分布式卫星干涉合成孔径雷达信号处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
获取地球表面的高精度数字高程模型(Digital Elevation Model, DEM),在军事应用以及国民经济建设方面都具有重要的意义。干涉合成孔径雷达(Interfero-metric Synthetic Aperture Radar, InSAR)在生成数字高程模型方面具有巨大的潜力和广阔的应用前景,以分布式卫星为平台,能够快速高效、大范围地获取地球表面的DEM,完成全球测绘,具有其它测量手段无法比拟的优势。
     本论文以分布式卫星InSAR获取地球表面数字高程模型为主线,重点研究了分布式卫星InSAR信号处理的几个关键技术。全文总体上分为两个部分:第一部分主要研究了单基线分布式卫星InSAR技术,对于普通地形,利用传统的单基线InSAR能够有效地获取这些区域的DEM。然而,对于复杂地形(例如坡度较大的局部区域、山谷和悬崖等),由于存在严重的相位欠采样和高程层叠效应,使这些区域成为单基线InSAR测绘的“盲区”,而多基线InSAR技术是解决此问题的一项关键技术,因此论文第二部分主要针对多基线分布式卫星InSAR技术展开了研究。
     本文的主要工作概括如下:
     1.提出了一种基于相同方位角的方位向预滤波方法。InSAR处理要求用于干涉的SAR图像之间具有很高的相干性,相干性直接决定DEM的高程测量精度。针对空间基线(包括垂直航向基线和沿航向基线)引入的去相干因素,通过对回波数据进行距离向和方位向预滤波处理,能够有效提高SAR图像之间的相干性。我们在对InSAR成像的几何关系和信号模型详细分析的基础上,揭示了雷达回波之间具有相干性的本质,针对方位向预滤波处理,提出在方位向只有具有相同方位角的空间采样位置接收到的雷达回波才具有相干性,能够用于后续的相干干涉处理,并在此基础上提出了一种基于相同方位角的方位向预滤波方法,通过计算机仿真验证了此方法的有效性。
     2.提出了基于粗DEM的SAR图像配准—干涉相位滤波算法。SAR图像配准和干涉相位滤波是InSAR处理中的两大步骤。一方面,InSAR处理要求SAR图像之间的配准精度很高,但实际处理中由于逐点精配准要求的计算量巨大,传统的图像配准算法都是生成少量的控制点,利用一定准则求取控制点的二维偏移量,再通过一定的模型拟合获得整幅二维图像中每个像素的偏移量。但是对于高程起伏剧烈的地形,或者大幅图像进行配准时,通过简单的多项式拟合求取偏移量会引入较大的误差。另一方面,干涉相位滤波算法总是假定滤波窗口内的样本点满足独立同分布的假设,然而实际中受地形起伏的影响,滤波窗口内的样本点不可能严格满足独立同分布的假设,导致滤波结果偏离真实值。针对上述问题,我们的思路是充分利用已有的粗DEM来提高SAR图像配准和干涉相位滤波的性能,并大大减少运算量。在SAR图像配准中,首先利用粗DEM完成对SAR图像中的每一像素的定位,然后在SAR图像中逐点求取每个像素的二维配准偏移量,从而完成整幅SAR图像的配准。在干涉相位滤波中,为了使滤波窗口内的样本数尽量满足独立同分布,我们利用已知的粗DEM对干涉相位图中的地形信息进行统一补偿,以获取更多的独立同分布样本。
     3.研究了联合单航过和多航过InSAR数据的处理方法。对于坡度平缓的地形,利用单基线InSAR生成的DEM,其精度已经足够,但对于高复杂地形的DEM测绘,则需要利用多基线InSAR技术。在实际中,利用现有的单基线InSAR系统对同一地区进行多次航过重复观测,是一种现实可行的获取多基线InSAR数据的途径。针对以单基线InSAR多次航过获取的多基线干涉数据,我们研究了多次航过之间的干涉基线估计方法和基于干涉相位图的图像配准方法。在干涉基线估计方法中,首先对多次航过的数据分别进行精确的SAR成像、图像配准和干涉相位滤波处理,然后联合两次单航过的相位图对局部高相干区域进行稳健的多基线相位解缠,获得对应目标点的高程信息,最后结合多次航过间的干涉图对多次航过的干涉基线进行解模糊和估计。在干涉相位图的配准方法中,对单航过生成对应的干涉相位图进行配准,而不是直接配准SAR图像,从而避免了多航过SAR图像之间相干性较低导致配准难度大的问题。
     4.提出了一种利用多基线InSAR技术恢复高程层叠区域高程信息的方法。首先研究了在传统窄带阵模型假设条件下利用多基线InSAR解决高程层叠问题的方法,并指出随着SAR图像分辨率的提高和基线长度的增加,窄带阵模型并不完全适用于实际的星载InSAR系统,在此基础上提出了更加符合实际情况的宽带阵模型,并针对此模型提出了两种解决方案,即地形搜索的方法和联合距离像素处理方法,减小甚至消除了层叠的多个地面目标回波包络未完全配准带来的影响,提高了高程估计的稳健性。
It is of great importance to acquire digital elevation model (DEM) of the Earth's surface with high accuracy in the fields of military application as well as national economic construction. Interferometric synthetic aperture radar (InSAR) has tremendous potential and broad prospects in generating highly accurate DEM. Distributed satellite InSAR is capable of acquiring large-scale DEM effectively and accomplishing global DEM generation, possessing fabulous advantages compared with other topography measuring methods.
     The dissertation, with DEM generation by distributed satellite InSAR as the main line, focuses on several key techniques of signal processing. The whole dissertation is composed of the following two parts:In the first part, the single-baseline distributed satellite InSAR (i.e., single pass of two formation-flying satellites) technique is studied. For general topographies, the conventional single-baseline InSAR system with two antenna phase centers has been proved to have the capability to provide the DEMs with high accuracy. However, for complicated topographies containing highly sloping regions or discontinuous surfaces (such as man-made buildings, canyons and steep mountains that exist numerously on the Earth), the performance decreases severely due to the serious undersampling phases and layover phenomena. In this case, the multibaseline InSAR is an effective technique to overcome the drawbacks. Therefore, the second part investigates the multibaseline distributed satellite InSAR (including multi-pass of two formation-flying satellites and single-pass of multiple formation-flying satellites).
     The main work of the dissertation is summarized as follows:
     1. In Chapter 2, an improved method for InSAR azimuth prefiltering is proposed based on the principle of coherence. InSAR data processing requires high coherence between the interferometric SAR images, which directly determines the accuracy of the DEM. For the decorrelation induced by the spatial baseline (including the along-track and cross-track baselines), the azimuth and range prefiltering is performed to increase the coherence effectively. Based on the theoretic analysis of the InSAR imaging geometry and signal models, the principle of coherence is revealed, and then we propose that only the radar echoes received by the space sampling positions with the same azimuth angles are coherent, i.e., available for interferometric processing. An improved method for InSAR azimuth prefiltering is proposed according to the same azimuth angle extension. The computer simulation is also carried out to prove that the proposed algorithm has the ability to improve the coherence between interferometric SAR images.
