星载SAR影像定位和从星载InSAR影像自动提取高程信息的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对遥感图像的应用,目标位置的确定是一件非常重要的事情。目标的位置参数在空间遥感中是一个基本的信息量,它是地形测绘、灾害监测、资源普查、变化检测等一切遥感应用的基础信息。如何对遥感图像进行精确定位及从遥感图像获取地面三维信息一直是遥感研究的重点和热点。合成孔径雷达(SAR)具有全天候、大范围、有一定穿透力等优点,被选作本文空间定位研究的对象。在SAR基础上发展的干涉合成孔径雷达(InSAR),除继承了SAR的优点外,还能提取高精度地面三维的信息,能对地面目标的慢速运动和地壳微小移动做高精度的检测,其在军事、国民经济和科学研究中,有着极广的应用领域。对InSAR技术的研究,在国内外也受到了高度的重视。
     SAR影像的象素定位方法通常有两种。一种做法是:在SAR影像中找出一些位置已经确定的参考点,然后推导影像象元相对于这些点的位置,从而实现SAR影像的象素定位;另外一种是无地面控制点的SAR影像象素定位方法,它的定位模型是Curlander J.C.提出的,并且运用Seasat卫星数据进行了实验,实现了用于海洋冰面运动的监测,精度可达到200米,但没有给出该模型的任何实用的求解方法。与第一种方法相比,该方法有如下优点:(1)不需要在星载SAR的视场中使用任何位置确知的参考点,因此将真正突破现存的地-空定位理论,达到空-空定位水平(绝对定位);(2)其定位精度将仅仅取决于星历数据的准确性、地球模型的有效性、脉冲时延所决定的目标斜距精度、以及成像中多普勒信息的估计精度。因此对于SAR卫星,必须从成像几何特性去着手来实现无控制点的SAR影像精确定位。本文通过仿真研究,找出了各参数对定位精度的影响;通过真实数据的实验,证明了从模型入手的无地面控制点直接定位能获得较好精度。
     InSAR的概念由L.C.Graham于1974年首先提出。由于其对雷达技术和成像技术要求较高,加之也没有专门发射用于干涉雷达处理的卫星,很难得到好的干涉数据,故在此后的一段时间发展比较缓慢。九十年代后,尤其是ERS-2卫星发射后,得到了大量的可用干涉雷达数据,极大地推动了InSAR发展,使其成为雷达和遥感技术研究领域最活跃的热点之一。
     本文对SAR的研究,以星载数据为对象,对无地面控制点的数据实现直接定位,获取其定位精度,并对成像参数对定位的影响进行分析。对InSAR的研究,以最终获取数字高程图为目标。本文研究的主要内容有:成像的原理、成像算法对位置的影响、定位模型、InSAR的原理、InSAR完整的数据处理流程、流程中关键环节的理论和具体实现方法。对InSAR处
    
    理中各环节的论述,以理论为基础,力求简单准确,并给出切实可行的实现方法和准则.在
    对传统方法的分析基础上,对亚象素的配准,平地效应去除,相位的展开及相位到高程的转
    换等算法都进行了分析和改进,提出了自己的想法。最终真实数据的实验结果证明文中的分
    析和提出的算法是可靠的。
     最后对本文所做工作进行了总结,提出了下一步在SAR和InSAR数据处理所应关注的
    目标,文章的基本章节顺序安排如下:
     第一章叙述 SAR技术的现状和发展,提出了本文研究的主要内容;
     第二章介绍了合成孔径雷达的基本原理及其主要工作方式;
     第三章首先对星载SAR的儿何特点进行了分析;然后分析了SAR成像的运动补偿技术,
    并对星载SAR成像算法进行了分析介绍,最后实现了典型RD成像算法;
     第四章详细讲述了SAR定位原理,建立了雷达成像参数对定位影响的关系曲线,并对点
    目标进行模拟研究来验证算法,得到了有价值的结论;最后应用实际数据对算法对模型进行
    了检验;
     第五章阐述了InSAR的基本原理,介绍了对基线估计的方法,给出了影响InsAR高程测
    量精度的主要因素;
     第六章给出了InSAR处理实现的整个流程,对各关键处理步骤进行了详细分析,并给出
    了关键部分的处理算法。最后在VC++环境下开发了InsAR处理软件,并结合实际数据进行
    了验证,表明整个处理流程的分析和处理是正确的、有效的;
     第七章介绍了Gcolmager4.0的基本功能模块,并给出了InSAR算件的整个实现流程;
     最后对本文所做工作进行了总结,提出了下一步在SAR和InSAR数据处理所应关注的
    目标。
     综合本文的研究,取得的主要创新性成果概括如下:
     1、分析成像算法的基础上,实现了星载SAR的R一D成像算法;
     2、对5 AR的特性进行详细分析的基础上,完成了对点目标的仿真;
     3、建立仿真模型,应用仿真模型对各项误差对定位精度的影响进行了理论分析。得出
    从成像来研究定位,多普勒中心频率对定位精度没有影响的结论:
     4、运用实际数据对定位算法进行了实际验证,结果证明定位算法完全正确;
     5、对inSAR数据处理进行了全面和系统的理论研究,并用VC++实现了InSAR的处理
    软件包;
     6、在对传统方法进行分析的基础上,提出了一些新的方法和见解。
How to determine location of target is very important in the application of remote sensing imagery. Location of target is an basic information in remote sensing imagery. It is fundamental for topographic survey, disaster monitoring, resource survey, change detection and so on. How to determine precise location and acquire 3D information by remote sensing is a focus in the remote sensing community. Synthetic Aperture Radar (SAR) is a hot point of research because SAR can observe all-weather and all day, and penetrate some object. Interferometric Synthetic Aperture Radar (InSAR) develops from SAR. Carried forward the merit of SAR, InSAR can acquire high precise DEM or accomplish change detection, such as slow-moving targets or subtle shift of the earth's surface. InSAR is widely applicated in many areas, such as military, civil and scientific research, which make InSAR one of the most active fields in Radar and Remote Sensing nowadays.
