板,但目前CD40L由血小板内转移至胞膜并释放的具体途径还不清楚。
     目的:
     探讨急性脑梗死后血小板高尔基体的形态变化及其意义,以及高尔基体对血小板表达CD40L的作用。
     方法:
     1、选取20例急性脑梗死患者,分别在发病后第1、7、15天,各采集清晨空腹周围静脉血5ml,收集血小板,选取20位正常成人清晨空腹周围静脉血作对照。通过电镜对血小板超微结构、高尔基体等进行观察。通过免疫电镜的方法,用TGN46作为标记物对高尔基体进行定位观察。各组标本在放大15000倍视野下随机选取10个血小板,对10个血小板内的α颗粒总数进行计数并统计分析。
     2、通过流式细胞术测量正常血小板在(静息、活化、先阻断高尔基体功能再活化)三种状态下的CD40L阳性表达率的变化(n=20)。
     结果:
     1、急性脑梗死后,各时间点血小板内α颗粒均明显减少(P<0.05),以第1天减少较为明显;
     2、急性脑梗死后,血小板高尔基体小管和囊泡排列不规整、明显增粗、膨大;
     3、免疫电镜试验发现脑梗死后,有α颗粒聚集分布在高尔基体小管和囊泡附近的现象,在发病后15天仍可见到上述变化;
     4、高尔基体功能被阻断后,活化血小板表达CD40L明显减少(P<0.05)。
     结论:
     1急性脑梗死后血小板高尔基体发生明显的形态变化;
     2高尔基体的结构改变可能与血小板活化后合成和分泌功能增强有关;
     3高尔基体与血小板CD40L的表达有关。
     第二部分sCD40L对脑缺血损伤作用的研究
     背景:
     脑梗死发病率、致残率及病死率均较高,病因复杂。吸烟,高血压、冠心病、高半胱氨酸血症、高脂血症均为脑梗死常见的危险因素,上述患者血中sCD40L明显增高。单纯颈动脉狭窄者血清sCD40L水平也高于正常对照。因此,有学者认为sCD40L可作为预测脑梗死的生物学指标,sCD40L升高与心脑血管疾病发生有关。
     sCD40L是CD40L的可溶性形式。sCD40L可与三种受体结合:CD40、α5β1和αⅡbβ3,三者均可表达于血小板。CD40则主要表达于B细胞、活化T细胞、树突状细胞、内皮细胞、单核细胞/巨噬细胞以及中枢神经系统内多种细胞。sCD40L与CD40相互作用不但使脉管系统内产生ROS引起氧化应激,还能诱导人类血管内皮细胞表达粘附分子,并刺激释放趋化因子和细胞因子,上述分子参与动脉粥样硬化斑块的形成。SCD40L与α5β1和αⅡbβ3结合诱导血小板活化。
     脑梗死发生后,血脑屏障破坏、白细胞浸润和小胶质细胞增殖活化是导致缺血性脑损伤的主要病理变化。活化的小胶质细胞CD40表达增加,体外研究发现CD40L与CD40相互作用可促进小胶质细胞活化,sCD40L水平升高是否加剧急性脑缺血后神经损伤,目前尚无此方面的研究。
     目的:
     研究sCD40L对脑缺血损伤的作用,探讨其可能的机制。
     方法:
     健康雄性SD大鼠(132只)随机分为6个试验组[假手术对照组、术后1d组、术后3d组、术后给药3d组(低剂量rsCD40L)、术后给药3d组(高剂量rsCD40L)、术后5d组](n=22)。参照文献,通过夹闭双侧颈总动脉和低血压的方法制作大鼠急性全脑缺血模型。两个给药组分别在术后第1、2天每日经尾静脉注射rsCD40L一次,参考有关文献,按lμg/kg(低剂量)和l0μg/kg(高剂量)给药,第3天取材。
     假手术组于术后第一天处死,其余各组分别于第1d、3d、5d处死,每组大鼠中取4只用于HE染色和免疫组化及免疫荧光实验、6只用于脑组织含水量测定、6只用于血脑屏障通透性检测(在取材前2小时经尾静脉注射伊文斯蓝溶液,取材后检测脑组织中伊文斯蓝含量)、6只用于Western blot检测CD40.ClqA和NF-K Bp65在脑组织的表达情况。术中、术后死亡的动物从试验中剔除,做相应补充。
     结果:
     1 HE染色观察:
     假手术组大脑皮层组织形态结构基本正常。脑缺血后1天组可见部分神经元轻度水肿、胶质细胞增生;3天组可见大量神经元存在核仁不清以及染色质边集的现象、并可见胶质细胞增生:5天组神经胶质细胞增生较明显明显,有嗜神经元现象。给药组可见胶质细胞有所增加、嗜神经元现象增多,以高剂量组改变较为明显。
     2脑含水量和血脑屏障通透性结果:
     急性脑缺血后脑含水量明显高于假手术组(p<0.05),伊文斯蓝含量也明显高于假手术组(p<0.05),rsCD40L给药组脑含水量和伊文斯蓝含量都显著高于假手术组(p<0.05),高剂量组明显高于低剂量组(p<0.05)。
     3免疫组化和免疫荧光:
     CD40主要表达于细胞膜,假手术组有少量阳性表达,脑缺血后阳性细胞增多,1天组可见阳性表达最多,5天组有所减少,3天低剂量组阳性表达多于3天组和5天组,3天高剂量组阳性表达明显多于其它各组。ClqA则表达于细胞浆,假手术组只有极少数阳性细胞,1天组表达增多。3天组较1天组表达有所增加,可见内皮细胞也有阳性表达。5天组与1天组表达较少。给药组ClqA阳性细胞明显增加,以高剂量组ClqA阳性细胞表达最多。NF-K Bp65免疫荧光发现,假手术组阳性表达细胞较少,1天组和3天组阳性细胞明显增多,5天组有所减少。给药组表达增加明显,可见NF-KBp65在胞浆和胞核都有表达,高剂量组胞核表达增多。
     4 Western blot检测脑组织CD40.ClqA.NF-k Bp65蛋白的表达结果:
     在假手术组中CD40少量表达、ClqA.NF-k Bp65有微量表达,1天组3天组和5天组CD40.C1 qA.NF-k Bp65表达均有所增加(p<0.05),CD40和NF-k Bp65表达在第1天时较为明显,3天和5天时二者表达有所减少1天时C1qA表达明显少于CD40和NF-k Bp65表达,在3天时C1qA表达最为显著,表达高峰迟于CD40和NF-k Bp65表达高峰。在给药组中,高剂量组比低剂量组的表达均有显著增加(p<0.05)。
     结论:
     1脑缺血后sCD40L加剧脑缺血损伤;
     2急性脑缺血后CD40.ClqA.NF-K Bp65表达上调可能与sCD40L有关
Change of the Platelet Golgi Apparatus After Ischemic Stroke
     Background:
     Stroke, a brain attack, is the leading cause of disability and the third leading cause of death. Ischemic stroke is by far the most frequent type of stroke. Until now, platelet activation is thought to be a very important cause of the ischemic stroke. Studies showed that the conglutination and congregation of platelets increased significantly in the whole process of the infarction, the activated platelets synthesized and secreted multiple inflammatory factors. Transient ischemic induced platelet activation and platelet accumulation in the brain microvessels. Blood Platelet structure changed in the patients with stroke acute cerebrovascular infarction.
     Golgi complex is an important organ of platelet, for its key role in synthesizing, secretion, and transportation. In our early research, we have found that the structure of neuron golgi complex changed during brain ischemia.
     CD40L was transferred onto the membrane after platelet was activated, and then CD40L clipped into sCD40L. After acute ischemia, plasma sCD40L increased significantly. Platelet activation existed in the patients of diabetes, hypertension and Homocysteine(Hcy)with increased sCD40L expression. Almost 95% of sCD40L were from platelets in blood. Until now, the exact way of the CD40L transportation and secretion is not clear.
     Purpose:
     The aim of this study was to evaluate the structural change of the platelet Golgi apparatus after stroke, and to investigate the potential role of the Golgi apparatus in the expression of platelet CD40L
     Methods:
     Platelets of 20 patients were observed by electron microscopy and Immuno-electron microscopy with the platelets of 20 healthy volunteers as control. Suspensions of platelets got from 20 healthy volunteers were used to evaluated the role of the Golgi apparatus in the expression of CD40L on platelets by flow cytometry. The expression of CD40L on the activated platelets was observed after the Golgi apparatus was interdicted by the Brefeldin A(BFA) compared with normal platelets and the platelets activated by ADP.
     Results:
     The Golgi apparatus changed obviously after stroke, the main change was the increasing and widening of the Golgi vesicles and stacks, and there were some a granules around them.αgranules in platelet decreased significantly after stroke(P<0.05). The change remained obviously until the 15th day after stroke. The expression of CD40L on the activated platelets increased significantly compared with normal platelets(P<0.05). Compared with the platelets activated by ADP, the CD40L expression decreased on the platelets which the Golgi apparatus were interdicted by Brefeldin A before activated by ADP(P<0.05).
     Conclusions:
     The Golgi apparatus may play an important role in the pathophysiology of stroke. The Golgi apparatus may be a potential target for inhibition of CD40L synthesis and transfer in platelet.
     The Effect of sCD40L on the Brain ischemic injury
     Background:
     After acute ischemic stroke, plasma sCD40L increased significantly. Platelet activation exist in patients of diabetes, hypertension, Homocysteine, and sCD40L increased in these patients.95 percent of sCD40L were from platelets in blood. sCD40L is now thought to be a marker to evaluate the severity of stroke. sCD40L increasing is related with the brain vascular disease.
     SCD40L is soluble form of the CD40L. sCD40L can bind to three receptors(CD40,α5β1 and aⅡbβ3). All of the three receptors expressed on the platelet. CD40 expressed on B cells, activated T cells, DC, endothelium, monocyte, platelet and also expressed on many kinds of cells in CNS.
     Breakage of BBB, leucocyte infiltration and microglia activation are main pathology changes after the onset of stroke. CD40 on the Activated microglia increased. sCD40L can activate microglia. There is no report on the relation of the sCD40L and brain ischemic injury so far.
     Purpose:
     Study the role of sCD40L in the brain ischemic injury. Investigate the potential mechanisms of sCD40L on the brain ischemic injury.
     Methods:
     132 SD rats were divided into 6 groups randomly which are control group. 1st day group,3th day group,5th day group, low dose rsCD40L group and high dose rsCD40L group. The control group were executed after one day. the rest groups were executed on the 1st.3th,5th day respectively. The methods of HE stain, immunochemistry, immunofluorescence, and western blot were put in use to observe the expression of the CD40, ClqA, NF-K Bp65 in the brain tissue after ischemia. The brain water content and the EB content in the brain tissue were also observed.