     2. Chapter 3 presents SAR image coregistration and interferometric phase filtering algorithms based on coarse DEM. On the one hand, InSAR data processing requires high accuracy for the SAR image coregistration. Due to the heavy computation burden, the conventional coregistration algorithms compute the two-dimensional offsets by polynomial fitting of a few control points. However, for complicated topographies or large-scale scenes, the offsets obtained by simply polynomial fitting results in unexpected errors. On the other hand, the phase filtering algorithms always make the assumption that the samples in the local window obey the independent and identically distributed (i.i.d) conditions. But in fact, the obtained samples in the filtering window do not always satisfy the i.i.d conditions due to the terrain changes over the window, thus degrading the phase filtering performance. In order to deal with the above problems, we propose the method that makes full use of the available coarse DEM to assist the operations of SAR image coregistration and interferometric phase filtering with the purposes of increasing the performance and decreasing the computation burden. The proposed method firstly computes the two dimensional shift amounts of each pixel in SAR images according to the coarse DEM and InSAR system parameters. For phase filtering, in order to obtain more i.i.d. samples, we use the interferogram generated by the coarse DEM to compensate the terrain phases of the whole scene.
     3. InSAR data processing in the combination with the single-pass and multi-pass data is investigated in Chapter 4. For the areas with moderately sloped topographies, the conventional single-baseline InSAR system has the ability to generate the DEMs with high accuracy. However, in order to obtain DEMs for hilly and mountainous areas, the multibaseline InSAR is necessary. There exist various ways to acquire multibaseline InSAR data. In practice, it is a feasible way to obtain multibaseline interferometric data by employing repeat passes of a single-baseline InSAR system that exists already. In this case, the methods for estimating the effective baseline length and coregistering interferograms between multiple pass SAR images are proposed. For baseline estimation, the proposed method unwraps local region phases to acquire the heights of multiple ground scattering units by combining multi-pass interferometric data, and then makes full use of multiple targets'heights and the multi-pass interferogram to estimate the effective baseline length. For interferogram coregistration, an innovative strategy is proposed based on the phase gradient, which avoids the difficulties induced by the serious temporal and spatial baseline decorrelation for the coregistration operation of multiple pass SAR images.
     4. Chapter 5 deals with the problem of retrieving heights of layovered terrains using multibaseline InSAR. On the basis of studying conventional methods resolving the layover problem, the drawbacks under the narrow band assumption are revealed, especially for the case of high resolutions and long baselines. In order to complete the envelope alignment, the narrowband array echo model is substituted by the wideband array signal model. Two strategies to solve the wideband array model are proposed, with one called the aligning method and the other the joint range cell processing method. Both of the two strategies have the ability to eliminate or mitigate the effects of envelope misalignment and to increase the robustness of height estimation greatly.
引文
[1]胡鹏,杨传勇,吴艳兰,胡海.新数字高程模型理论、方法、标准和应用.北京:测绘出版社,2007.
    [2]汤国安,刘学军.数字高程模型及地学分析原理与方法。北京:科学出版社,2005.
    [3]李德仁,王树根,周月琴.摄影测量与遥感概论.北京:测绘出版社,2008.
    [4]乔利军.DEM数据提取关键技术研究,国防科学技术大学硕士论文,2005.
    [5]范玖国.三维数字地形图测绘技术的研究,西安科技大学硕士论文,2009.
    [6]P. A. Rosen, S. Hensley, I. R. Joughin, et al. Synthetic Aperture Radar Interferometry. Proceedings of the IEEE,2000,88(3):333-382.
    [7]R. Bamler and P. Hart1. Synthetic Aperture Radar Interferometry. Inverse Problem, 1998,14:R1-R54.
    [8]M. Bartusch, H. Berg, and O. Siebertz. The TanDEM-X mission. In Proc. EUSAR Conf., Friedrichshafen, Germany,2008.
    [9]王超,张红,刘智.星载合成孔径雷达干涉测量.北京:科学出版社,2002.
    [10]索志勇.垂直航迹/沿航迹干涉合成孔径雷达信号处理技术研究.西安:西安电子科技大学,2008.
    [11]M. Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms. John Wiley Sons Inc,1999.
    [12]魏钟铨.合成孔径雷达卫星.北京:科学出版社,2000.
    [13]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [14]王佩军,徐亚明.摄影测量学——测绘工程专业.武汉:武汉大学出版社,2005.
    [15]严荣华,朱武.基于DEM的航空摄影技术设计系统的建立与应用.测绘通报,2003,2:4-7.
    [16]G Krieger, A. Moreira, H. Fiedler, et al, TanDEM-X:A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans, on Geosci. Remote Sensing, 2007,45(11):3317-3341.
    [17]G. Krieger, I. Hajnsek, P. Papathanassiou, et al. Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying. Proceedings of the IEEE, 2010,98(5):816-843.
    [18]R. A. Norheim, V. R. Queija, R. A. Haugerud. Comparison of LIDAR and INSAR DEMs with dense ground control. In Proceedings of the Enviromental Systems Research Institute 2002 User Conference, San Diego, USA,2002.
    [19]M. E. Hodgson, J. R. Jensen, L. Schmidt, et al. An evaluation of LIDAR-and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sensing of Enviroment,2003,84:295-308.
    [20]周淑芳,李增元,范文义等.基于机载激光雷达数据的DEM获取及应用.遥感技术与应用,2007,22(3):356-360.
    [21]A. K. Gabriel, R. M. Goldstein, and H. A. Zebker. Mapping small elevation changes over large areas:Differential radar interferometry. J. Geophys. Res,1989,94: 9183-9191.
    [22]M. Massonnet, M. Rossi, C. Carmona, et al. The displacement field of the Landers earthquake mapped by radar interferometry. Nature,1993,364:138-142.
    [23]U. Wegmuller, and C. L. Werner. SAR interferometric signatures of forest. IEEE Trans.n Geosci. Remote Sensing,1995,33(5):1153-1161.
    [24]M. E. Engahl, M. Borgeaud, and M. Rast. The use of ERS-1/2 tandem interferometric coherence in the estimation of agriculture crop heights. IEEE Trans, on Geosci. Remote Sensing,2001,39(8):1799-1806.
    [25]I. R. Joughin, R. Kwok, M. A. Fahnestock. Interferometric estimation of three-dimensional ice-flow using ascending and descending passes. IEEE Trans.on Geosci. Remote Sensing,1998,36(1):25-37.
    [26]J. Schulz-stellenfleth, J. Horstmann, S. Lehner, et al. Sea surface imaging with an across-track interferometric synthetic aperture radar:The SINEWAVE experiment. IEEE Trans.on Geosci. Remote Sensing,39(9):2017-2028.
    [27]A. E. Rogers and R. P. Ingalls. Venus:Mapping the Surface Reflectivity by Radar Interferometry. Science,1969,165(3895):797-799.
    [28]S. H. Zisk. A New Earth-Based Radar Technique for the Measurement of Lunar Topography. Moon,1972,4(3):296-306.
    [29]L. C. Graham. Synthetic Aperture Radar for Topographic Mapping. Proc IEEE, 1974,62:763-768.
    [30]H. A. Zebker, R. M. Goldstein. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res.,1986,91(B5): 4993-4999.
    [31]R. M. Goldstein, H. A. Zebker, and C. L. Werner. Satellite Radar Interferometry: Two Demensional Phase Unwrapping. Radio Sic.,1988,23(4):713-720.