    There are two methods of how to determine location of points in SAR imagery. First method: This method looks for some feature points whose precise location, then finish location of points in SAR imagery by deduce relative position of image pixel and the control points. Second method: Its model was first proposed by Curlander J.C in 1982. Tests were conducted using SEASAT SAR imagery, comparing predicted feature location with the location as determined by high precision area maps. Results indicate that location accuracy of 200 meters is attainable with this model. But he didn't explain how to resolve the model in practical application. The method has two merits: 1) It needn't determine location pixel in SAR imagery. The method will make a break in the theory of earth-space location; achieve space-space location (absolute location). 2) Accuracy of location will only be determined by precise of satellite ephemeris, earth model, precise of range by determined pulse delay, estimation of Doppler frequency. So we m
    ust study SAR imaging feature for implement location of SAR imagery with no ground control point. The test results are also promising.
    The concept of InSAR was first proposed by L. C. Graham in 1974. Because of its severe requirement on the raw data pair, no distinct progress was made in about ten years that followed. It is the huge amount of raw data achieved by various spacebome SAR systems (ERS, Radarsat,
    
    
    JERS) after 1990's, which satisfy the request that make research on InSAR technique a focus in the remote sensing.
    In the paper, the location of target from SAR imagery is implemented without GCP and factors that effect position accuracy are analyzed. How to acquire precise DEM from InSAR is also studied in this paper. Main aspects of the paper include principle of SAR imaging, SAR imaging how to influence location of spaceborne SAR, model of location, principle of InSAR, implement chart of InSAR data processing, key principle and the fulfilling of each links of the procedure. Special stress is laid on the illustration to make basic concept and principles accurate, clear and easy to understand. After analyzing traditional algorithm, how to improve accurate of subpixel register, flat-earth remove, phase unwrapping and phase transfer to height is brought forward. Results indicate that algorithm and model is reasonable. Arrangement of chapters and sections are as follows:
    Chapter One presents development and current state of SAR, bring forward main research contents.
    Chapter Two discuss basic principle and primary working of spaceborne SAR.
    Chapter Three analyses geometry of SAR, motion compensation of SAR, and algorithm for spaceborne SAR imaging, implement RD algorithm.
    Chapter Four discusses principle of location of spaceborne SAR, describes the relation between imaging parameter and location of object. Implement simulation of point object and acquire an important conclusion. Final tests were conducted using real data.
    Chapter Five presents basic principle of InSAR, introduce algorithm for estimate baseline. Primary factors which influence the accuracy of DEM obtained f
引文
[1] 周忠谟,易杰军,周琪,GPS卫星测量原理与应用,测绘出版社,1991.
    [2] 郭华东,雷达图像成像机理分析,雷达图像分析与地质应用,科学出版社,1991.
    [3] 张剑清,张祖勋,数字摄影测量学,武汉测绘科技大学出版社,1994.