     Results:
     1 HE
     The brain tissues are actually normal in the control group. The neuron death and microglia activation can be observed in the brain ischemic groups. These changes also exist in the 5th day group. The neuron death and microglia activation increased in the rsCD40L groups.
     2 Brain water content and EB content
     The brain water content and the EB content in the brain tissue increased significantly in the brain ischemic groups compared to the control group(p<0.05). Compared to the brain ischemic groups, a significant increase can also be observed in rsCD40L groups (p<0.05).
     3 Immunochemistry and immunofluorescence
     CD40 expressed on the membrane, ClqA expressed in the cytoplasm and the NF-kBp65 were observed both in the cytoplasm and nuclear. The expression of the three increased after brain ischemia.
     4 Western blot
     CD40, ClqA and NF-kBp65 expressed less in brain tissue, while increased at the 1,3,5 day(p<0.05)after brain ischemia. CD40 and NF-xBp65 increased significantly after brain ischemia(p<0.05). ClqA expression significantly increased at 3th day compare to other groups. All the three increased significantly in the high dose rsCD40L group compared to the low dose group (p<0.05).
     Conclusions:
     1 sCD40L strengthen the brain ischemic injury.
     2 sCD40L may strengthen the brain ischemic injury via the activation of the complement and increasing of the inflammation in the ischemic brain tissue.
引文
1 Marguerite T, Littleton-Kearney Patricia D, Hum Thomas S, Kickler and Richard J. Traystman Incomplete global cerebral ischemia alters platelet biology in neonatal and adult sheep. Am J Physiol Heart Circ Physiol,1998,274: 1293-1300.
    2 Joseph R, Riddle JM, Welch KM. Platelet ultrastructure and secretion in acute ischemic stroke. Stroke,1989,20:1316.
    3薛慎伍,郭述苏,张福州.急性脑卒中患者血小板超微结构的观察.中华神经科杂志,1996,29:45.
    4 Lippincott-Schwartz J, Roberts TH, Hirschberg K. Secretory protein trafficking and organelle dynamics in living cells. Annu Rev Cell Dev Biol,2000,16: 557-589.
    5 Pelham HR. Traffic through the Golgi apparatus. J Cell Biol,2001,155: 1099-1101.
    6 Zhiping Hu, Liuwang Zeng, Lesi Xie, Wei Lu, Jie Zhang, Ting Li, Xiang Wang. Morphological Alteration of Golgi Apparatus and Subcellular Compartmentalization of TGF-bl in Golgi Apparatus in Gerbils Following Transient Forebrain Ischemia. Neurochem Res DOI 10.1007/s 11064-007-9382-1.
    7 White JG. Golgi complexes in hypogranular platelet syndromes. Platelets, 2005,16:51-60.
    8 Patrick Andre PhD, Lisa Nannizzi-Alaimo BS, Srinivasa K, Prasad PhD, David R, Phillips PhD. Platelet-derived CD40L:the switch-hitting player of cardiovascular disease. Circulation,2002,106:896.
    9各类脑血管疾病诊断要点.中华神经科杂志,1996,29:379.
    10 Harrison P, Cramer EM. Platelet alpha-granules. Blood Rev,1993,3:52-62
    11 Corash L. Inactivation of viruses, bacteria, protozoa and leukocytes in platelet concent rates. Vox Sang,1998,74:173.
    12 Jose Rivera, Maria L, Lozano MD, Javier Corral dela Calle PhD, Jerome Connor PhD, Rocio Gonzalez-Conejero PhD, Francisca Ferrer MD, Laura Currie PhD, Vicente Vicente Garcia MD, PhD, Professor. Quality assessment of platelet concent rates supplemented with second messenger effectors. Transfusion,1999, 39:135.
    13 Lindemann S, Tolley ND, Eyre JR, Kraiss LW, Mahoney TM, Weyrich AS. Integrins regulate the intracellular distribution of eukaryotic initiation factor 4E in platelets. A checkpoint for translational control. J Biol Chem,2001,276: 3947-3951.
    14 Pabla R, Weyrich AS, Dixon DA, Bray PF, Mclntyre TM, Prescott SM, Zimmerman GA. Integrin-dependent control of translation:engagement of integrin alphallbbeta3 regulates synthesis of proteins in activated human platelets. J Cell Biol,1999,144:175-184.
    15 Weyrich AS, Dixon DA, Pabla R, Elstad MR, Mclntyre TM, Prescott SM, Zimmerman GA. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci USA,1998,95:5556-5561.
    16 Stephan Lindemann, Neal D. Tolley Dan A, Dixon Thomas M, McIntyre Stephen M, Prescott Guy A, Zimmerman. Andrew S, Weyrich. Activated platelets mediate inflammatory signaling by regulated interleukin 1 beta synthesis. J Cell Biol,2001,154:485-490.
    17 Henn V, Steinbach S, Buchner K, Presek P, Kroczek RA. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood,2001,98:1047-1054.
    18 Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, Phillips DR, Wagner DD. CD40L stabilizes arterial thrombi by a beta3 integrin-dependent mechanism. Nature Med,2002,8:247-252.
    19 Urbich C, Dernbach E, Aicher A, Zeiher AM, Dimmeler S. CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation,2002,106:981-986.
    20 Michelson AD, Ellis PA, Barnard MR, Matic GB, Viles AF, Kestin AS. Downregulation of the platelet surface glycoprotein Ib-IX complex in whole blood stimulated by thrombin, ADP or an in vivo wound. Blood,1991,77:770-9.
    21 Aukrust P, Miiller F, Ueland T, Berget T, Aaser E, Brunsvig A, Solum NO, Forfang K, Fr(?)land SS, Gullestad L. Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina:possible reflection of T lymphocyte and platelet involvement in the pathogenesis of acute coronary syndromes. Circulation,1999,100:614-620.
    22 Jin Y, Nonoyama S, Morio T, Imai K, Ochs HD, Mizutani S. Characterization of soluble CD40 ligand released from human activated platelets. J Med Dent Sci, 2001,48:23-27.
    23 Nannizzi-Alaimo L, Alves VL, Phillips DR. Inhibitory effects of glycoprotein Hb/IIIa antagonists and aspirin on the release of soluble CD40 ligand during platelet stimulation. Circulation,2003,107:1123-1128.
    24 Henn V, Slupsky JR, Grafe M, Anagnostopoulos Ⅰ, Forster R, Miiller-Berghaus G, Kroczek RA. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature,1998,391:591-594.
    25 Mark Ⅰ. Furman, MD, FACC, Lori A. Krueger, BA, MLT, ART, Matthew D. Linden, PHD, Marc R. Barnard, MS, Andrew L. Frelinger Ⅲ, PHD, Alan D. Michelson, MD Release of Soluble CD40L From Platelets Is Regulated by Glycoprotein Ⅱb/Ⅲa and Actin Polymerization Journal of the American College of Cardiology,2004,43:12.
    26 Lemesle G, Delhaye C, Sudre A, et al. Impact of high loading and maintenance dose of clopidogrel within the first 15 days after percutaneous coronary intervention on patient outcome. Am Heart J,2009,157 (2):375-382.
    27 Joseph R, D'Andrea G. Oster SB, Welch KMA:Whole blood platelet function in acute ischemic stroke. Importance of dense body secretion and effects of antithrombotic agents. Stroke,1989,20:38-44.
    28 Harding SA. Sarma J, Josephs DH, Cruden NL, Din JN, Twomey PJ. Fox KA, Newby DE. Upregulation of the CD40/CD40 ligand dyad and platelet-monocyte aggregation in cigarette smokers. Circulation,2004,109:1926-1929.
    29 Ferroni P, Guadagni F. Soluble CD40L and its role in essential hypertension: diagnostic and therapeutic implications. Cardiovasc Hematol Disord Drug Targets,2008,8:194-202.
    30 Cesaria Prontera PhD, Nicola Martelli Tech, Virgilio Evangelista MD, Etrusca D'Urbano Tech, Stefano Manarini Tech, Antonio Recchiuti PhD, Alfredo Dragani MD, Cecilia Passeri MD, Giovanni Davi MD. Homocysteine Modulates the CD40/CD40L System. Journal of the American College of Cardiology,2007,2182-2190.
    31 Martino F, Pignatelli P, Martino E, Morrone F, Carnevale R, Di Santo S, Buchetti B, Loffredo L, Violi F. Early increase of oxidative stress and soluble CD40L in children with hypercholesterolemia. J Am Coll Cardiol,2007,49: 1974-1981.
    32 Linden MD, Furman Ml, Frelinger AL 3rd. Indices of platelet aetivation and the stability of coronary artery disease. J Thromb Haemost,2007,5:761-765.
    33 lobbes MB, Lutgens E and Heeneman S, etal. is there more than C-reaetive Protein and fibrinogen? The Prognostic value of soluble CD40 ligand. interleukin-6 and oxidized low-density lipoprotein with respect to coronary and cerebral vaseular disease. Atherosclerosis,2006,187:18-25.
    34 Armitage, R.J. Fanslow WC, Strockbine L, Sato TA, Clifford KN. Molecular and biological characterization of a murine ligand for CD40. Nature,1992,357: 80-82.
    35 Armitage, R.J. Sato TA, Macduff BM, Clifford KN, Alpert AR, Smith CA. Identification of a source of biologically active CD40 ligand. Eur. J Immunol, 1992,22:2071-2076.
    36 Gauchat JF, Henchoz S, Mazzei G, Aubry JP, Brunner T. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature,1993,365: 340-343.
    37 Henn V, Slupsky JR, Grafe M, Anagnostopoulos L, Forster R, Muller-Berghaus G. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature,1998,391:591-594.
    38 Andre P, Nannizzi-ALaimo L, Prasad SK, Phillips DR. Platelet-derived CD40L:the switch-hitting player of cardiovascular disease. Circulation,2002, 106:896-899.
    39 Abdel-Haq N, Hao H N, Lyman W D, Cytokine regulation of CD40 expression in fetal human astrocyte cultures. J Neuroimmunol,1999,101: 7-14.
    40 Aloisi F, Penna G, Polazzi E, Minghetti L, Adorini L. CD40-CD154 interaction and IFN-gamma are required for IL-12 but not prostaglandin E2 secretion by microglia during antigen presentation to Thl cells. J Immunol,1999, 162:1384-1391.
    41 Jan Klohs, MSc Michael Gra"fe MD, Kristof Graf MD, Jens Steinbrink PhD, Thore Dietrich PhD, Dietger Stibenz PhD, Peyman Bahmani MS, Golo Kronenberg MD, Christoph Harms MD, Matthias Endres MD, Ute Lindauer DVM, Klaus Greger PhD, Ernst H.K, Stelzer PhD, Ulrich Dirnagl MD, Andreas Wunder PhD. In Vivo Imaging of the Inflammatory Receptor CD40 After Cerebral Ischemia Using a Fluorescent Antibody. Stroke,2008,39: 2845-2852.