    [32]A. K. Gabriel and H. A. Zebker, Crossed Orbit Interferometry:Theory and Experimental Results from SIR-B. Int. J. Remote Sensing,1988,9(5):857-872.
    [33]F. Li and R. M. Goldstein. Studies of Multibaseline Spaceborne Interferometric Synthetic Aperture Radar. IEEE Trans. on Geosci. Remote Sensing,1990,28(1): 88-97.
    [34]C. Prati.3-D synthetic aperture radar surveys. Proc. ICASSP-89,1989:2376-2379.
    [35]C. Prati and F. Rocca. Limits to the resolution of elevation maps form stereo SAR images. Int. J. Remote Sensing,1990,11(12):2215-2235.
    [36]C. G. Brown, K. Sarabandi, and L. E. Pierce. Validation of the Shuttle Radar Topography Mission Height Data. IEEE Trans. on Geosci. Remote Sensing,2005, 43(8):1707-1715.
    [37]H. E. Emara and C. T. Leondes. Minimun number os satellites for three-dimensional continuous worldwide coverage. IEEE Trans. on Aerospace and Electronic System,1977,13(2):108-111.
    [38]E. H. Peterson, G. Fotopoulos, and R. E. Zee. A feasibility assessment for low-cost InSAR formation-flying microsatellites. IEEE Trans. on Geosci. Remote Sensing, 2009,47(8):2847-2858.
    [39]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法,西安电子科技大学博士论文,2006.
    [40]D. Massonnet. Capabilities and limitations of the interferometric Cartwheel. IEEE Trans, on Geosci. Remote Sensing,2001,39(3):506-520.
    [41]G. krieger, H. Fiedler, M. Zink, et al. The TanDEM-X mission:a satellite formation for high-resolution SAR interferometry. In Proc. European Radar Conf., Munich Germany,2007:83-86.
    [42]B. Brautigam, J. H. Gonzales, M. Schwerdt, et al. TerraSAR-X instrument calibration results and estension for TanDEM-X. IEEE Trans. on Geosci. Remote Sensing,2010,48(2):702-715.
    [43]Q. Lin, J. Vesecky, and H. Zebker. New Aproaches in Interferometric SAR Data Processing. IEEE Trans, on Geosci. Remote Sensing,1992,30(3):560-567.
    [44]H. A. Zebker and J. Villasenor. Decorrelation in Interferometric radar echoes. IEEE Trans, on Geosci. Remote Sensing,1992,30(5):950-959.
    [45]C. Prati and F. Rocca. Improving Slant-Range Resolution with Multiple SAR Surveys. IEEE Trans. on Aerospace and Electronic System,1993,29(1):135-143.
    [46]F. Gatelli, A. M. Guamieri, F. Parizzi, et al. The Wavenumber Shift in SAR Interferometry. IEEE Trans. on Geosci. Remote Sensing,1994,32(4):855-865.
    [47]D. Just and R. Bamler. Phase Statistics of Interferograms with Applications to Synthetic Aperture Radar. Appl. Opt,1994,33(20):4361-4368.
    [48]M. S. Seymour and I. G. Cumming. Maximum Likelihood Estimation for SAR Interferometry. in Proc. IGARSS,Aug.1994:2272-2275.
    [49]D. C. Ghiglia and L. A. Romero. Robust Two-Dimensional Weighted and Unweighted Phase Unwrapping that Uses Fast Transforms and Iterative Methods. J. Opt. Soc.AmerA,1994,11(1):107-177.
    [50]M. D. Pritt, J. S. Shipman. Least-squares Two-Dimensional Phase Unwrapping Using FFT. IEEE Trans. on Geosci. Remote Sensing,1994,32(3):706-708.
    [51]J. Moreira, M. Schwabisch, G. Fornaro, et al. X-SAR Interferometry:First Results. IEEE Trans. on Geosci. Remote Sensing,1995,33(4):950-956.
    [52]M. Schwabisch and S. Geudtner. Improvement of Phase and Coherence Map Quality Using Azimuth Prefiltering:Examples from ERS-1 and X-SAR. In Proc. IGARSS'95, Firenze, Italy.1995:205-207.
    [53]G Fornaro, G. Franceschetti, and R. Lanari. Interferometric SAR Phase Unwrapping Using Green's Formulation. IEEE Trans. on Geosci. Remote Sensing,1996,34(3): 720-728.
    [54]R. Lanari, G Fornaro, D. Riccio, et al. Generation of Digital Elevation Models by using SIR-C/X-SAR Multifrequency Two-Pass Interferometry:The Etna Case Study. IEEE Trans, on Geosci. Remote Sensing,1996,34(5):1097-1114.
    [55]T. J. Flynn. Consistent 2-D Phase Unwrapping Guided by a Quality Map. IEEE Proceedings of the 1996 International Geoscience Remote Sensing Symposium. Lincoln. Nebraska. Piscataway,1996:2057-2059.
    [56]T. J. Flynn. Two-dimensional Phase Unwrapping with Minimum Weighted Discontinuity. J. Opt. Soc. Am. A,1997,14(10):2692-2701.
    [57]G Fornaro, G. Franceschetti, R. Lanari, et al. Interferometric SAR Phase Unwrapping by Using the Finite Element Method. Proc. Inst. Elect. Eng., Radar, Sonar, Navig.,1997,144(5):266-274.
    [58]J. S. Lee, P. Papathanassiou, T. L. Ainsworth, et al. A New Technique for Noise Filtering of SAR Interferometric Phase Images. IEEE Trans.on Geosci. Remote Sensing,1998,36(5):1456-1464.
    [59]M. Costantini. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Trans.on Geosci. Remote Sensing,1998,36(3):913-921.
    [60]A. Ferretti, C. Prati, and F. Rocca. Multibaseline InSAR DEM Reconstruction:the Wavelet Approach. IEEE Trans. on Geosci. Remote Sensing,1999,37(2):705-715.
    [61]R. Bamler, N. Adam, G. W. Davidson, and D. Just. Noise-induce slope distortion in 2-D phase unwrapping by linear estimators with application to SAR interferometry. IEEE Trans. on Geosci. Remote Sensing,1998,36(3):913-921.
    [62]A. Reigber and A. Moreira. First Demomstration of Airborne SAR Tomography Using Multibaseline L-Band Data. IEEE Trans. on Geosci. Remote Sensing,2000, 38(5):2142-2152.
    [63]K. C. Slatton, M. M. Crawford and B. L. Evans. Fusing Interferometric Radar and Laser Altimeter Data to Estimate Surface Topography and Vegetation Heights. IEEE Trans.on Geosci. Remote Sensing,2001,39(11):2470-2482.
    [64]C. L. Martinez and X. Fabregas. Modeling and Reduction of SAR Interferometric Phase Noise in the Wavelet Domain. IEEE Trans. on Geosci. Remote Sensing,2002, 40(12):2553-2566.
    [65]Z. Lu, E. Fielding, M. R. Patrick, et al. Estimating Lava Volume by Precision Combination of Multiple Baseline Spaceborne and Airborne Interferometric Synthetic Aperture Radar:the 1997 Eruption of Okmok Volcano, Alaska. Estimating Lava Volume by Precision,2003,41(6):1428-1436.