    [4] 丁鹭飞,耿富录等,雷达原理,西安电子科技大学出版社,1995.
    [5] 王超,利用航天飞机成像雷达干涉数据提取数字高程模型,遥感学报,第一期,1997,pp46-49.
    [6] 袁孝康,星载合成孔径雷达的目标定位方法,上海航天,1997.6,pp51-57.
    [7] 袁孝康,星载合成孔径雷达目标定位误差分析,航天电子对抗,1998.2,pp13-18.
    [8] 胡庆东,干涉SAR图像系统相干性和相位展开算法研究,北京航空航天大学博士学位论文.1998.10.
    [9] 王超,张红,合成孔径雷达干涉测量技术研究进展,遥感知识创新文集,中国科学技术出版社,1999,pp51—60.
    [10] 刘永坦等,雷达成像技术,哈尔滨工业大学出版社,1999.
    [11] 胡庆东等,干涉SAR图像的降噪方法及水平地效应消除,北京航空航天大学学报,1999,Vol.25,No.4,pp402-405.
    [12] 程佩青,数字信号处理教程,清华大学出版社,2000.
    [13] 陈尔学,李增元,星载SAR影像地理编码算法研究,高技术通讯,2000.2,pp53-59.
    [14] 李德仁等,空间信息系统的集成与实现,武汉测绘科技大学出版社,2000.
    [15] 程玉平,SAR成像中几个问题的研究,西安电子科技大学博士论文,2000.
    [16] 廖明生,INSAR影像高精度自动生成干涉图的关键技术研究,武汉测绘科技大学博士论文,2000.
    [17] 郭华东等,雷达对地观测理论与应用,科学出版社,2000.
    [18] 舒宁,微波遥感原理,武汉测绘科技大学出版社,2000.
    [19] 杨杰,廖明生等,从单幅雷达影像提取地面高程信息,武汉测绘科技大学学报,2000.12,pp537-541.
    [20] 魏钟铨等,合成孔径雷达卫星,科学出版社,2001.
    [21] 刘树棠译,现代通信系统—使用MATLAB,西安交通大学出版社,2001.
    
    
    [22] 舒宁,关于雷达影像干涉测量的若干理论问题,武汉大学信息科学学报,2001.4,No26,Vol4,pp155-158.
    [23] 郑倩,合成孔径雷达的处理系统仿真研究,电子科技大学硕士论文.2002.
    [24] 穆冬,干涉合成孔径雷达成像技术研究,南京航空航天大学博士论文,2001.
    [25] 方勇,星载SAR图像空间信息提取技术研究与实践,中国人民解放军信息工程大学测绘学院博士论文,2001.
    [26] 梁维,星载合成孔径雷达地理编码研究与实现,中国科学院电子研究所博士论文,2001.
    [27] 刘国祥等,InSAR技术及其应用中的若干问题,测绘通报,2001.8.
    [28] 李德仁,杨杰,从卫星雷达提取地面高程信息的原理与应用,大地测量与地球动力学,2002.1,pp1-6.
    [29] 吕波,合成孔径雷达R-D成像算法研究,南京航空航天大学硕士论文,2002.
    [30] 张红,D-InSAR与POLinSAR的方法及应用研究,中国科学院遥感应用研究所博士论文,2002.
    [31] 王超,张红,刘智,星载合成孔径雷达干涉测量,科学出版社,2002.
    [32] 袁孝康等,星载合成孔径雷达导论,国防工业出版社,2003.
    [33] 詹总谦,雷达干涉测量中相位解缠算法的研究,武汉大学硕士论文,2003.
    [34] 李平湘,利用InSAR数据提取DEM的理论与技术研究,武汉大学博士论文,2003.
    [35] A.E. Rogers and R.P. Ingalls. Venus:Mapping the surface reflectivity by radar interferometry. Science, 1969, 65:797~799.
    [36] Busbee,B.L., Gollub, G.H., W.Nielson, C., On Direct Methods for Solving Poisson's equations. SIAM Journal of Numerical Analysis, 1970, Vol.7, pp.627-656.
    [37] S.H. Zisk. Anew earth-based radar technique for the measurement of lunar topography. Moon, 1972, 4:296~300.
    [38] L.C.Graham, Synthetic Interferometer Radar for Topographic Mapping. Proc. Of IEEE, June 1974, Vol.62, No.6, pp.763-768.
    [39] John C. Curlander, Location of Spacebome SAR Imagery. IEEE, on GRS, July 1982, Vol. GE-20, No.3.