    42 Garlichs CD, Kozina S, Fateh-Moghadam S, Handschu R, Tomandl B, Stumpf C. Upregulation of CD40-CD40 ligand (CD154) in patients with acute cerebral ischemia. Stroke,2003,34:1412-1418.
    43 Matyszak M K, S Denis-Donini, S Citterio, R Longhi, F Granucci, and P.Ricciardi-Castagnoli. Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation. Eur. J Immunol, 1999,29:3063-3076.
    44 Eugene D Ponomarev, Leah P Shriver and Bonnie N. Dittel CD40 Expression by Microglial Cells Is Required for Their Completion of a Two-Step Activation Process during Central Nervous System Autoimmune Inflammation. The Journal of Immunology,2006,176:1402-1410.
    45 Martin K-H Scha"fer, Wilhelm J Schwaeble. Claes Post, Patricia Salvati, Marcello Calabresi, Robert B. Sim, Franz Petry, Michael Loos, and Eberhard Weihe Complement Clq Is Dramatically Up-Regulated in Brain Microglia in Response to Transient Global Cerebral Ischemia. The Journal of Immunology, 2000,164:5446-5452.
    46 Schafer M K, W J Schwaeble, C Post, P Salvati, M Calabresi, R B Sim, F. Petry, M Loos, and E Weihe. Complement Clq is dramatically upregulated in brain microglia in response to transient global cerebral ischemia. J Immunol, 2000,164:5446.
    47 Van Beek, J P Chan, M Bernaudin, E Petit, E T MacKenzie, and M Fontaine. Glial responses, clusterin, and complement in permanent focal cerebral ischemia in the mouse. Glia,2000,31:39.
    48 Kossmann T, PF Stahel, M C Morganti-Kossmann, J L Jones, and S R Barnum. Elevated levels of the complement components C3 and factor B in ventricular cerebrospinal fluid of patients with traumatic brain injury. J Neuroimmunol,1997, 73:63.
    49 Stahel P F, M C Morganti-Kossmann, D Perez, C Redaelli, B Gloor, O Trentz, and T Kossmann. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood-brain barrier dysfunction in patients with traumatic brain injury. J Neurotrauma,2001,18:773.
    50 Weisman HF, Bartow T, Leppo MK, Marsh HCJ, Carson GR, Concino MF, Boyle MP, Roux KH, Weisfeldt ML, Fearon DT:Soluble human complement receptor type 1:in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science,1990,249:146-151.
    51 Weiser MR, Williams JP, Moore Jr FD, Kobzik L, Ma MH, Hechtman HB, Carroll MC:Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J Exp Med,1996,183:2343-2348.
    52 Williams JP, Pechet TT, Weiser MR, Reid R, Kobzik L, Moore Jr FD, Carroll MC, Hechtman HB:Intestinal reperfusion injury is mediated by IgM and complement. J Appl Physiol,1999,86:938-942.
    53 Huang J, Kim LJ, Mealey R, Marsh Jr HC, Zhang Y, Tenner AJ, Connolly Jr ES, Pinsky DJ:Neuronal protection in stroke by an sLexglycosylated complement inhibitory protein. Science,1999,285:595-599.
    54 Wada K, Montalto MC, Stahl GL:Inhibition of complement C5 reduces local and remote organ injury after intestinal ischemia/reperfusion in the rat. Gastroenterology,2001,120:126-133.
    55 Peerschke EI, Reid KB, Ghebrehiwet B. Platelet activation by clq results in the induction of alpha Ⅱb/beta 3 integrins (gpⅡb-Ⅲa) and the expression of P-selectin and procoagulant activity. J Exp Med,1993,178:579-587.
    56 Murphy HS, Shayman JA, Till GO, Mahrougui M, Owens CB, Ryan US, Ward PA. Superoxide responses of endothelial cells to C5a and TNFalpha: divergent signal transduction pathways. Am J Physiol,1992,263:51-59.
    57 J Mocco, William J. Mack, Andrew F. Ducruet, Sergei A. Sosunov, Michael E. Sughrue, Benjamin G. Hassid, M. Nathan Nair, Ilya Laufer, Ricardo J. Komotar, M. Claire H. Holland, David J. Pinsky, E. Sander Connolly Jr Complement Component C3 Mediates Inflammatory Injury Following Focal Cerebral Ischemia. Circ Res,2006,99:209-217.
    58 Kishore U, Reid KB. Clq:structure, function, and receptors. Immunopharmacology,2000,49:159-170.
    59 Eggleton P, Reid KB, Tenner AJ. Clq-how many functions? how many receptors? Trends Cell Biol,1998,8:428-431.
    60 Rocco H. van den Berg, Maria C. Faber-Krol, Robert B. Sim, and Mohamed R. Daha The First Subcomponent of Complement, Clq, Triggers the Production of IL-8, IL-6, and Monocyte Chemoattractant Peptide-1 by Human Umbilical Vein Endothelial Cells. The Journal of Immunology,1998,161:6924-6930.
    61 Paramita Baruah, Ingrid E. Dumitriu, Talat H. Malik, H. Terence Cook, Julian Dyson, Diane Scott, Elizabeth Simpson, and Marina Botto Clq enhances IFN-aproduction by antigen-specific T cells via the CD40 costimulatory pathway on dendritic cells. Blood,2009,113:3485-3493.
    62 Robert F. Schwabe, Bernd Schnabl, Young O. Kweon, and David A. Brenner CD40 Activates NF-kB and c-Jun N-Terminal Kinase and Enhances Chemokine Secretion on Activated Human Hepatic Stellate Cells. The Journal of Immunology,2001,166:6812-6819.
    63 Heehong Hwang, Shinrye Lee, Won-Ha Lee, Ho-Jae Lee, Kyoungho Suk Stimulation of glucocorticoid-induced tumor necrosis factor receptor family-related protein ligand (GITRL) induces inflammatory activation of microglia in culture. J Neurosci Res,2010,88:2188-2196.
    64 Domenico Ferro, Lorenzo Loffredo, Licia Polimeni, Filippo Fimognari, Paolo Villari, Pasquale Pignatelli, Valentin Fuster, Francesco Violi. Soluble CD40 Ligand Predicts Ischemic Stroke and Myocardial Infarction in Patients With Nonvalvular Atrial Fibrillation Arterioscler Thromb. Vasc Biol,2007,27: 2763-2768.
    65 Ginsberg MD, Busto R. Rodent models of cerebral ischemia [J]. Stroke,1989, 29:627-642.
    66 Hidenori Endo, Hiroshi Kamada, Chikako Nito. Mitochondrial Translocation of p53 Mediates Release of Cytochromec and Hippocampal CA1 Neuronal Death after Transient Global Cerebral Ischemia in Rats. Neurosci,2006,26:7974-7983.
    67 Yoshiyuki Matsuo, PhD; Shin-ichi Mihara, PhD; Mitsuyoshi Ninomiya, PhD Masafumi Fujimoto, PhD. Protective Effect of Endothelin Type A Receptor Antagonist on Brain Edema and Injury After Transient Middle Cerebral Artery Occlusion in Rats. Stroke,2001,32:2143-2148.
    68 Domenico Ferro, Lorenzo Loffredo, Licia Polimeni, Filippo Fimognari, Paolo Villari, Pasquale Pignatelli, Valentin Fuster, Francesco Violi. Soluble CD40 Ligand Predicts Ischemic Stroke and Myocardial Infarction in Patients With Nonvalvular Atrial Fibrillation. Arteriosclerosis, Thrombosis, and Vascular Biology,2007,27:2763.
    69 Amirkhosravi, M. Amaya, H. Desai and J. L. Francis Platelet-CD40 ligand interaction with melanoma cell and monocyte CD40 enhances cellular procoagulant activity. Blood Coagulation and Fibrinolysis,2002,13:505-512.
    70 Rong Jin, Guojun Yang, and Guohong Li. Inflammatory mechanisms in ischemic stroke:role of inflammatory cells. J Leukoc Biol,2010,87:779-789.
    71 Jan Klohs, MSc; Michael Grafe, MD; Kristof Graf, MD; Jens Steinbrink, PhD; Thore Dietrich, PhD; Dietger Stibenz, PhD. In Vivo Imaging of the Inflammatory Receptor CD40 After Cerebral Ischemia Using a Fluorescent Antibody. Stroke, 2008,39:2845-2852
    72 Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti M. T. Post-ischemic brain damage:pathophysiology and role of inflammatory mediators. FEBS,2009,276:13-26.
    73 Kriz, J. Inflammation in ischemic brain injury:timing is important. Crit. Rev. Neurobiol,2006,18:145-157.
    74 Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein E B, Kiefer R. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia:a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol,2003,183:25-33.
    75 Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T, Migita M, Shimada T, Mizuno Y, Urabe T. Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience,2003,117: 531-539.
    76 Lindsberg P. J, Carpe'n O, Paetau A, Karjalainen-Lindsberg M. L, Kaste M. Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation,1996,94:939-945.
    77 Gerhard A, Neumaier B, Elitok E, Glatting G, Ries V, Tomczak R, Ludolph A. C, Reske S. N. In vivo imaging of activated microglia using[11C]PK11195 and positron emission tomography in patients after ischemic stroke. Neuroreport, 2000,11:2957-2960.
    78 Price C J, Menon D K, Peters A M, Ballinger J R, Barber R W, Balan K K, Lynch A, Xuereb J H, Fryer T, Guadagno J V. Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke:an imaging-based study. Stroke, 2004,35:1659-1664.
    79 Buck B H, Liebeskind D S, Saver J L, Bang O Y, Yun S W, Starkman S, Ali L. K, Kim D, Villablanca J P, Salamon N, Razinia T, Ovbiagele B. Early neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke, 2008,39:355-360.
    80 Mach F, Shonbecku, Sukhova GK, Bourcier T, Bonnefo JY, Pober JS, Libby p. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages:implications for CD40-CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci. U. S. A,1997,94:1931-1936.
    81 Andre P, Nannizzi-Alaimo L, Prasad SK. Platelet-derived CD40L:the switch-hitting player of cardiovascular disease. Circulation,2002,106:896-899.
    82 Van Kooten C. Immune regulation by CD40-CD40L interactions-2; Y2K update. Front Biosci 5,2000,880-893.
    83 Aukrust P, Damas JK, Solum NO. Soluble CD40 ligand and platelets:self-perpetuating pathogenic loop in thrombosis and inflammation? JAm Coll Cardiol, 2004,43:2326-2328.
    84 Chung I, Choudhury A, Patel J, Lip GY. Soluble CD40L, platelet surface CD40L and total platelet CD40L in congestive heart failure:relationship to platelet volume, mass and granularity. J Intern Med,2008,263:313-321.