    [66]G. Ferraiuolo and G. Poggi. A Bayesian Filtering Technique for SAR Interferometric Phase Fields. IEEE Trans. on Image Processing,2004,13(10):1368-1378.
    [67]G. Ferraiuolo, V. Pascazio and G. Schirinzi. Maximum a Posteriori Estimation of Height Profiles in InSAR Imaging. IEEE Geosci. Remote Sens. Lett.,2004,1(2): 66-70.
    [68]M. Eineder and N. Adam. A Maximum-Likelihood Estimator to Simultaneously Unwrap, Geocode, and Fuse SAR Interferograms from Different Viewing Geometries into One Digital Elevation Model. IEEE Trans, on Geosci. Remote Sensing,2005,43(1):24-36.
    [69]E. Sansosti, P. Berardino, M. Manunta, et al. Geometrical SAR Image Registration. IEEE Trans. on Geosci. Remote Sensing,2006,44(10):2861-2870.
    [70]G. Vasile, E. Trouve, J. S. Lee, et al. Intensity-driven Adaptive-Neighborhood Technique for Polarimetric and Interferometric SAR Parameters Estimation. IEEE Trans, on Geosci. Remote Sensing,2006,44(6):1609-1621.
    [71]G. Vasile, E. Trouve, I. Petillot, et al. High-resolution SAR interferometry: estimation of local frequencies in the context of alpine glaciers. IEEE Trans. on Geosci. Remote Sensing,2008,46(4):1079-1090.
    [72]F. Garestier, P. Dubois-Fernandez, X. Dupuis, et al. PolInSAR Analysis of X-Band Data Over Vegetated and Urban Areas. IEEE Trans. on Geosci. Remote Sensing, 2006,44(2):256-364.
    [73]A. Refice, F. Bovenga, and R. Nutricato. MST-Based Stepwise Connection Strategies for Multipass Radar Data, with Application to Coregistation and Equalization. IEEE Trans. on Geosci. Remote Sensing,2006,44(6):1609-1621. 2006,44(8):2029-2040.
    [74]J. M.Bioucas-Dias and G. Valadao. Phase Unwrapping Via Graph Cuts. IEEE Trans. on Image Processing,2007.16(3):698-709.
    [75]S. Oveisgharan and H. A. Zebker. Estimating Snow Accumulation from InSAR Correlation Observations. IEEE Trans. on Geosci. Remote Sensing,2006,44(6): 1609-1621,2007,45(1):10-20.
    [76]A. Jakobsson, F. Gini and F. Lombardini. Robust estimation of radar reflectivities in multibaseline InSAR. IEEE Trans. on Aerospace and Electronic Systems,2005, 41(2):751-758.
    [77]G. Fornaro, F. Lombardini and F. Serafino. Three-dimensional multipass SAR focusing:experiments with long-term spaceborne data. IEEE Trans. on Geosci. Remote Sensing,2005,43(4):702-714.
    [78]F. Lombardini, M. Montanari and F. Gini. Reflectivity estimation for multibaseline interferometric radar imaging of layover extended sources. IEEE Trans. on Singal Processing,2003,51(6):1508-1519.
    [79]F. Gini and F. Lombardini. Multilook APES for multibaseline SAR interferometry. IEEE Trans, on Singal Processing,2002,50(7):1800-1803.
    [80]M. Santoro, J. I. H. Askne, U. Wegmuller, et al. Observations, Modeling, and Applications of ERS-ENVISAT Coherence Over Land Surfaces. IEEE Trans. on Geosci. Remote Sensing,2007,45(8):2600-2611.
    [81]F. Lombardini and M. Pardini.3-D SAR tompgraphy:the multibaseline sector interpolation approach. IEEE Geosci. Remote Sens. Lett.,2008,5(4):630-634.
    [82]S. Tebaldini. Forest SAR Tomography:a Covariance Matching Approach. IEEE Radar Conference,2008:1-6.
    [83]G. Ferraiuolo, F. Meglio, and G. Schirinzi. DEM reconstruction accuracy in multichannel SAR interferometry. IEEE Trans. on Geosci. Remote Sensing,2009, 47(1):191-201.
    [84]J. M. Espla, T. M. Marin and M. L. Sanchez. A particle filter approach for InSAR phase filtering and unwrapping. IEEE Trans.on Geosci. Remote Sensing,2009, 47(4):1197-1211.
    [85]师瑞荣.机载SAR干涉成像算法研究.中国科学院电子所硕士论文,2002.
    [86]Z. Li, Z. Bao, H. Li, et al. Image autocoregistraion and InSAR interferogram estimation using joint subspace peojection. IEEE Trans. on Geosci. Remote Sensing, 2006,44(2),288-297.
    [87]Z. Li, Z. Bao and Z. Suo. A Joint Image Coregistration, Phase Noise Suppression and Phase Unwrapping Method Based on Subspace Projection for Multibaseline InSAR Systems. IEEE Trans. on Geosci. Remote Sensing,2007,45(3),584-591.
    [88]Z. Suo, Z. Li and Z. Bao. A new strategy to estimate local fringe frequencies for InSAR phase noise reduction. IEEE Geosci. Remote Sens. Lett.,2010,7(4): 771-775.
    [89]J. Guo, Z. Li and Z. Bao. Using multibaseline InSAR to recover layovered terrain considering wideband array problem. IEEE Geosci. Remote Sens. Lett.,2008,5(4): 583-587.
    [90]H. Yu, Z. Li and Z. Bao. A cluster-analysis-based efficient multibaseline phase-unwrapping algorithm. IEEE Trans.on Geosci. Remote Sensing,2011,49(1), 478-487.
    [91]Q. Yu, X. Yang, S. Fu, et al. An Adaptive Contoured Window Filter for Interferometric Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett.,2007, 4(1):23-26.
    [92]Q. Yu, S.Fu, H. Mayer, et al. Coregistration Based on Three Parts of Two Complex Images and Contoured Windows for Synthetic Aperture Radar Interferometry. IEEE Geosci. Remote Sens. Lett.,2007,4(2):288-292.
    [93]于起峰,伏思华.基于条纹方向和条纹等值线的ESPI与InSAR干涉条纹图处理方法.北京:科学出版社,2007.
    [94]H. Xu and C. Kang. Equivalence analysis of accuracy of geolocation models for spaceborne InSAR. IEEE Trans. on Geosci. Remote Sensing,2010,48(1):480-490.
    [95]徐华平,康昌辉,周荫清.直接地理编码与星载干涉SAR测高不确定度的等效性分析.电子与信息学报,2010,32(1):48-53.
    [96]M. Liao, T. Wang, L. Lu, et al. Reconstruction of DEMs from ERS-1/2 Tandem Data in Mountainous Area Facilitated by SRTM Data. IEEE Trans. on Geosci. Remote Sensing,2007,45(7):2325-2335.
    [97]T. Wang, M. Liao, and D. Perissin. InSAR coherence-decomposition analysis. IEEE Geosci. Remote Sens. Lett.2011,7(1):156-160.
    [1]P. A. Rosen, S. Hensley, I. R. Joughin, et al. Synthetic Aperture Radar Interferometry. Proceedings of the IEEE,2000,88(3):333-382.