    [40] Wu, C., Liu, K. Y., Jin, M. Y., Modeling and a Correlation Algorithm for Spaceborne SAR signals, IEEE Trans. Aerosp. Electron. Syst., 1982, Vol. 18, pp.563-575.
    [41] F.K. Li, D.N. Held, et al. Doppler Parameter Estimation for Spaceborne Synthetic Aperture
    
    Radars. IEEE Trans. On GRS, 1985, Vol.23, No.1, pp.47-56.
    [42] H.A.Zebker, R.M. Goldstein. Topographic mapping from interferometric synethic aperture radar observations. J.Geophys. Res, 1986, 91 (B5): 4993~4999.
    [43] R. M. Goldstein, H. A. Zeber, C. L. Werner. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci, 1988, 23(4): 713~720.
    [44] A.K. Gabriel, H.A.Zebker. Crossed orbit interferometry:Theory and experimental results from SIR-B. Int.J.Remote Sens., 1988, 28(1):88~96.
    [45] R.M. Goldstein, H.A.Zeber, and C.L. Werner, Satellite Radar Interferometry: Two-Dimensional Phase Unwrapping. Radio Science, July 1988, Vol.23, No.4, pp713-720.
    [46] Takajo,H., Takahashi, T., Noniterative Method for Obtaining the Exact Solution for the Normal Equation in Least-squares Phase Estimation from the Phase Difference. Optical Society of America. Nov 1988, Vol.5.No. 11, pp. 1818~1827.
    [47] Takajo, H., Takahashi, T., Noninterative Method for Obtaining the Exact Solution for the Normal Equation in Least-squares Phase Estimation from the Phase Difference. Journal of the Optical Society of Americal A, Nov 1988, Vol.5, No.11, pp.1818-1827.
    [48] S.N. Madsen, Estimating the Doppler centroid of SAR Data. IEEE Trans on Aerospace and Electronic Systems, 1989, Vol.25, No.2, pp. 134-140.
    [49] C.Prati, F.Rocca,et al. Seismic Migration for SAR Focusing: Interferometricai Applications. IEEE Trans. On GRS, July 1990, Vol.28, No.4, pp.627-639.
    [50] D.J.Bone, Fourier fringe analysis: The Two-dimensional Phase Unwrapping Problem. Applied Optics, 1991, Vol.30, No.25, pp.3627-3632.
    [51] Ramler, R., Runge, H., PRF ambiguity resolving by wavelength diversity. IEEE Trans. On GRS, 1991,Vol.29, No.6, pp.997-1003.
    [52] J.Dall, A New Frequency Domain Autofocus Algorithm for SAR. Proc. IGARSS'91, California Institute of Technology, Pasadena, California, USA, 1991, pp. 2176-2178.
    [53] Giorgio Franceschetti, Maurizio Miigliaccio, et al., SARAS: A Synthetic Aperture Radar(SAR) Raw Signal Simulator. IEEE Trans. On GRS. January 1992, Vol.30, No. 1, pp. 110-123.
    [54] E Rodriguez, J.M. Martin, Theory and Design of lnterferometric Synthetic Aperture Radars. IEEE proc, April 1992, Vol139, No.2, pp.147-159.
    [55] Qian Lin, Vesecky J.F., Zebker, H. A., Registration of Interferometric SAR Images. IEEE
    
    Trans. OnGRS, 1992, Vol. 2, pp.1579~1581
    [56] H.A.Zeber, and J, Villasenor, Decorrelation in Interferometric Radar Echoes. IEEE Trans. On GRS, Sept 1992, Vol. 30, No.5, pp.950-959.
    [57] Q. Lin, J.F.Vesecky, H.A.Zeber, New approaches in interferometric SAR data processing. IEEE Trans, Geo and Remote Sensing., 1992, Vol.30, no.3,pp.560-567.
    [58] P.H. Eichel, D.C. Ghiglia. Spotlight SAR Interferometry for Terrain Elevation Mapping and Interferometric Change Detection. Sandia National Labs Tech. Report, SAND93, Dec 1993, pp.2539-2546.
    [59] Gatelli F.Guarnieri A.M.,Pasquali P., Prati Claudio, Rocca F, The Wavenumber Shift in SAR Interferometry. IEEE Trans. On Geo.&RS., 1994, Vol.32,pp.855-865.
    [60] Ghiglia D.C., Romero L.A., Robust Two-dimensional Weighted and Unweighted Phase Unwrapping that Uses Fast Transforms and Iterative Methods. J. Opt.Soc. Am. A, 1994, Vol.11, No.1, pp.107-117.