    85 Danese S, Scaldaferri F, Papa A, Pola R, Gasbarrini A. CD40L-positive platelets induce CD40L expression de novo in endothelial cells:adding a loop to microvascular inflammation. Arterioscler Thromb Vase Biol,2004,24:162.
    86 Hammwohner M, Ittenson A, Dierkes J, Bukowska A, Klein HU. Platelet expression of CD40/CD40 ligand and its relation to inflammatory markers and adhesion molecules in patients with atrial fibrillation. Exp Biol Med.(Maywood) 2007,232:581-589.
    87 Hermann A, Rauch BH, Braun M, Schror K, Weber AA. Platelet CD40 ligand (CD40L)-subcellular localization, regulation of expression, and inhibition by clopidogrel. Platelets,2001,12:74-82.
    88 Schonbeck U, Mach F, Libby P. CD 154 (CD40 ligand). Int. J Biochem Cell Biol,2000,32:687-693.
    89 Wiesemann E, Deb M. Trebst C, Hemmer B, Stangel M, Windhagen A. Effects of interferon-b on co-signaling molecules:upregulation of CD40, CD86 and PD-L2 on monocytes in relation to clinical response to interferon-b treatment in patients with multiple sclerosis. Mult Scler,2008,14:166-176.
    90 Hollenbaugh D, Mischel-Petty N, Edwards CP, Simon JC, Denfeld RW, Kiener PA, Aruffo A. Expression of functional CD40 by vascular endothelial cells. J Exp Med,1995,182:33-40.
    91 Souza H.P, Frediani D, Cobra AL, Moretti AJ, Jurado MC, Fermandes TR, Cardounel AJ, Zweier JL. Angiotensin Ⅱ modulates CD40 expression in vascular smooth muscle cells. Clin Sci (Lond),2008.DOI:10.1042/CS20080155 http://www.clinsci.org.
    92 Tournilhac O, Santos DD. XuL, Kutok J, Tai YT, Le Gouill S, Catley L, Hunter Z, Branagan AR. Mast cells in Waldenstrom's macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling. Ann Oncol,2006,17:1275-1282.
    93 Lee HY, Jeon HS, Song EK, Han MK, Park SI, Lee SI, Yun HJ, Kim JR. CD40 ligation of rheumatoid synovial fibroblasts regulates RANKL-mediated osteoclastogenesis:evidence of NF-kB-dependent, CD40-mediated bone destruction in rheumatoid arthritis. Arthritis Rheum,2006,54:1747-1758.
    94 Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity:T-T help via APC activation. J Exp Med,1996,184:747-752.
    95 Khan SY, Kelher MR, Heal JM, Blumberg N, Boshkov LK, Phipps R, Gettings KF. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood,2006,108:2455-2462
    96 Vanichakarn P, Blair P, Wu C, Freedman JE, Chakrabarti S. Neutrophil CD40 enhances platelet mediated inflammation. Thromb Res,2008,122:346-358.
    97 Wagner D.H, Jr. Vaitaittis G. Sanderson R, Poulin M, Dobbs C. Haskins K. Expression of CD40 identifies a unique pathogenic T cell population in type 1 diabetes. Proc Natl Acad Sci U. S. A,2002,99:3782-3787
    98 Yang Y and Wilson J M. CD40 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40. Science,1996, 273:1862-1864.
    99 Claire Leveille, Marlene Bouillon, Wen Guo, Julle Bolduc, Ehssan Sharif-Askari, Youssef Ei-Fakhry. CD40 Ligand Binds to a5β1 integrin and Triggers Cell signaling. Journal of biological chemistry,2007,8:5143-5151.
    100 Jun Tan, Terrence Town, Takashi Mori, Demian Obregon, Yajuan Wu, Anthony DelleDonne, Amyn Rojiani, CD40 is expressed and functional on neuronal cells. The EMBO Journal,2002,21:643-652,
    101 Chakrabarti S, Blair P, Freedman JE. CD40-40L signaling in vascular inflammation. J Biol Chem,2007,282:18307-18317.
    102 Chakrabarti, S. Blair P, Freedman JE. CD40 ligand influences platelet release of reactive oxygen intermediates. Arterioscler Thromb Vasc Biol,2005,25: 2428-2434.
    103 Martin K.H. Schafer, Wilhelm J. Schwaeble, Claes Post, Patricia Salvati, Marcello Calabresi, Robert B. Sim, Franz Petry, Michael Loos, Eberhard Weihe Complement Clq Is Dramatically Up-Regulated in Brain Microglia in Response to Transient Global Cerebral Ischemia. The Journal of Immunology,2000,164: 5446-5452.
    1. Wintrobe MM. Blood Platelets and coagulation. In:Wintrobe MM, ed. Clinical Hematology. Lea & Febiger, Philadelphia,1946,187-238.
    2. Bizzozero G. Su di un nuovo elemento morfologico del sangue dei mammiferie della sua importanzanella trombosienella coagulazione. Osservatore,1881, 17:785-787.
    3. Bizzozero G. Ueber einen neuen Formbestandtheil des Blutes und dessert Rolle beider Thrombose und der Blutgerinnung. Virchows Arch Pathol Anat Physiol, 1882,90:261-332.
    4. Coller BS. A brief and highly selective history of ideas about platelets in health and disease. In:Michelson AD, ed. Platelets. Academic Press San Diego,2002, 1338-1356.
    5. Zucker MB, Nachmias VT. Platelet activation. Arteriosclerosis,1985,5:2-18.
    6. McNicol A. Platelet preparation and estimation of functionalresponses. In: Watson SP, ed. Platelets:A Practical Approach. IRL Press at Oxford University Press, Oxford,1996,1-26.
    7. Clemetson KJ. Platelet activation:signal transduction via membrane receptors. Thromb Haemost,1995,74:111-116.
    8. Levy-Toledano S. Platelet signal transduction pathways:could we organize them into a'hierarchy'? Haemostasis,1999,29:4-15.
    9. Parise LV. Integrin alpha(Ⅱb)beta(3) signaling in platelet adhesion and aggregation. Curt Opin Cell Biol,1999,11:597-601.
    10. Bouchard BA, Butenas S, Mann KG, Tracy PB. Interactions between platelets and the coagulation system. In:Michelson AD, ed. Platelets. Elsevier Science, San Diego,2002,229-253.
    11. Michelson AD. The clinical approach to disorders of platelet number and function. In:Michelson AD, ed. Platelets. Elsevier Science, San Diego,2002, 541-545.
    12. Ruggeri ZM. Platelets in atherothrombosis. Nat Med,2002,8:1227-1234.
    13.Goldschmidt PJ, Lopes N, Crawford LE. Atherosclerosis and coronary heart disease. In:Michelson AD, ed. Platelets. Elsevier Science, San Diego,2002, 375-398.
    14.Karpatkin S. Tumor growth and metastasis. In:Michelson AD, ed. Platelets. Elsevier Science, San Diego,2002,491-502.
    15. Tschoepe D, Menart-Houtermans, B. Diabetes mellitus. In:Michelson AD, ed. Platelets. Elsevier Science, San Diego,2002,435-445.
    16. Gordon JLM. Blood platelets as multifunctional cells. In:Gordon JL, ed. Platelets in Biology and Pathology:Elsevier/North-Holland Biomedical, Amsterdam,1976,3-22.
    17. Herd CM, Page CP. Pulmonary immune cells in health and disease:platelets. Eur Respir J 1994,7:1145-1160.
    18. Klinger MH. Platelets and inflammation. Anat Embryol (Berl),1997, 196:1-11.
    19. Mannaioni PF, Di Bello MG, Masini E. Platelets and inflammation:role of plateletderived growth factor, adhesion molecules and histamine. Inflamm Res 1997,46:4-18.
    20. Yeaman M, Bayer, AS. Antimicrobial host defense. In:Michelson AD, ed. Platelets.Elsevier Science, San Diego,2002,469-490.
    21. Nash GF, Turner LF, Scully MF, Kakkar AK. Platelets and cancer. Lancet Oncol,2002,3:425-430.
    22.Russwurm S, Vickers J, Meier-Hellmann A, et al. Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock,2002, 17:263-268.
    23. Vincent JL, Yagushi A, Pradier O. Platelet function in sepsis. Crit Care Med, 2002,30:313-317.
    24. Endresen GK, Forre O. Human platelets in synovial fluid. A focus on the effects of growth factors on the inflammatory responses in rheumatoid arthritis. Clin Exp Rheumatol,1992,10:181-187.
    25.Hasleton PS, Roberts TE. Adult respiratory distress syndrome--an update. Histopathology,1999,34:285-294.
    26. Reed GL. Platelet secretion. In:Michelson AD, ed. Platelets. Elsevier Science, San Diego,2002,181-195.
    27. Rendu F, Brohard-Bohn B. The platelet release reaction:granules' constituents, secretion and functions. Platelets,2001,12:261-273.
    28. McEver RP. Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation. Thromb Haemost,2001,86:746-756.
    29. Weyrich AS, Elstad MR, McEver RP, et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest,1996,97:1525-1534.
    30. McBane RD 2nd, Ford MA, Karnicki K, Stewart M, Owen WG. Fibrinogen, fibrin and crosslinking in aging arterial thrombi. Thromb Haemost,2000, 84:83-87.
    31. Galt SW, Lindemann S, Allen L, et al. Outside-in signals delivered by matrix metalloproteinase-1 regulate platelet function. Circ Res,2002,90:1093-1099.
    32. Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW. Release of gelatinase A during platelet activation mediates aggregation. Nature,1997, 386:616-619.
    33. Kameyoshi Y, Dorschner A, Mallet AI, Christophers E, Schroder JM. Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils. J Exp Med,1992,176:587-592.
    34. Schall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature, 1990,347:669-671.
    35.Schober A, Manka D, von Hundelshausen P, et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation,2002,106:1523-1529.
    36. Von Hundelshausen P, Weber KS, Huo Y, et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation,2001,103:1772-1777.
    37. Bacon KB, Premack BA, Gardner P, Schall TJ. Activation of dual T cell signaling pathways by the chemokine RANTES. Science,1995,269:1727-1730.
    38.Weyrich AS, Prescott SM, Zimmerman GA. Platelets, endothelial cells, inflammatory chemokines, and restenosis:complex signaling in the vascular play book. Circulation,2002,106:1433-1435.
    39. Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature,1998,391:591-594.
    40. McEver RP. Properties of GMP-140, an inducible granule membrane protein of platelets and endothelium. Blood Cells,1990,16:73-80.
    41. McEver RP. Selectins. Curr Opin Immunol,1994,6:75-84.
    42.Topol EJ. Aspirin with bypass surgery--from taboo to new standard of care. N Engl J Med,2002,347:1359-1360.