    [2]H. A. Zebker, S. Hensley, P. Shanker, et al. Geodetically accurate InSAR data processor. IEEE Trans. on Geosci. Remote Sensing,2010,48(12):4309-4321.
    [3]G. Krieger, I. Hajnsek, P. Papathanassiou, et al. Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying. Proceedings of the IEEE, 2010,98(5):816-843.
    [4]H. Li, G. Liao. An estimation method for InSAR interferometric phase based on MMSE criterion. IEEE Trans. on Geosci. Remote Sensing,2010,48(3):1457-1469.
    [5]索志勇.垂直航迹/沿航迹干涉合成孔径雷达信号处理技术研究.西安:西安电子科技大学,2008.
    [6]F. Li and R. M. Goldstein. Studies of Multibaseline Spaceborne Interferometric Synthetic Aperture Radar. IEEE Trans. on Geosci. Remote Sensing,1990,28(1): 88-97.
    [7]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [8]魏钟铨.合成孔径雷达卫星.北京:科学出版社,2000.
    [9]王超,张红,刘智.星载合成孔径雷达干涉测量,北京:科学出版社,2002.
    [10]H. A. Zebker and J. Villasenor. Decorrelation in Interferometric radar echoes. IEEE Trans.n Geosci. Remote Sensing,1992,30(5):950-959.
    [11]R. Touzi, A. Lopes, J. Bruniquel, et al. Coherence estimation for SAR imaginery. IEEE Trans. on Geosci. Remote Sensing,1999,37(1):135-149.
    [12]R. Abdelfattah and J. M. Nicolas. Interferometric SAR coherence magnitude estimation using second kind statistics. IEEE Trans. on Geosci. Remote Sensing, 2006,44(7):1942-1953.
    [13]A. M. Guarnieri and C. Prati. SAR interferometry:a "quick and dirty" coherence estimator for data browsing. IEEE Trans.n Geosci. Remote Sensing,1997,35(3): 660-669.
    [14]袁孝康.星载合成孔径雷达导论,北京:国防工业出版社,2003.
    [15]D. J. Wehdahl. Analysis of ERS Tandem SAR coherence from glaciers, valleys, and fjord ice on Svalbard. IEEE Trans.on Geosci. Remote Sensing,2001,39(9):2029-2039.
    [16]C. Prati and F. Rocca. Improving Slant-Range Resolution with Multiple SAR Surveys. IEEE Trans. on Aerospace and Electronic System,1993,29(1):135-144.
    [17]F. Gatelli, A. Monti Guamieri, F. Parizzi, et al. The Wavenumber Shift in SAR Interferometry. IEEE Trans. on Geosci. Remote Sensing,1994,32(4):855-865.
    [18]M.Schwabisch and D. Geudtner. Improvement of Phase and Coherence Map Quality Using Azimuth Prefiltering:Examples from ERS-1 and X-SAR. in Proc. IGARSS, July,1995:205-207.
    [19]S. H. Hong and J. S. Won. Coherence Improvement of Cross-interferometric Pair by a Block Azimuth Filtering.n Proc. IGARSS, Aug,2006:1240-1242.
    [20]穆冬,干涉合成孔径雷达成像技术研究,南京航空航天大学博士论文,2001.
    [21]张振华.双/多基SAR成像算法研究.西安:西安电子科技大学,2007.
    [22]D. Just and R. Bamler. Phase Statistics of Interferograms with Applications to Synthetic Aperture Radar. Appl. Opt,1994,33(20):4361-4368.
    [23]J. S. Lee, K. W. Hoppel, and S. A. Mango. Intensity and Phase Statistics of Multilook Polarimetric and Interferometric SAR Imagery. IEEE Trans. on Geosci. Remote Sensing,1994,32(5):1017-1028.
    [24]林来兴.小卫星编队飞行及其轨道构成.中国空间科学技术,2001,2(1):23-28.
    [25]林来兴.小卫星围绕空间站飞行动力学和控制研究.中国空间科学技术,1999,19(6):1-6.
    [26]E. H. Peterson, G. Fotopoulos, and R. E. Zee. A feasibility assessment for low-cost InSAR formation-flying microsatellites. IEEE Trans. on Geosci. Remote Sensing, 2009,47(8):2847-2858.
    [27]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法,西安电子科技大学博士论文,2006.
    [28]D. Massonnet. Capabilities and limitations of the interferometric Cartwheel. IEEE Trans, on Geosci. Remote Sensing,2001,39(3):506-520.
    [29]Z. Li, Z. Bao, H. Wang, et al. Performance improvement for constellation SAR using signal processing techniques. IEEE Trans.on Aerospace and Electronic System,2006,42(2):436-452.
    [30]洪文,胡东辉译.合成孔径雷达成像——算法与实现,北京:电子工业出版社, 2007.
    [31]T. Wang, Z. Bao, Z. Zhang, et al. Improving Coherence of Complex Image Pairs Obtained by Along Track Bistatic SARs Using Range-Azimuth Prefiltering. IEEE Trans, on Geosci. Remote Sensing,2008,46(1):3-13.
    [32]Z. Li, H. Wang, T. Su, et al. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems. IEEE Geosci. Remote Sens. Lett.,2005,2(1):82-86.
    [1]H. A. Zebker, S. Hensley, P. Shanker, et al. Geodetically accurate InSAR data processor. IEEE Trans. on Geosci. Remote Sensing,2010,48(12):4309-4321.
    [2]P. A. Rosen, S. Hensley, I. R. Joughin, et al. Synthetic Aperture Radar Interferometry. Proceedings of the IEEE,2000,88(3):333-382.
    [3]H. Li, G. Liao. An estimation method for InSAR interferometric phase based on MMSE criterion. IEEE Trans. on Geosci. Remote Sensing,2010,48(3):1457-1469.
    [4]武楠.干涉合成孔径雷达信号处理技术研究.西安电子科技大学博士论文,2007.
    [5]J. S. Lee, P. Papathanassiou, T. L. Ainsworth, et al. A New Technique for Noise Filtering of SAR Interferometric Phase Images. IEEE Trans, on Geosci. Remote Sensing,1998,36(5):1456-1464.
    [6]J. M. Espla, T. M. Marin and M. L. Sanchez. A particle filter approach for InSAR phase filtering and unwrapping. IEEE Trans.n Geosci. Remote Sensing,2009, 47(4):1197-1211.
    [7]E. Sansosti, P. Berardino, M. Manunta, et al. Geometrical SAR Image Registration. IEEE Trans. on Geosci. Remote Sensing,2006,44(10):2861-2870.
    [8]B. Zitova and J. Flusser. Image registration methods:A survey. Image Vis. Comput., 2003,21(11):977-1000.
    [9]Q. Yu, S.Fu, H. Mayer, et al. Coregistration Based on Three Parts of Two Complex Images and Contoured Windows for Synthetic Aperture Radar Interferometry. IEEE Geosci. Remote Sens. Lett.,2007,4(2):288-292.
    [10]Z. Li, Z. Bao and Z. Suo. A Joint Image Coregistration, Phase Noise Suppression and Phase Unwrapping Method Based on Subspace Projection for Multibaseline InSAR Systems. IEEE Trans. on Geosci. Remote Sensing,2007,45(3),584-591.