    [61] Q.Lin, J.F.Vesecky, and H.Zebker, Phase unwrapping through fringe-line detection in synthetic aperture radar interferometry. Applied Optics, 1994, Vol.33, No.2, pp.201-208.
    [62] M.D.Pritt, and J.S. Shipman, Least-Squares Two-Dimensional Phase Unwrapping Using FFT's. IEEE Trans. On GRS, May 1994, Vol.32, pp.706-708.
    [63] R.K.Raney, H.Runge, Precision SAR Processing Using Chirp Scaling, IEEE Trans. On GRS, July 1994, Vol.32, No.4, pp.786-799.
    [64] M.D.Pritt, Automated subpixel image registration of remotely sensed imagery. IBM Journal of Research and Development, 1994, Vol.38,No.2, pp. 157-166.
    [65] Franceschetti, G.., Migliaccio, M., Riccio D., SAR raw signal simulation of actual ground sites described in terms of sparse input data. IEEETrans. On GRS, Nov. 1994, Vol. 32, No.6, pp.1160-1169.
    [66] D.Just and R.Bamler, Phase Statistics of Interferograms with Applications to Synthetic Aperture Radar, Applied Optics. July 1994, Vol.33, No.20, pp.4361-4368.
    [67] M. S. Seymour and I.G. Cumming. Maximum Likelihood Estimation for SAR Interferometry. Proc. IGARSS'94, California Institute of Technology, Pasadena, California, USA, August 1994, pp.2272-2275.
    [68] Quiroga, J.A., Bernabeu, E., Phase-unwrapping Algorithm for Noisy Phase-map Processing.
    
    Applied Optics. Oct 1994, Vol.33, No.29, pp.6725~6731.
    [69] Zebker, H.A., et al., Accuracy of Topographic Maps Derived from ERS-1 Interferometric Radar. IEEE Trans. On GRS, 1994, Vol.32, pp.823-836.
    [70] M.Schwabisch, S.Geudtner, Improvement of Phase and Coherence Map Quality Using Azimuth Prefiltering: Examples from ERS-1 and X-SAR. Proc. IGARSS'95, Firenze,Italy. July 1995, pp.205-207.
    [71] N.Marechal, Tomography Formulation on Interferometric SAR for Terrain Elevation Mapping. IEEE Trans, May 1995, Vol.33, pp.726-739.
    [72] A.Currie, C.J. Baker. High Resolution 3-D Radar Imaging. IEEE International Radar Conference'95, 1995, pp.468~472.
    [73] T.J. Flynn, Consistent 2-D phase unwrapping guided by a quality map. Proceedings of the 1996 International Geoscience and Remote Sensing Symposium. Lincoln, NE., May 27-31,1996,IEEE, Piscataway, NJ, 1996, pp.2057-2059.
    [74] M.D.Pritt, Phase Unwrapping by Means of Multigrid Techniques for Interferometric SAR. IEEE Trans. On GRS, 1996, Vol.34, No.3, pp.728-738.
    [75] R.Kramer, O.Loffeld, Phase Unwrapping for SAR Interferometry with Kalman Filters. Conf. Proc. EUSAR'96, Konigswinter, Germany, 1996, pp. 199-202.
    [76] Lado W.Kenyi, Hannes Raggam, Atmospheric Induced Errors in Interferometric DEM Generation. IEEE International. May 1996, Vol.1, pp.353-355.
    [77] A.M. Guarnieri, and C.prati, SAR lnterferometry: A 'Quick and Dirty' Coherence Estimator for Data Browsing. IEEE. Trans.on GRS, May 1997, Vol35, No.3, pp.660-669.
    [78] Reigber, A., Moreira, J., Phase Unwrapping by Fusion of Local and Global Methods. IEEE International, Aug 1997, Vol.2, pp.869-871.
    [79] Hiroshi Kimura, Masahiro Todo, Baseline Estimation Using Ground Points for Interferometric SAR. IEEE Trans. On GRS, 1997, Vol.1, pp.442-444, August.
    [80] Dennis C.Ghiglia, Mark D.Pritt, Two-Dimensional Phase Unwrapping Theory, Algorithms, and Software. A Wiley-Interscience Publication, 1998.
    [81] Howard A.Zebker, Yanping Lu, Phase Unwrapping Algorithms for Radar Interferometry: Residue-cut, Least-squares,and Synthesis Algorithms. Optical Society of America. March 1998, Vol.15, No.3, pp.586~598.