    43. FitzGerald GA, Fitzgerald D J, Lawson JA, Murray R. Thromboxane biosynthesis and antagonism in humans. Adv Prostaglandin Thromboxane Leukot Res,1987,17:199-203.
    44.Fitzgerald D J, Wright F, FitzGerald GA. Increased thromboxane biosynthesis during coronary thrombolysis. Evidence that platelet activation and thromboxane A2 modulate the response to tissue-type plasminogen activator in vivo. Circ Res, 1989,65:83-94.
    45. FitzGerald GA, Murray R, Moran N, et al. Mechanisms of eicosanoid action. Adv Prostaglandin Thromboxane Leukot Res,1991,21:577-581.
    46.Fitzgerald GA, Catella F, Oates JA. Eicosanoid biosynthesis in human cardiovascular disease. Hum Pathol,1987,18:248-252.
    47. Patrono C. Aspirin and human platelets:from clinical trials to acetylation of cyclooxygenase and back. Trends Pharmacol Sci,1989,10:453-458.
    48. Pratico D, Tillmann C, Zhang ZB, Li H, FitzGerald GA. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Proc Natl Acad Sci USA,2001,98: 3358-3363.
    49. Cyrus T, Sung S, Zhao L, Funk CD, Tang S, Pratico D. Effect of low-dose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation,2002, 106:1282-1287.
    50. Ostrovsky L, King AJ, Bond S, et al. A juxtacrine mechanism for neutrophil adhesion on platelets involves platelet-activating factor and a selectin-dependent activation process. Blood,1998,91:3028-3036.
    51. Zimmerman GA, Elstad MR, Lorant DE, et al. Platelet-activating factor (PAF):signalling and adhesion in cell-cell interactions. Adv Exp Med Biol,1996, 416:297-304.
    52.Zimmerman GA, Mclntyre TM, Prescott SM, Stafforini DM. The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Crit Care Med,2002,30:294-301.
    53.Weyrich AS, Mclntyre TM, McEver RP, Prescott SM, Zimmerman GA. Monocyte tethering by P-selectin regulates monocyte chemotactic protein-i and tumor necrosis factor-alpha secretion. Signal integration and NF-kappa B translocation. J Clin Invest,1995.95:2297-2303.
    54.Lehr HA, Weyrich AS, Saetzler RK, et al. Vitamin C blocks inflammatory plateletactivating factor mimetics created by cigarette smoking [see comments]. J Clin Invest,1997,99:2358-2364.
    55.Gutensohn K, Geidel K, Brockmann M, et al. Binding of activated platelets to WBCs in vivo after transfusion. Transfusion,2002,42:1373-1380.
    56.Furman MI, Barnard MR, Krueger LA, et al. Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction. J Am Coll Cardiol, 2001,38:1002-1006.
    57.Galt SW, Lindemann S, Medd D, et al. Differential regulation of matrix metalloproteinase-9 by monocytes adherent to collagen and platelets. Circ Res, 2001,89:509-516.
    58.Smyth SS, Reis ED, Zhang W, Fallon JT, Gordon RE, Coller BS. Beta(3)-integrindeficient mice but not P-selectin-deficient mice develop intimal hyperplasia after vascular injury:correlation with leukocyte recruitment to adherent platelets 1 hour after injury. Circulation,2001,103:2501-2507.
    59. Massberg S, Brand K, Gruner S, et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med,2002,196:887-896.
    60.Kim YJ, Borsig L, Han HL, Varki NM, Varki A. Distinct selectin ligands on colon carcinoma mucins can mediate pathological interactions among platelets, leukocytes, and endothelium. Am J Pathol,1999,155:461-472.
    61. Kim YJ, Borsig L, Varki NM, Varki A. P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci USA,1998,95:9325-9330.
    62. Borsig L, Wong R, Hynes RO, Varki NM, Varki A. Synergistic effects of L-and Pselectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci USA,2002, 99:2193-2198.
    63. Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited:mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA,2001,98: 3352-3357.
    64.Hallahan DE, Staba-Hogan MJ, Virudachalam S, Kolchinsky A. X-ray-induced Pselectin localization to the lumen of tumor blood vessels. Cancer Res,1998,58:5216-5220.
    65.Neumann FJ, Marx N, Gawaz M, et al. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation,1997,95: 2387-2394.
    66.Lindemann S, Tolley ND, Eyre JR, Kraiss LW, Mahoney TM, Weyrich AS. Integrins regulate the intracellular distribution of eukaryotic initiation factor 4E in platelets.A checkpoint for translational control. J Biol Chem,2001,276: 33947-33951.
    67. Seabold JE, Schroder E, Conrad GR, et al. Indium-111 platelet scintigraphy and two-dimensional echocardiography for detection of left ventricular thrombus: influence of clot size and age. J Am Coll Cardiol,1987,9:1057-1066.
    68. Pabla R, Weyrich AS, Dixon DA et al. Integrin-dependent control of translation:engagement of integrin alphallbbeta3 regulates synthesis of proteins in activated human platelets. J Cell Biol,1999,144:175-184.
    69. Weyrich AS, Dixon DA, Pabla R et al. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human platelets. Proc Natl Acad Sci USA, 1998,95:5556-5561.
    70.Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1 beta synthesis. J Cell Biol, 2001,154:485-490.
    71.Mahoney TS, Weyrich AS, Dixon DA, McIntyre T, Prescott SM, Zimmerman GA. Cell adhesion regulates gene expression at translational checkpoints in human myeloid leukocytes. Proc Natl Acad Sci USA,2001,98:10284-10289.
    72. BooyseFM, Rafelson ME Jr. Stable messenger RNA in the synthesis of contractile protein in human platelets. Biochim Biopbys Acta 1967; 145:188-190.
    73.Booyse F, Rafelson ME, Jr. In vitro incorporation of amino-acids into the contractile protein of human blood platelets. Nature,1967,215:283-284.
    74. Booyse FM, Rafelson ME Jr. Studies on human platelets. I. Synthesis of platelet protein in a cell-free system. Biochim Biophys Acta,1968,166:689-697.
    75. Booyse FM, Hoveke TP, Rafelson ME. Studies on human platelets.Ⅱ. Protein synthetic activity of various platelet populations. Biochim Biophys Acta, 1968,157:660-663.
    76.Booyse FM, Rafelson ME. Protein synthesis and platelet function. In:Johnson SA. Dynamics of Thrombus Formation and Dissolution. JB Lippincott, Philadelphia,1969,149.
    77. Booyse FM, Zschocke D, Hoveke TP, Rafelson ME. Studies on human platelets. IV. Protein synthesis in maturing human platelets. Thromb Diath Haemorrh,1971,26:167-176.
    78.Kieffer N, Guichard J, Farcet JP, Vainchenker W, Breton-Gorius J. Biosynthesis of major platelet proteins in human blood platelets. Eur J Biochem, 1987,164:189-195.
    79. Rosenwald IB, Pechet L, Han A, et al. Expression of translation initiation factors e1F-4E and e1F-2alpha and a potential physiologic role of continuous protein synthesis in human platelets. Thromb Haemost,2001,85:142-151.
    80.Plow EF. Extracellular factors influencing the in vitro protein synthesis of platelets. Thromb Haemost,1979,42:666-678.
    81. Schneider W, Dries R, Scheurlen PG. [New findings on nucleic acid synthesis in human blood platelets]. Verh Dtsch Ges Inn Med,1972,78:696-698.
    82. Schneider W, Dries R, Kulenkampff G. Studies on the protein and nucleic acid synthesis of normal human blood platelets. Acta Univ Carol Med Monogr, 1972,53:113-137.
    83. Soslau G. De novo synthesis of DNA in human platelets. Arch Biochem Biophys,1983,226:252-256.
    84. Karpatkin S. Heterogeneity of human platelets. I. Metabolic and kinetic evidence suggestive of young and old platelets. J Clin Invest,1969, 48:1073-1082.
    85.Kienast J, Schmitz G. Flow cytometric analysis of thiazole orange uptake by platelets:a diagnostic aid in the evaluation of thrombocytopenic disorders. Blood, 1990,75:116-121.
    86.Steiner M, Baldini M. Protein synthesis in aging blood platelets. Blood,1969, 33:628-633.
    87.Belloc F, Hourdille P, Boisseau MR, Bernard P. Protein synthesis in human platelets correlation with platelet size. Nouv Rev Fr Hematol,1982,24:369-373.
    88. Gnatenko DV, Dunn JJ, McCorkle SR, Weissmann D, Perrotta PL, Bahou WF.Transcript profMng of human platelets using microarray and serial analysis of gene expression. Blood,2002,14:14.
    89.Roth GJ, Hickey M J, Chung DW, Hickstein DD. Circulating human blood platelets retain appreciable amounts of poly (A) RNA. Biochem Biophys Res Commun,1989,160:705-710.
    90. Soslau G, Morgan DA, Jaffe JS, Brodsky I, Wang Y. Cytokine mRNA expression in human platelets and a megakaryocytic cell line and cytokine modulation of platelet function. Cytokine,1997,9:405-411.
    91.Santoso S, Kalb R, Kiefel V, Mueller-Eckhardt C. The presence of messenger RNA for HLA class I in human platelets and its capability for protein biosynthesis. Br J Haematol,1993,84:451-456.
    92. Sottile J, Mosher DF, Fullenweider J, George JN. Human platelets contain mRNA transcripts for platelet factor 4 and actin. Thromb Haemost,1989, 62:1100-1102.
    93.Newman P J, Gorski J, White GC 2nd, Gidwitz S, Cretney C J, Aster RH. Enzymatic amplification of platelet-specific messenger RNA using the polymerase chain reaction. J Clin Invest,1988,82:739-743.
    94.Konkle BA, Schick PK, He X, Liu RJ, Mazur EM. Plasminogen activator inhibitor-1 mRNA is expressed in platelets and megakaryocytes and the megakaryoblastic cell line CHRF-288. Arterioscler Thromb,1993,13:669-674.
    95. Ausubel F, Brent R, Kingston RE, et al. Preparation and analysis of RNA. In: Chanda V, ed. Current Protocols in Molecular Biology, vol.1:John Wiley, New York,1998,451-452.
    96. Ts'ao CH. Rough endoplasmic reticulum and ribosomes in blood platelets. Scand J Haematol,1971,8:134-140.
    97. Jeno P, Ballou LM, Novak-Hofer I, Thomas G. Identification and characterization of a mitogen-activated $6 kinase. Proc Natl Acad Sci USA,1988, 85:406-410.
    98. Nguyen YH, Mills AA, Stanbridge EJ. Assembly of the QM protein onto the 60S ribosomal subunit occurs in the cytoplasm. J Cell Biochem,1998,68: 281-285.