    [11]索志勇.垂直航迹/沿航迹干涉合成孔径雷达信号处理技术研究.西安:西安电子科技大学,2008.
    [12]A. A. Cole-Rhodes, K. L. Johnson, J. L. Moigne, et al. Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient. IEEE Trans. on Image Process,2003,12(12):1495-1511.
    [13]N. Y. Martinez, M. Eineder, R. Brcic, et al. TanDEM-X mission:SAR image coregistration aspects. In Proc. European Radar Conf., Aachen, Germany,2010: 576-579.
    [14]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [15]A. K. Gabriel and H. A. Zebker, Crossed Orbit Interferometry:Theory and Experimental Results from SIR-B. Int. J. Remote Sensing,1988,9(5):857-872.
    [16]王彤,保铮,廖桂生.分布式小卫星干涉高程测量.系统工程与电子技术.2004,26(7):856-862.
    [17]P. H. Eichel, D. C. Ghiglia, et al. Spotlight SAR Interferometry for Terrain Elevation Mapping and Interferometric Change Detection. Sandia National Labs Tech. Report, SAND93,1993, (12):2539-2546.
    [18]U. Spagnolini.2-D Phase Unwrapping and Instantaneous Frequency Estimation. IEEE Trans.n Geosci. Remote Sensing,1995,33(3):579-589.
    [19]P. Stoica, and A. Nehorai. MUSIC, Maximum Likelihood, and Cramer-Rao Bound. IEEE Trans. on Acoust. Speech Signal Process,1989,37(5):720-741.
    [20]E. Trouve, M. Caramma, and H. Maytre. Fringe Detection in Noisy Complex Interferograms. Appl. Opt.,1996,35(20):3799-3806.
    [21]N. Wu, D. Z. Feng, and J. Li. A locally adaptive filter of interferometric phase images. IEEE Geosci. Remote Sens. Lett.,2006,3(1):73-77.
    [22]李海.干涉合成孔径雷达信号处理若干关键问题研究.西安:西安电子科技大学博士论文,2008.
    [23]E. Trouve, J. M. Nicolas, and H. Maitre. Improving phase unwrapping techniques by the use of local frequency estimates. IEEE Trans.on Geosci. Remote Sensing, 1998,36(6):1963-1972.
    [24]A. M. Guarnieri and S. Tebaldini. ML-Based Fringe-Frequency Estimation for InSAR. IEEE Geosci. Remote Sens. Lett.,2010,1(7):136-140.
    [25]M. Liao, T. Wang, L. Lu, et al. Reconstruction of DEMs From ERS-1/2 Tandem Data in Mountainous Area Facilitated by SRTM Data. IEEE Trans.on Geosci. Remote Sensing,2007,45(7):2325-2335.
    [26]A. B. Surazakov and V. B. Aizen. Estimating volume change of mountain glaciers using SRTM and map-based topographic data. IEEE Trans. on Geosci. Remote Sensing,2006,44(10):2991-2995.
    [27]Y. Sheng and D. E. Alsdorf. Automated georeferencing and orthorectification of Amazon Basin-wide SAR mosaics using SRTM DEM Data. IEEE Trans. on Geosci. Remote Sensing,2005,43(8):1929-1940.
    [28]Z. Li, Z. Bao, H. Li, et al. Image autocoregistraion and InSAR interferogram estimation using joint subspace peojection. IEEE Trans. on Geosci. Remote Sensing, 2006,44(2),288-297.
    [29]H. Breit, T. Fritz, U. Balss, et al. TerraSAR-X SAR processing and products. IEEE Trans. on Geosci. Remote Sensing,2010,48(2):727-740.
    [30]M. Eineder, N. Adam, R. Bamler, et al. Spaceborne spotlight SAR interferometry with TerraSAR-X. IEEE Trans.n Geosci. Remote Sensing,2009,47(5):1524-1535.
    [31]R. Bamler, F. Meyer and W. Liebhart. Processing of bistatic SAR data from quasi-Stationary configurations. IEEE Trans. on Geosci. Remote Sensing,2007, 45(11):3350-3358.
    [32]E. Sansosti. A simple and exact solution for interferometric and stereo SAR geolocation problem," IEEE Trans. on Geosci. Remote Sensing,2004,42(8):1625-1634.
    [33]张玉祥.人造卫星测轨方法.北京:国防工业出版社,2007.
    [34]南京电子技术研究所.星载雷达手册.北京:电子工业出版社,2005.
    [35]H. Xu and C. Kang. Equivalence analysis of accuracy of geolocation models for spaceborne InSAR. IEEE Trans. on Geosci. Remote Sensing,2010,48(1):480-490.
    [36]G. Krieger, A. Moreira, H. Fiedler, et al, TanDEM-X:A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans. on Geosci. Remote Sensing, 2007,45(11):3317-3341.
    [37]R. Werninghaus and S. Buckreuss. The TerraSAR-X Mission and system design. IEEE Trans. on Geosci. Remote Sensing,2010,48(2):606-614.
    [38]F. Lombardini. Absolute phase retrieval in a three-element synthetic aperture radar interferometer. Proc. CIE Int. Conf. Radar, Beijing, China,1996:309-312.
    [39]J. Holzner and R. Bamler. Burst-Mode and scanSAR interferometry. IEEE Trans. on Geosci. Remote Sensing,2010,48(2):606-614.
    [40]E. Maurer, F. Mrowka, A. Braun, et al. TerraSAR-X mission planning system: automated command generation for spacecraft operations. IEEE Trans. on Geosci. Remote Sensing,2010,48(2):642-648.
    [41]廖明生,田馨,赵卿.TerraSAR-X/TanDEM-X雷达遥感极化及其应用.测绘信息与工程,2007,32(2):44-46.
    [42]M. Kseneman, D. Gleich, and Z. Cucei. Soil moisture estimation using high-resolution spotlight TerraSAR-X data. IEEE Geosci. Remote Sens. Lett.,2011, 8(4):686-690.
    [1]C. G Brown, K. Sarabandi, and L. E. Pierce. Validation of the Shuttle Radar Topography Mission height data. IEEE Trans. on Geosci. Remote Sensing,2005, 43(8):1707-1715.
    [2]A. Koch and C. Heipke. Quality assessment of digital surface models derived from the Shuttle Radar Topography Mission (SRTM). IEEE Internatinal Geosci. Remote Sensing Symposium, IGARSS,2001:2863-2865.
    [3]G. Rufino, A. Moccia, and S. Esposito. DEM generation by means of ERS tandem data. IEEE Trans. on Geosci. Remote Sensing,1998,36(6):1905-1912.
    [4]P. A. Rosen, S. Hensley, I. R. Joughin, et al. Synthetic Aperture Radar Interferometry. Proceedings of the IEEE,2000,88(3):333-382.
    [5]R. M. Goldstein, H. A. Zebker, and C. L. Werner. Satellite Radar Interferometry: Two Demensional Phase Unwrapping. Radio Sic.1988,23(4):713-720.
    [6]刘楠.多发多收干涉合成孔径雷达高程测量关键技术研究.西安:西安电子科技大学,2009..
    [7]F. Li and R. M. Goldstein. Studies of Multibaseline Spaceborne Interferometric Synthetic Aperture Radar. IEEE Trans.n Geosci. Remote Sensing,1990,28(1): 88-97.