    
    
    [82] D.Carrasco, SAR Interferometry for Digital Elevation Model Generation and Differential Applications. PhD Dissertation, March 1998.
    [83] M.Costantini, A Novel Phase Unwrapping Method Based on Network Programming. IEEE Trans. on GRS, May 1998, Vol.36, No.3, pp.813-821.
    [84] Moreira, A., Scheiber, R., A New Method for Accurate Co-registration of Interferometric SAR Images. IEEE International, July 1998, Vol.2,pp. 1091~1093.
    [85] J.S.Lee, K.P. Papathanassiou, A New Technique for Noise Filtering of SAR Interferometric Phase Images. IEEE Trans. On GRS, Sept 1998, Vol.36, No.5, pp1456-1465.
    [86] E.Trouve, J.M. Nicolas, and H.Maitre, Improving Phase Unwrapping Techniques by the Use of Local Frequency Estimates. IEEE Trans.on GRS, Nov 1998, Vol.36, No.6, pp 1963-1972.
    [87] E.Trouve, J.M.Nicolas, H.Maitre, Improving Phase Unwrapping techniques by the use of Local Frequency Estimates. IEEE Trans. On GRS, Nov 1998, Vol.36, pp 1963-1972.
    [88] Ramon Hanssen, Richard Bamler, Evaluation of Interpolation Kernels for SAR Interferometry. IEEE Trans.On GRS, January 1999, Vol.37, No. 1, pp.318~321.
    [89] W.Xu, I.Cumming, A Region-Growing Algorithm for InSAR Phase Unwrapping. IEEE Trans. On GRS, January 1999, Vol.37, No.1, pp.124-134.
    [90] Ramon Hanssen, Richard Bamler, Evaluation of Interpolation kernels for SAR Interferometry. IEEE Trans. on GRS, January 1999, Vol.37, No. 1, pp.318-321.
    [91] Touzi, R., Lopes, A., Bruniquel, J., and Vachon, P. W., Coherence Estimation for SAR Imagery. IEEE International. Jan 1999, Vol.37, pp.135~149.
    [92] Mehrdad Soumekh, Synthetic Aperture Radar Signal Processing. A Wiley-Interscience Publication, 1999.
    [93] M.Bara, O.Mora, M.Romero, A.Broquetas, Generation of Precise Wide_Area Geocoded Elevation Models with ERS SAR Data. IGARSS'99, 1999.
    [94] Raucoules, D.,Carnec, H., Use of lnterferometric Phase for Co-registration of ERS and SPOT Images. SAR Workshop CEOS'99, Toulouse, France, 1999, pp.113~117.
    [95] R.Aadelfattah, J.M.Nicolas, M.R.Boussema. Impact of Orbit Parameters on DEM Production by SAR Interferometry. IEEE International. 2000. Vol.2, pp.739-741.
    [96] Daiyin Zhu, R.Scheiber, Zhaoda Zhu, lmpects of an Efficient Topography Adaptive Filter on Coherence Estimation and Phase Unwrapping. EUSAR, 2000, pp.319-322.
    
    
    [97] Masaki Kagawa, Hiroshi Hanaizumi, A Phase Unwrapping Method Using Direct Residue Removing. IGARSS' 2000.IEEE Proc, pp.770~772.
    [98] Giorgio Franceschetti, Riccardo Lanari, Synthetic Aperture RADAR PROCESING. CRC Press, 2001.
    [99] Jie Yang, Mingsheng Liao, Daosehng Du, Extraction of DEM from Single SAR Based on Radargrammetry. ICII'2001, Nov 2001, Vol. 1, pp.212-217.
    [100] G.F.Carballo, P.W.Fieguth, Hierarchical Network Flow Phase Unwrapping. IEEE Trans. On GRS, August 2002, Vol.40,No.8, pp. 1695~1708.
    [101] Riadh Abdelfattah, Jean Marie Nicolas, Topographic SAR Interferometry Formulation for High-Precision DEM Generation. IEEE, on GRS, Nov 2002, Vol.40, No. 11, pp.2415~2426.
    [102] Curtis, W. Chen., Howard A. Zeber, Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE International. Aug 2002, Vol.40, No.8, pp.1709~1719.
    [103] Riadh, A., Jean, M. N., Topographic SAR Interferometry Formulation for High-Precision DEM Generation. IEEE International, Nov 2002, Vol.40,No. 11, pp.2415~2426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700