    99.Papkoff J, Chen RH, Blenis J, Forsman J. p42 mitogen-activated protein kinase and p90 ribosomal $6 kinase are selectively phosphorylated and activated during thrombin-induced platelet activation and aggregation. Mol Cell Biol,1994, 14:463-472.
    l00.Gingras AC, Gygi SP, Raught B, et al. Regulation of 4E-BP1 phosphorylation:a novel two-step mechanism. Genes Dev,1999,13:1422-1437.
    101.Gingras A-C, Raught B, Sonenberg N. elF4 initiation factors:effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem,1999,68:913-963.
    102.Lenardo M, Siebenlist U. Bcl-3-mediated nuclear regulation of the NF-kappa B trans-activating factor. Immunol Today,1994,15:145-147.
    103.Liu F, Morris S, Epps J, Carroll R. Demonstration of an activation regulated NFkappaB/1-kappaBalpha complex in human platelets. Thromb Res,2002, 106:199.
    104.Gawaz M, Brand K, Dickfeld T, et al. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis. Atherosclerosis,2000,148:75-85.
    105.Loppnow H, Bil R, Hirt S, et al. Platelet-derived interleukin-1 induces cytokine production, but not proliferation of human vascular smooth muscle cells. Blood,1998,91:134-141.
    106.Coller BS. Platelet GPⅡb/Ⅲa antagonists:the first anti-integrin receptor therapeutics. J Clin Invest,1997,100:57-60.
    107.Coller BS. Platelet GPIIb/IIIa antagonists:the first anti-integrin receptor therapeutics. J Clin Invest,1997,99:1467-1471.
    108.Fitzgerald DJ. Vascular biology of thrombosis:the role of platelet-vessel wall adhesion. Neurology,2001,57:1-4.
    109.Chen YP, O'Toole TE, Leong L, Liu BQ, Diaz-Gonzalez F, Ginsberg MH. Beta 3integrin-mediated fibrin clot retraction by nucleated cells:differing behavior of alpha lib beta 3 and alpha v beta 3. Blood,1995,86:2606-2615.
    110.Chicurel ME, Singer RH, Meyer C J, Ingber DE. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature,1998,392:730-733.
    111.Saunders RN, Metcalfe MS, Nicholson ML. Rapamycin in transplantation:a review of the evidence. Kidney Int,2001,59:3-16.
    112.Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu Rev Immunol,1996,14:483-510.
    113. Brown EJ, Schreiber SL. A signaling pathway to translational control. Cell, 1996,86:517-520.
    114.Curfman GD. Sirolimus-eluting coronary stents. N Engl J Med,2002, 346:1770-1771.
    115.Suzuki T, Kopia G, Hayashi S, et al. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation,2001, 104:1188-1193.
    116.Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimuseluting stent with a standard stent for coronary revascularization. N Engl J Med,2002,346:1773-1780.
    117. Pinedo HM, Verheul HM, D'Amato RJ, Folkman J. Involvement of platelets in tumour angiogenesis? Lancet,1998,352:1775-1777.
    118.Rocca B, Secchiero P, Ciabattoni G, et al. Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. Proc Natl Acad Sci USA,2002,99:7634-7639.
    119.Corash L, Shafer B. Use of asplenic rabbits to demonstrate that platelet age and density are related. Blood,1982,60:166-1671.
    120.Rao AK, Gabbeta J. Congenital disorders of platelet signal transduction. Arterioscler Thromb Vase Biol,2000,20:285-289.
    121.Li J, Xia Y, Bertino AM, Coburn JP, Kuter DJ. The mechanism of apoptosis in human platelets during storage. Transfusion,2000,40:1320-1329.
    122.Pereira J, Soto M, Palomo I, et al. Platelet aging in vivo is associated with activation of apoptotic pathways:studies in a model of suppressed thrombopoiesis in dogs. Thromb Haemost,2002,87:905-909.
    123.Seghatchian J, Krailadsiri P. Platelet storage lesion and apoptosis:are they related? Transfus Apheresis Sci,2001,24:103-105.
    1 Chakrabarti S, Blair P, Freedman JE. CD40-40L signaling in vascular inflammation. J. Biol. Chem,2007,282:18307-18317.
    2 Chakrabarti S, Vitseva O, Lyu D, Varghese S. CD40 ligand influences platelet release of reactive oxygen intermediates. Arterioscler, Thromb, Vase. Biol,2005, 25:2428-2434.
    3 Gao L, Laude K, Cai H. Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Vet. Clin. North Am. Small Anim. Pract, 2008,38:137-155.
    4 Mach F, Schonbeck U, Libby P. CD40 signaling in vascular cells:a key role in atherosclerosis? Atherosclerosis,1998,137:89-95.
    5 Prasad M.L, Velickovic M, Weston SA, Benson EM. Mutational screening of the CD40 ligand (CD40L) gene in patients with X linked hyper-IgM syndrome (XHIM) and determination of carrier status in female relatives. J. Clin. Pathol, 2005,58:90-92.
    6 Armitage R.J, Fansiow WC, Strockbine L, Sato TA, Clifford KN, Macduff BM. Molecular and biological characterization of a murine ligand for CD40. Nature, 1992,357:80-82.
    7 Armitage R.J, Sato TA, Macduff BM, Clifford KN, Alpert AR, Smith CA, Fansiow WC. Identification of a source of biologically active CD40 ligand. Eur. J. Immunol,1992,22:2071-2076.
    8 Gauchat J.F, Henchoz S, Mazzei G, Aubry JP, Brunner T, Blasey H. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature,1993,365: 340-343.
    9 Henn V, Slupsky JR, Grafe M, Anagnostopoulos L, Forster R. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature, 1998,391:591-594.
    10 Andre P, Nannizzi-Alaimo L, Prasad SK, Phillips DR. Platelet-derived CD40L:the switch-hitting player of cardiovascular disease. Circulation,2002, 106:896-899.
    11 Meabed MH, Taha GM, Mohamed SO, EL-hadidy KS. Autoimmune thrombocytopenia:flow cytometric determination of platelet-associated CD154/CD40L and CD40 on peripheral blood T and B lymphocytes. Hematology,2007,12:301-307.
    12 Van Kooten, C. Immune regulation by CD40-CD40L interactions-2; Y2K update. Front. Biosci,2000,5:880-893.
    13 Aukrust P, Damas JK, Solum NO. Soluble CD40 ligand and platelets: selfperpetuating pathogenic loop in thrombosis and inflammation? J.Am. Coll. Cardiol,2004,43:2326-2328.
    14 Chung I, Choudhury A, Patel J, Lip GY. Soluble CD40L, platelet surface CD40L and total platelet CD40L in congestive heart failure:relationship to platelet volume, mass and granularity. J. Intern. Med,2008,263:313-321.
    15 Danese S, Scaldaferri F, Papa A, Pola R. CD40L-positive platelets induce CD40L expression de novo in endothelial cells:adding a loop to microvascular inflammation. Arterioscler. Thromb Vasc. Biol,2004,24:162.
    16 Hammwohner M, Ittenson A, Dierkes J, Bukowska A, Klein HU. Platelet expression of CD40/CD40 ligand and its relation to inflammatory markers and adhesion molecules in patients with atrial fibrillation. Exp. Biol. Med. (Maywood),2007,232:581-589.
    17 Hermann A, Rauch BH, Braun M, Schror K, Weber AA. Platelet CD40 ligand (CD40L)-subcellular localization, regulation of expression, and inhibition by clopidogrel. Platelets,2001,12:74-82.
    18 Schonbeck U, Mach F, Libby P. CD 154 (CD40 ligand). Int. J. Biochem. Cell Biol,2000,32:687-693.
    19 Wiesemann E, Schror K, Weber AA. Effects of interferon-b on co-signaling molecules:upregulation of CD40, CD86 and PD-L2 on monocytes in relation to clinical response to interferon-b treatment in patients with multiple sclerosis. Mult. Scler,2008,14:166-176.
    20 Hollenbaugh D, Mischel-Petty N, Edwards CP. Expression of functional CD40 by vascular endothelial cells. J. Exp. Med,1995,182:33-40.
    21 Mach F, Schonbeck U, Sukhova GK, Bourcier T, Bonnefoy JY. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages:implications for CD40-CD40 ligand signaling in atherosclerosis. Proc.Natl. Acad. Sci. U. S. A,1997,94:1931-1936.
    22 Souza H.P, Frediani D, Cobra AL, Moretti AL, Jurado MC, Femandes TR. Angiotensin II modulates CD40 expression in vascular smooth muscle cells. Clin Sci (Lond), (2008) DOI:10.1042/CS20080155 http://www.clinsci.org.
    23 Tournilhac O, Santos DD, Xul, Kutok J, Tai YT. Mast cells in Waldenstrom's macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling. Ann. Oncol,2006,17:1275-1282.
    24 Lee H.Y, Jeon HS, Song EK, Han MK, Park SI, Lee SI. CD40 ligation of rheumatoid synovial fibroblasts regulates RANKL-mediated osteoclastogenesis: evidence of NF-kB-dependent, CD40-mediated bone destruction in rheumatoid arthritis. Arthritis Rheum,2006,54:1747-1758.
    25 Cella M, Scheidegger D, Palmer-Lehmann K, Lame P. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity:T-T help via APC activation. J. Exp. Med,1996,184: 747-752.
    26 Khan S.Y, Kelher MR, Heal JM, Blumberg N, Boshkov LK. Soluble CD40 ligand accumulates in stored blood components, primes neutrophils through CD40, and is a potential cofactor in the development of transfusion-related acute lung injury. Blood,2006,108:2455-2462.
    27 Vanichakarn P, Blair P, Wu C, Freedman JE, Chakrabarti S. Neutrophil CD40 enhances platelet mediated inflammation. Thromb. Res,2008,122:346-358.
    28 Wagner D.H, Jr Vaitaitis G, Sanderson R, Poulin M, Dobbs C, Haskins K. Expression of CD40 identifies a unique pathogenic T cell population in type 1 diabetes. Proc. Natl. Acad. Sci. U. S. A,2002,99:3782-3787
    29 Yang Y and Wilson J.M. CD40 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40. Science,1996, 273:1862-1864.
    30 Jun Tan, Terrence Town, Takashi Mori, Demian Obregon, Yajuan Wu, Anthony DelleDonne, Amyn Rojiani,Fiona Crawford, Richard A, Flavell and Mike Mullan CD40 is expressed and functional on neuronal cells The EMBO Journal Vol,2002,21:643-652.
    31 D'Orlando, O. Gri G, Cattaruzzi G, Merfuzzi S. Outside inside signalling in CD40-mediated B cell activation. J. Biol. Regul. Homeost. Agents,2007,21: 49-62.
    32 Sui Z, Sniderhan LF, Schifitto G, Phipps RP, Gelbard HA, Dewhurst S. Functional synergy between CD40 ligand and HIV-1 Tat contributes to inflammation:implications in HIV type 1 dementia. J. Immunol,2007,178: 3226-3236.