    [8]A. Ferretti, C. Prati, and F. Rocca. Multibaseline InSAR DEM Reconstruction:the Wavelet Approach. IEEE Trans. on Geosci. Remote Sensing,1999,37(2):705-715.
    [9]A. Jakobsson, F. Gini and F. Lombardini. Robust estimation of radar reflectivities in multibaseline InSAR. IEEE Trans. on Aerospace and Electronic Systems,2005, 41(2):751-758.
    [10]A. Reigber and A. Moreira. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans. on Geosci. Remote Sensing,2000,38(5): 2142-2152.
    [11]J.Kim and W. Wiesbeck. Investigation of a new multifunctional high performance SAR system concept expoiting MIMO technogy. IEEE International Geosci. Remote Sensing Symposium, IGARSS,2008:221-224.
    [12]M. Neumann, L. Ferro-Famil, and A. Reigber. Estimation of forest structure, ground, and canopy layer characteristics from multibaseline polarimetric interferometric SAR data. IEEE Trans. on Geosci. Remote Sensing,2010,48(3): 1086-1104.
    [13]H. Yu, Z. Li and Z. Bao. A cluster-analysis-based efficient multibaseline phase-unwrapping algorithm. IEEE Trans. on Geosci. Remote Sensing,2011,49(1): 478-487.
    [14]Z. Li, Z. Bao and Z. Suo. A Joint Image Coregistration, Phase Noise Suppression and Phase Unwrapping Method Based on Subspace Projection for Multibaseline InSAR Systems. IEEE Trans. on Geosci. Remote Sensing,2007,45(3):584-591.
    [15]G. Fornro and A. Pauciullo. LMMSE 3-D SAR focusing. IEEE Trans.on Geosci. Remote Sensing,2009,47(1):214-223.
    [16]G. Fornaro, F. Lombardini, and F. Serafini. Three-dimensional multipass SAR focusing:experiments with long-term spaceborne data. IEEE Trans. on Geosci. Remote Sensing,2005,43(4):702-714.
    [17]N. P. Faller and E. H. Meier. First results with the airborne single-pass DO-SAR interferometer. IEEE Trans. on Geosci. Remote Sensing,1995,33(5):1230-1237.
    [18]J. Askne and M. Santoro. Multitemporal repeat pass SAR interferometry of boreal forests. IEEE Trans. on Geosci. Remote Sensing,2005,43(6):1219-1228.
    [19]P. Prats, A. Reigber, and J. J. Mallorqui. Topography-dependent motion compensation for repeat-pass interferometric SAR systems. IEEE Geosci. Remote Sens. Lett.,2005,2(2):206:210.
    [20]F. D. Zan, M. Eineder, G. Krieger, et al. Tandem-L:mission performance and optimization for repeat-pass interferometry. In Proc. European Radar Conf., Aachen, Germany,2010:48-51.
    [21]G. A. Arciniegas, W. Bijker, N. Kerle, et al. Coherence-and amplitude-based analysis of seismogenic damaage in Bam, Iran, using ENVISAT ASAR data. IEEE Trans. on Geosci. Remote Sensing,2007,45(6):1571-1581.
    [22]M. V. Dragosevic and S. Chiu. Space-based motion estimators-evaluation with the first RADARSAT-2 MODEX Data. IEEE Geosci. Remote Sens. Lett.,2009,6(3): 438-442.
    [23]M. Chini, S. Atzori, E. Trasatti, et al. The May 12,2008, (Mw 7.9) Sichuan Earthquake (China):Multiframe ALOS-PALSAR DInSAR analysis of Coseismic deformation. IEEE Geosci. Remote Sens. Lett.,2010,7(2):266-270.
    [24]S. Samsonov. Topographic correction for ALOS PALSAR interferometry. IEEE Trans, on Geosci. Remote Sensing,2010,48(7):3020-3027.
    [25]H. A. Zebker and J. Villasenor. Decorrelation in Interferometric radar echoes. IEEE Trans.n Geosci. Remote Sensing,1992,30(5):950-959.
    [26]郭交,李真芳,保铮.利用相位梯度的干涉条纹图配准方法.西安电子科技大学学报,2011,38(1):110-116.
    [27]G. Krieger, A. Moreira, H. Fiedler, et al, TanDEM-X:A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans.n Geosci. Remote Sensing, 2007,45(11):3317-3341.
    [28]R. Werninghaus and S. Buckreuss. The TerraSAR-X Mission and system design. IEEE Trans.n Geosci. Remote Sensing,2010,48(2):606-614.
    [29]Hai Li, Zhenfang Li, Guisheng Liao, et al. An estimation method for InSAR interferometric phase combined with image auto-coregistration. Science in China, Series F,2006,49(3):386-396.
    [30]G. Corsini, M. Diani, F. Lombardini, et al. Simulated analysis and optimization of a three-antenna airborne InSAR system for topographic mapping. IEEE Trans, on Geosci. Remote Sensing,1999,37(5):2518-2529.
    [31]G. Ferraiuolo, F. Meglio, and G. Schirinzi. DEM reconstruction accuracy in multichannel SAR interferometry. IEEE Trans, on Geosci. Remote Sensing,2009, 47(1):191-201.
    [32]M. Eineder and N. Adam. A maximum-likelihood estimator to simultaneously unwrap, geocode, and fuse SAR interferograms from different viewing geometries into one digital elevation model. IEEE Trans, on Geosci. Remote Sensing,2005, 43(1):24-36.
    [33]E. Sansosti, P. Berardino, M. Manunta, et al. Geometrical SAR Image Registration. IEEE Trans.n Geosci. Remote Sensing,2006,44(10):2861-2870.
    [34]B. Zitova and J. Flusser. Image registration methods:A survey. Image Vis. Comput., 2003,21(11):977-1000.
    [35]A. A. Cole-Rhodes, K. L. Johnson, J. L. Moigne, et al. Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient. IEEE Trans, on Image Process,2003,12(12):1495-1511.
    [36]Y. Lei, D. Munson, R. Koetter, et al. Multibaseline InSAR Terrain Elevation Estimation:a Dynamic Programming Approach. In Proc. IEEE Int. Conf. Image Process,2003:3202-3205.
    [37]W. Xu, E. Chang, L. Kwoh, et al. Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline. In Proc. IEEE Int. Geosci. Remote Sens. Symp., Pasadena,1994:730-732.
    [38]D. C. Ghiglia and L. A. Romero. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Amer ,1994,11(1):107-117..
    [39]李海.干涉合成孔径雷达信号处理若干关键问题研究.西安:西安电子科技大学博士论文,2008.
    [40]P. Stoica and A. Nehorai. MUSIC, Maximum Likelihood, and Cramer-Rao Bound. IEEE Trans, on Acoust. Speech Signal Process,1989,37(5):720-741.
    [41]A. K. Gabriel and H. A. Zebker, Crossed Orbit Interferometry:Theory and Experimental Results from SIR-B. Int. J. Remote Sensing,1988,9(5):857-872.
    [1]G. Krieger, I. Hajnsek, P. Papathanassiou, et al. Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying. Proceedings of the IEEE, 2010,98(5):816-843.