    33 Freedman, J.E. CD40-CD40L and platelet function:beyond hemostasis. Circ. Res,2003,92:944-946.
    34 Furman M.I, Kruger LA, Linden MD, Barnard MR. Release of soluble CD40L from platelets is regulated by glycoprotein Ⅱb/Ⅲa and actin polymerization. J. Am. Coll. Cardiol,2004,43:2319-2325.
    35 Henn V, Steinbach S, Buchner K, Presek P. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood,2001,98:1047-1054.
    36 Otterdal K, Pedersen TM, Solum NO. Release of soluble CD40 ligand after platelet activation:studies on the solubilization phase. Thromb. Res,2004,114: 167-177.
    37 Pignatelli P, Sanguigni V, Lenti L, Ferro D. gp91phox-dependent expression of platelet CD40 ligand. Circulation,2004,110:1326-1329.
    38 Pignatelli P, Sanguigni V, Paola SG, Lo Coco E. Vitamin C inhibits platelet expression of CD40 ligand. Free Radic. Biol. Med,2005,38:1662-1666.
    39 Zirlik A, Maier C, Gerdes N, MacFariane L, Soosairajah J. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation,2007,115:1571-1580.
    40 Callard R.E, Armitage RJ, Fanslow WC, Spriggs MK. CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol Today,1993,14:559-564.
    41 Ochs H.D, Hollenbaugh D, Aruffo A. The role of CD40L (gp39)/CD40 in T/B cell interaction and primary immunodeficiency. Semin Immunol,1994,6: 337-341.
    42 Hernandez, M.G. Shen L, Rock KL. CD40-CD40 ligand interaction between dendritic cells and CD8+ T cells is needed to stimulate maximal T cell responses in the absence of CD4+ T cell help. J. Immunol,2007,178:2844-2852.
    43 Mathur R.K, Awasthi A, Wadhone P, Ramanamurthy B. Reciprocal CD40 signals through p38MAPK and ERK-1/2 induce counteracting immune responses. Nat. Med,2004,10:540-544.
    44 Danese S, De la Motte C, Ryes BM. Cutting edge:T cells trigger CD40-dependent platelet activation and granular RANTES release:a novel pathway for immune response amplification. J. Immunol,2004,172:2011-2015.
    45 Kaufman J, Sime PJ, Phipps RP. Expression of CD154 (CD40 ligand) by human lung fibroblasts:differential regulation by IFN-g and IL-13, and implications for fibrosis. J. Immunol,2004,172:1862-1871.
    46 Andre P, Prasad KS, Denis CV. He M, Papalia JM. CD40L stabilizes arterial thrombi by a β3integrin- dependent mechanism. Nat. Med,2002,8:247-252.
    47 Mach F, Schonbeck U, Sukhova GK, Akinson E. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature,1998,394:200-203.
    48 Notarangelo, L.D. and Peitsch, M.C. CD401base:a database of CD40L gene mutations causing X-linked hyper-IgM syndrome. Immunol Today,1996,17: 511-516.
    49 Prasad M.L, Velickovic M, Weston SA, Benson EM. Mutational screening of the CD40 ligand (CD40L) gene in patients with X linked hyper-IgM syndrome (XHIM) and determination of carrier status in female relatives. J. Clin. Pathol, 2005,58:90-92.
    50 Schafer, A. and Bauersachs, J. Endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation in diabetes and atherosclerosis. Curr. Vasc Pharmacol,2008,6:52-60.
    51 Cipollone F, Chiarelli F, Davi G, Ferri C, Desideri G. Enhanced soluble CD40 ligand contributes to endothelial cell dysfunction in vitro and monocyte activation in patients with diabetes mellitus:effect of improved metabolic control. Diabetologia,2005,48:1216-1224.
    52 Aggarwal A, Blum A, Schneider DJ, Sobel BE. Soluble CD40 ligand is an early initiator of inflammation after coronary intervention. Coron. Artery Dis, 2004,15:471-75.
    53 Ueland T, Aukrust P, Yndestad A, Otterdal K, Fraland SS. Soluble CD40 ligand in acute and chronic heart failure. Eur. Heart J,2005,26:1101-1107.
    54 Balla J, Magyar MT, Bereczki D, Valikovics A. Serum levels of platelet released CD40 ligand are increased in early onset occlusive carotid artery disease. Dis. Markers,2006,22:133-140.
    55 Peng D.Q, Zhao SP, Li YF, Li J. Elevated soluble CD40 ligand is related to the endothelial adhesion molecules in patients with acute coronary syndrome. Clin. Chim. Acta,2002,319:19-26.
    56 Krotz F, Sohn HY, Pohi U. Reactive oxygen species:players in the platelet game. Arterioscler Thromb.Vasc. Biol,2004,24:1988-1996.
    57 Vaidyula V.R, Rao AK, Mozzoli M, Homko C, Cheung P, Boden G. Effects of hyperglycemia and hyperinsulinemia on circulating tissue factor procoagulant activity and platelet CD40 ligand. Diabetes,2006,55:202-208.
    58 Undas A, Wiek L, Stepien E, Zmudka K, Tracz W. Hyperglycemia is associated with enhanced thrombin formation, platelet activation, and fibrin clot resistance to lysis in patients with acute coronary syndrome. Diabetes Care,2008, 31:1590-1595.
    59 Jinchuan Y, Zonggui W, Jinming C, Li L, Xiantao K. Upregulation of CD40-CD40 ligand system in patients with diabetes mellitus. Clin Chim Acta, 2004,339:85-90.
    60 Yamagishi S, Kikuchi S, Takenaka K, Takeuchi M. Blockade by nifedipine of advanced glycation end product-induced CD40-CD40 ligand interaction in endothelial cells. Drugs Exp Clin Res,2005,31:221-226.
    61 Harding S.A, Sommerfield AJ, Sarma J, Twomey PJ. Increased CD40 ligand and plateletmonocyte aggregates in patients with type 1 diabetes mellitus. Atherosclerosis,2004,176:321-325
    62 Varo N, Vicent D, Libby P, Nuzzo R, Calle-Pascual AL. Elevated plasma levels of the atherogenic mediator soluble CD40 ligand in diabetic patients:a novel target of thiazolidinediones. Circulation,2003,107:2664-2669.
    63 Yang X, Ye R, Kong Q, Dong X, Yu X. CD40 is expressed on rat peritoneal mesothelial cells and upregulates ICAM-1 production. Nephrol Dial Transplant, 2004,19:1378-1384.
    64 Barbe-Tuana, F.M. Klein D, Lchi H, Berman DM, Coffey L. CD40-CD40 ligand interaction activates proinflammatory pathways in pancreatic islets. Diabetes,2006,55:2437-2445.
    65 Cipollone F, Mezzetti A, Porreca E, Di Febbo C, Nutini M. Association between enhanced soluble CD40L and prothrombotic state in hypercholesterolemia:effects of statin therapy. Circulation,2002,106:399-402.
    66 Heeschen C, Dimmeler S, Hamm CW, van den Brand MU. Soluble CD40 ligand in acute coronary syndromes. N Engl. J. Med,2003,348:1104-1111.
    67 Urbich C, Dembach E, Aicher A, Zeiher AM, Dimmeler S. CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation,2002,106:981-986.
    68 Harding S.A, Sarma J, Josephs DH, Cruden NL. Upregulation of the CD40/CD40 ligand dyad and platelet-monocyte aggregation in cigarette smokers. Circulation,2004,109:1926-1929.
    69 Shishehbor, M.H. and Hazen, S.L. Inflammatory and oxidative markers in atherosclerosis:relationship to outcome. Curr Atheroscler Rep,2004,6: 243-250.
    70 Martino F, Pignatelli P, Martino E, Morrone F, Carnevale R. Early increase of oxidative stress and soluble CD40L in children with hypercholesterolemia. J Am. Coll Cardiol,2007,49:1974-1981.
    71 Chen C, Chai H, Wang X, Jiang J, Jamaluddin MS. Soluble CD40 ligand induces endothelial dysfunction in human and porcine coronary artery endothelial cells. Blood,2008,112:3205-3216.
    72 Pignatelli P, Sanguigni V, Lenti L, Loffredo L. Oxidative stress-mediated platelet CD40 ligand upregulation in patients with hypercholesterolemia:effect of atorvastatin. J. Thromb. Haemost,2007,5:1170-1178.
    73 Wagner A.H, Guidenzoph B, Lienenluke B Hecker M. CD154/CD40-mediated expression of CD154 in endothelial cells:consequences for endothelial cellmonocyte interaction. Arterioscler Thromb Vasc Biol,2004, 24:715-720.
    74 Altenburg A, Baldus SE, Smola H, Pfister H, Hess S. CD40 ligand-CD40 interaction induces chemokines in cervical carcinoma cells in synergism with IFN-gamma. J Immunol,1999,162:4140-4147.
    75 Biancone L, Cantaluppi V, Boccellino M, Del Sorbo L, Russo S, Albini A, Stamenkovic I, Camussi G. Activation of CD40 favors the growth and vascularization of Kaposi's sarcoma. J Immunol,1999,163:6201-6208.
    76 Berberich I, Shu G, Siebelt F, Woodgett JR, Kyriakis JM, Clark EA. Cross-linking CD40 on B ceils preferentially induces stress-activatedprotein kinases rather than mitogen-activatedprotein kinases. EMBO J,1996, 15:92-101;
    77 Marches R, Racila E, Tucker TF, Picker L, Mongini P, Hsueh R, Vitetta ES, Scheuermann RH, Uhr JW. Tumour dormancy and cell signalling-III:Role of hypercrosslinking of IgM and CD40 on the induction of cell cycle arrest and apoptosis in B lymphoma cells. Ther Immunol 1995,2:125-136.
    78 Costello RT, Gastaut JA, Olive D. What is the real role of CD40 in cancer immunotherapy? Immunol Today,1999,20:488-493.
    79 Hess S, Engelmann H. A novel function of CD40:Induction of cell death in transformed cells. J Exp Med,1996,183:159-167.
    80 Tong AW, Papayoti MH, Netto G, Armstrong DT, Ordonez G, Lawson JM, Stone MJ. Growth-inhibitory effects of CD40 ligand (CD 154) and its endogenous expression in human breast cancer. Clin Cancer Res,2001,7: 691-703.
    81 Yamada M, Shiroko T, Kawaguchi Y, Sugiyama Y, Egilmez NK, Chen FA, Bankert RB. CD40-CD40 ligand (CD 154) engagement is required but not sufficient for modulating MHC class I, ICAM-1 and Fas expression and proliferation of human non-small cell lung tumors. Int J Cancer,2001, 92:58,599.
    82 Eliopoulos AG, Dawson CW, Mosialos G, Floettmann JE, Rowe M, Armitage RJ, Dawson J, Zapata JM, Kerr D J, Wakelam M J, Reed JC, Kieff E, Young LS. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr virus-encoded LMPI:Involvement of TRAF3 as a common mediator. Oncogene, 1996,13:2243-2254.
    83 Antonia S J, Extermann M, Flavell RA. Immunologic nonresponsiveness to tumors. Crit Rev Oncog,1998,9:35-41.
    84 Jun Tan, Terrence Town, Takashi Mori, Demian Obregon, Yajuan Wu, CD40 is expressed and functional on neuronal cells. The EMBO Journal,2002,21: 643-652.
    85 Sospedra, M, and R. Martin. Immunology of multiple sclerosis. Annu Rev Immunol,2005,23:683-747.
    86 Wong F. S, B N. Dittel, and C. A. Janeway Jr. Transgenes and knockout mutations in animal models of type 1 diabetes and multiple sclerosis. Immunol Rev,1999,169:93-104.
    87 Chitnis, T. and S. J. Khoury. Role of costimulatory pathways in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Allergy Clin Immunol,2003,112:837-849.
    88 Becher, B, B. G. Durell, A. V. Miga, W. F. Hickey and R. J. Noelle. The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J. Exp Med,2001,193:967-974.
    89 Ndhlovu, L C, N. Ishii, K. Murata, T. Sato, and K Sugamura. Critical involvement of OX40 ligand signals in the T cell priming events during experimental autoimmune encephalomyelitis. J. Immunol,2001,167: 2991-2999.
    90 Hochweller, K, and S M. Anderton. Systemic administration of antigenloaded CD40-deficient dendritic cells mimics soluble antigen administration. Eur. J. Immunol,2004,34:990-998.
    91 Howard L. M, A. J Miga, C. L Vanderlugt, M. C Dal Canto, J. D Laman, R. J Noelle, and S. D. Miller. Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis. J. Clin. Invest,1999,103:281-290.
    92 Laman, J. D., B. A.'t Hart, H. Brok, M. van Meurs, M. M. Schellekens, A. Kasran, L. Boon, J. Bauer, M. de Boer, and J. Ceuppens. Protection of marmoset monkeys against EAE by treatment with a murine antibody blocking CD40 (mu5D12). Eur J. Immunol,2002,32:2218-2228.
    93 Hart B. A, E. L Blezer, H. P. Brok, L. Boon, M. de Boer, J. Bauer, and J. D. Laman. Treatment with chimeric anti-human CD40 antibody suppresses MRI-detectable inflammation and enlargement of pre-existing brain lesions in common marmosets affected by MOG-induced EAE. J. Neuroimmunol,2005, 163:31-39.
    94 Ichikawa, H. T, L. P. Williams, and B. M. Segal. Activation of APCs through CD40 or Toll-like receptor 9 overcomes tolerance and precipitates autoimmune disease. J. Immunol,2002,169:2781-2787.
    95 Eugene D, Ponomarev, Leah P. Shriver, and Bonnie N. Dittel CD40 Expression by Microglial Cells Is Required for Their Completion of a Two-Step Activation Process during Central Nervous System Autoimmune Inflammation. J. Immunol,2006,176:1402-1410.
    96 Calingasan, N.Y, Erdely, H.A, Anthony Altar, C. Identification of CD40 ligand in Alzheimer's disease and in animal models of Alzheimer's disease and brain injury. Neurobiol Aging,2002,23:31-39.
    97 Todd Roach, J, Volmar, C.H, Dwivedi, S, Town, T, Crescentini, R, Crawford, F, Tan, J, Mullan, M. Behavioral effects of CD40-CD40L pathway disruption in aged PSAPP mice. Brain Res,2004,1015:161-168.
    98 Zun-Ji Ke, Noel Y, Calingasan, Lorraine A, DeGiorgio, Bruce T. Volpe, Gary E. Gibson. CD40-CD40L interactions promote neuronal death in a model of neurodegeneration due to mild impairment of oxidative metabolism. Neurochemistry International,2005,204-215.
    99 C.D. Garlichs, MD; S. Kozina, MD; S. Fateh-Moghadam, MD; B. Tomandl, MD; C. Stumpf, MD; S. Eskafi, PhD; D. Raaz, MD; A. SchmeiBer, MD; A. Yilmaz, MD; J. Ludwig, MD Upregulation of CD40-CD40 Ligand (CD 154) in Patients With Acute Cerebral Ischemia. Stroke,2003,34:1412-1418.
    100 Mami Ishikawa, MD, PhD; Thorsten Vowinkel, MD; Karen Y. Stokes, PhD; Thiruma V. Arumugam, PhD; Gokhan Yilmaz, MD; Anil Nanda, MD; D. Neil Granger, PhD CD40/CD40 Ligand Signaling in Mouse Cerebral Microvasculature After Focal Ischemia/Reperfusion. Circulation,2005,111: 1690-1696.
    101 C.D. Garlichs, MD; S. John, MD; A. SchmeiBer, MD; S. Eskafi, PhD; C. Stumpf, MD; M. Karl; M. Goppelt-Struebe, PhD; R. Schmieder, MD; W.G. Daniel, MD Upregulation of CD40 and CD40 Ligand (CD154) in Patients With Moderate Hypercholesterolemia. Circulation.2001,104:2395-2400.
    102 Prasad K.S, Andre P, He M, Bao M. Soluble CD40 ligand induces b3 integrin tyrosine phosphorylation and triggers platelet activation by outsidein signaling. Proc. Natl. Acad. Sci. U. S. A. (2003)100,12367-12371.
    103 Pearson L.L, Castle BE, Kehry MR. CD40-mediated signaling in monocytic cells:up-regulation of tumor necrosis factor receptor-associated factor mRNAs and activation of mitogen-activated protein kinase signaling pathways. Int. Immunol,2001,13:273-283.
    104 Yu Q, Kovacs C, Yue FY, Ostrowski MA. The role of the p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and phosphoinositide-3-OH kinase signal transduction pathways in CD40 ligand-induced dendritic cell activation and expansion of virus-specific CD8+ T cell memory responses.J Immunol,2004,172:6047-6056.
    105 Davies C.C, Mason J, Wakelam MJ, Young LS, Eliopoulos AG. Inhibition of phosphatidylinositol 3-kinaseand ERK MAPK-regulated protein synthesis reveals the proapoptotic properties of CD40 ligation in carcinoma cells. J Biol Chem,2004,279:1010-1019.
    106 Andreas Zirlik, Udo Bavendiek, Peter Libby, Lindsey MacFarlane, Norbert Gerdes, Joanna Jagielska, Sandra Ernst, Masanori Aikawa, Hiroyasu Nakano, Erdyni Tsitsikov, Uwe Scho" nbeck TRAF-1,-2,-3,-5, and -6 Are Induced in Atherosclerotic Plaques and Differentially Mediate Proinflammatory Functions of CD40L in Endothelial Cells Arterioscler. Thromb Vasc Biol,2007, 27:1101-1107.
    107 Hu HM, O'Rourke K, Boguski MS et al. A novel RING finger protein interacts with the cytoplasmic domain of CD40. J Biol Chem,1994,269: 30069-30072.
    108 Cheng G, Geary AM, Ye Z et al. Involvement of CRAF1, a relative of TRAF, in CD40 signaling. Science,1995,267:1494-1498.
    109 Rothe M, Wong SC, Henzel WJ et al. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell,1994,78:681-692.
    110 Rothe M, Sarma V, Dixit VM et al. TRAF2-mediated activation of NF-KB by TNF receptor 2 and CD40. Science,1995,269:1424-1427.
    111 Pullen SS, Miller HG, Everdeen DS et al. CD40-TRAF interactions: Regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochem,1998,37:11836-11845.
    112 Ishida T, Mizushima S, Azuma S et al. Identification of TRAF6, a novel TRAF protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem,1996,271:28745-28748.
    113 Takeuchi M, Rome M, Goeddel DV. Anatomy of TRAF2. Distinct domains for NF-KB activation and association with TNF signaling proteins. J Biol Chem, 1996,271:19935-19942.
    114 Turja nski A G, Vaque J P, Gut kind JS. MAP kinases and the control of nuclear events. Oncogene,2007,26:3240-3253.
    115 Grammer A.C, Slota R, Fischer R, Gur H. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. J Clin Invest,2003,112:1506-1520.
    116 Boumpas D.T, Furie R, Manzi S, ILLei GG. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum,2003,48: 719-727.
    117 Geraldes P, Gagnon S, Hadjadj S, Merhi Y. Estradiol blocks the induction of CD40 and CD40L expression on endothelial cells and prevents neutrophiladhesion:an ERa- mediated pathway. Cardiovasc Res,2006,71: 566-573.
    118 Chakrabarti S, Vitseva O, LYu D, Varghese S. The effect of dipyridamole on vascular cell-derived reactive oxygen species. J. Pharmacol. Exp Ther,2005,315: 494-500.
    119 Chakrabarti S, Blair P, Wu C, Freedman JE. Redox state of dipyridamole is a critical determinant for its beneficial antioxidant and anti-inflammatory effects. J. Cardiovasc. Pharmacol,2007,50:449-457.
    120Pignatelli P, Sanguigni V, Paola SG, Lo Coco E. Vitamin C inhibits platelet expression of CD40 ligand. Free Radic. Biol Med,2005,38:1662-1666.
    121 Nannizzi-Alaimo L, Alves VL, Phillips DR. Inhibitory effects of glycoprotein Ilb/IIIa antagonists and aspirin on the release of soluble CD40 ligand during platelet stimulation. Circulation,2003,107:1123-1128.
    122 van Mierlo GJ, den Boer AT, Medema JP, van der Voort El, Fransen MF, Offringa R, Melief C J, Toes RE. CD40 stimulation leads to effective therapy of CD40(-) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc Natl Acad Sci USA,2002,99:5561-5566.
    123 Wurtzen PA, Nissen MH, Claesson MH. Maturation of dendritic cells by recombinant human CD40L-trimer leads to a homogeneous cell population with enhanced surface marker expression and increased cytokine production. Scand J Immunol,2001,53:579-587.
    124 Cantwell MJ, Wierda WG, Lossos IS, Levy R, Kipps TJ. T cell activation following infection of primary follicle center lymphoma B ceils with adenovirus encoding CD154. Leukemia,2001,15:1451-1457.
    125 Tolba KA, Bowers W J, Hilchey SP, Halterman MW, Howard DF, Ginliano RE, Federoff HJ, Rosenblatt JD. Development of herpes simplex virus-1 amplicon-based immunotherapy for chronic lymphocytic leukemia. Blood,2001, 98:287-295.
    126 Kipps TJ, Chu P, Wierda WG. Immunogenetic therapy for B-cell malignancies. Semin Oncol,2000,27:104-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700