    [2]F. Baselice, G. Ferraioli, and V. Pascazio. DEM reconstruction in layover areas from SAR and auxiliary input data. IEEE Geosci. Remote Sens. Lett.,2009,6(2): 253-257.
    [3]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [4]王青松,时信华,黄海风等.星载干涉SAR阴影及叠掩区域相位重构方法.系 统工程与电子技术,2010,32(4):699-702.
    [5]J. D. Wegner, U. Soeorgel, and A. Thiele. Building extraction in urban scenes from high-resolution InSAR data and optical imagery.2009 Urban Remote Sensing Joint Event.2009:1-6.
    [6]A. Ferro, D. Brunner, L. Bruzzone, et al. On the relationship between double bounce and the orientation of building in VHR SAR images. IEEE Geosci. Remote Sens. Lett,2011,8(4):612-616.
    [7]A. B. Surazakov and V. B. Aizen. Estimating volume change of mountain glaciers using SRTM and map-based topographic data. IEEE Trans. on Geosci. Remote Sensing,2006,44(10):2991-2995.
    [8]C. G. Brown, K. Sarabandi, and L. E. Pierce. Validation of the Shuttle Radar Topography Mission Height Data. IEEE Trans, on Geosci. Remote Sensing,2005, 43(8):1707-1715.
    [9]G. Krieger, H. Fiedler, M. Zink, et al. The TanDEM-X mission:a satellite formation for high-resolution SAR interferometry. In Proc. European Radar Conf., Munich Germany,2007:83-86.
    [10]W. Xu, E. Chang, L. Kwoh, et al. Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline. In Proc. IEEE Int. Geosci. Remote Sens. Symp., Pasadena,1994:730-732.
    [11]A. Ferretti, C. Prati, and F. Rocca. Multibaseline InSAR DEM Reconstruction:the Wavelet Approach. IEEE Trans, on Geosci. Remote Sensing,1999,37(2):705-715.
    [12]M. Eineder and N. Adam. A Maximum-Likelihood Estimator to Simultaneously Unwrap, Geocode, and Fuse SAR Interferograms from Different Viewing Geometries into One Digital Elevation Model. IEEE Trans.on Geosci. Remote Sensing,2005,43(1):24-36.
    [13]刘楠.多发多收干涉合成孔径雷达高程测量关键技术研究.西安:西安电子科技大学,2009..
    [14]张秋玲,王岩飞.利用多基线数据融合提高分布式卫星InSAR系统的干涉相位精度.电子与信息学报,2006,28(11):2011-2014.
    [15]N. K. Spencer and Y. I. Abramovich. Performance analysis of DOA estimation using uniform circular antenna arrays in the threshold region. IEEE international coference on Acustics, Speech, and Signal Processing,2004:233-236.
    [16]T. Marzetta. A new interpretation for Capon's maximum likelihood method of frequency-wavenumber spectral estimation. IEEE Trans. on Acoust. Speech and Signal Process,1983,31(2):445-449.
    [17]廖桂生,保铮,王波.基于高阶累量的盲高分辨率DOA估计及其性能分析.通信学报,1996,17(4):9-14.
    [18]吴云韬,廖桂生,陈建峰.一种色噪声环境下的DOA估计新算法.电子学报,2001,29(12):1605-1607.
    [19]王永良,陈辉,彭应宁等.空间谱估计理论与算法.北京:清华大学出版社,2004.
    [20]A. Jakobsson, F. Gini and F. Lombardini. Robust estimation of radar reflectivities in multibaseline InSAR. IEEE Trans. on Aerospace and Electronic Systems,2005, 41(2):751-758.
    [21]F. Lombardini, M. Montanari and F. Gini. Reflectivity estimation for multibaseline interferometric radar imaging of layover extended sources. IEEE Trans. on Singal Processing,2003,51(6):1508-1519.
    [22]F. Gini and F. Lombardini. Multilook APES for multibaseline SAR interferometry. IEEE Trans. on Singal Processing,2002,50(7):1800-1803.
    [23]F. Lombardini and M. Pardini.3-D SAR tompgraphy:the multibaseline sector interpolation approach. IEEE Geosci. Remote Sens. Lett.,2008,5(4):630-634.
    [24]F. Bordoni, F. Lombardini, F. Gini, et al. Multibaseline cross-track SAR interferometry using interpolated arrays. IEEE Trans. on Aerospace and Electronic Systems,2005,41(4):1472-1480.
    [25]F. Gini and F. Lombardini. Multibaseline cross-track SAR interferometry:a signal processing perspective. IEEE A&E Systems Magazine,2005,20(8):71-93.
    [26]F. Gini, F. Lombardini, and M. Montanari. Layover solution in multibaseline SAR interferometry. IEEE Trans. on Aerospace and Electronic Systems,2002,38(4): 1344-1356.
    [27]F. Lombardini, L. Robing, J. Ender, et al. Towards a complete processing chain of multibaseline airborne InSAR data for layover scatterers separation.2007 Urban Remote Sensing Joint Event.2009:1-6.
    [28]C.H. Gierull, D. Cerutti-Maori and J. Ender. Ground moving target indication with Tandem satellite constellations. IEEE Geosci. Remote Sens. Lett.,2008,5(4):710-714.
    [29]J. H. Gonzalez, M. Bachmann, R. Scheiber, et al. Definition of ICESat selection criteria for their use as height references for TanDEM-X. IEEE Trans.n Geosci. Remote Sensing,2010,48(6):2750-2757.
    [30]M. Kseneman, D. Gleich, and Z. Cucei. Soil moisture estimation using high-resolution spotlight TerraSAR-X data. IEEE Geosci. Remote Sens. Lett.,2011, 8(4):686-690.
    [31]Z. Li, Z. Bao and Z. Suo. A Joint Image Coregistration, Phase Noise Suppression and Phase Unwrapping Method Based on Subspace Projection for Multibaseline InSAR Systems. IEEE Trans. on Geosci. Remote Sensing,2007,45(3):584-591.
    [32]J. Guo, Z. Li and Z. Bao. Using multibaseline InSAR to recover layovered terrain considering wideband array problem. IEEE Geosci. Remote Sens. Lett.,2008,5(4): 583-587.
    [33]R. Schieiber and A. Moreira. Coregistration of interferometric SAR images using spectral diversity. IEEE Trans.n Geosci. Remote Sensing,2000,38(5):2179-2191.
    [34]刘德树,罗景青,张剑云.空间谱估计及其应用.合肥:中国科学技术大学出版社,1997.
    [35]R. O. Schimidt. Multiple emitter location and signal parameter estimation. IEEE Trans.n Antennas and Propagation,1986,34(3):276-280.
    [36]Z. Li, Z. Bao, H. Li, et al. Image autocoregistraion and InSAR interferogram estimation using joint subspace peojection. IEEE Trans. on Geosci. Remote Sensing, 2006,44(2),288-297.
    [37]Z. Suo, Z. Li, and Z. Bao. A Multi-Channel SAR-GMTI Method Robust to Coregistration Error of SAR Images. IEEE Trans. on Aerospace and Electronic Systems,2010,46(4):2035-2043.
    [38]H. Li, Z. Li, G. Liao, et al. An estimation method for InSAR interferometric phase combined with image auto-coregistration. Science in China, Series F,2006,49(3): 386-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700