自组织结构的形成及其应用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自组织结构是在一定的内部和外部条件下系统自发形成的有序结构。沉积结晶生长的花样是典型的自组织结构。对自组织结构形成机理的研究不仅具有重要的理论意义,还能指导实际生产从而改善材料的质量和性能。铝阳极氧化形成的具有纳米孔阵列的多孔阳极氧化铝膜也是一种典型的自组织结构,以其为模板再采用气相或液相反应可产生许多金属、半导体及其它材料的纳米阵列。以气相或液相反应合成的氧化锌纳米棒阵列也属此种。自组织形成的纳米结构材料具有重要的意义:一方面,由于纳米材料的独特性质,可望发展出新型的功能材料和功能器件;另一方面,自组织生长纳米结构的方法具有成本低,简单易行的特点,更有实际价值。本文在自组织结构的形成及其应用方面开展了一些研究工作,主要内容包括以下几个方面:
     (1)氯化铵在琼脂凝胶衬底上周期性自组织结构的形成
     我们在琼脂衬底上的氯化铵结晶生长过程中得到了两种奇特的自发形成的形态交替转变的自组织花样。一种是密枝形态和稀枝形态之间的交替性转变,另一种是密枝和zigzag形态之间的交替性转变。在这些形态转变中,枝的变化是在一个包络线上同时发生的,另一方面,转变是不断重复发生的,并且不仅仅发生在晶体生长的末期,所以它们不同于以往报道过的形态转变现象。对这两种交替形态转变的自组织形成机理的研究有助于我们对复杂系统中晶体生长动力学的理解。
     我们对这两种形态交替转变的自组织生长过程进行了研究,发现密枝形态比稀枝和zigzag形态的生长都快很多,并且在形态转变时生长速率也突然发生变化。为了弄清这两种形态交替转变的自组织形成机理,我们通过改变实验条件做了较全面的研究,并得到了一个相图。我们发现氯化铵结晶体的形态由两个主要因素决定,即初始溶液中的琼脂浓度与氯化铵浓度的比值和晶体生长时的相对湿度。在这个相图上有8个典型的花样,由交替性形态转变形成的花样位于某些花样之间。进一步的研究发现,根据宏观形态特征,这些花样可以分为三类:密枝、分形和团簇;而按照微观表面形貌,又可以分为两类:粗糙表面和光滑表面。于是我们对相图进行了重新的分区,并发现根据宏观形态特征的三个分区的分布主要依赖于Ca/CN的值,而根据微观表面形貌得到的两个分区的分布主要依赖于相对湿度的值。我们认为它们分别是由宏观溶质输运动力学和由微观界面生长动力学决定的。我们从这两方面分析了这些不同花样的形成机理,并基于此提出了形态交替转变的自组织形成机理。我们认为这两种形态性交替转变都是由生长界面前端溶质浓度的振荡导致的,而这种振荡又是由在适当的浓度比时晶体生长和溶质输运之间的竞争引起的。这两种交替性形态转变中究竟哪一种出现则依赖于相对湿度,因为相对湿度控制过饱和度。
     (2)琼脂对薄层电沉积锌的沉积物形态的影响
     薄层电沉积中沉积物的不同形态主要依赖于生长界面附近的物理化学环境。我们研究了琼脂对薄层电沉积锌沉积物形态的影响。在我们选择的生长条件下,未加琼脂时,沉积物宏观形态为枝晶型。随着琼脂浓度的增加,规则的枝晶形态逐渐消失,被密枝形态所取代。我们用扫描电镜和X射线衍射仪对沉积物进行了微观晶粒组织和结构特性的分析。从微观上看,枝晶形态由具有择优取向的晶粒有序地排列组成,密枝形态的晶粒则呈随机取向并杂乱分布,其晶粒尺寸也比枝晶形态的小。我们认为宏观上的形态转变是由微观上晶粒择优取向的被抑制导致的,这种抑制是由于琼脂对电结晶过程的随机干扰造成的。晶粒的细化可以认为有两个因素造成:首先,琼脂的添加降低了成核需要的活化能,导致成核率增加;其次,琼脂分子吸附在生长界面上,阻碍电结晶过程,导致晶粒生长速率减小。(3)锡掺杂和铁掺杂的二氧化钛纳米管阵列的形成及其光催化性质
     在各种氧化物半导体光催化剂材料中,二氧化钛被认为是最适合被广泛应用于环境治理的材料。在实际应用方面,TiO2纳米管阵列又相对于其他的结构具有很多的优势,因为它具有比表面积大,并有易操作、易回收的特点。我们利用自组织多孔阳极氧化铝膜结合液相沉积方法分别制备了Sn掺杂和Fe掺杂的TiO2纳米管阵列。用扫描电镜、透射电镜、X射线衍射、紫外—可见吸收光谱对样品的形貌、结构和光学性质进行了分析。我们用紫外光下亚甲基蓝的降解反应考察了Sn掺杂的TiO2纳米管阵列的光催化活性。结果表明适量的Sn掺杂能有效地提高TiO2纳米管阵列的紫外光波段的光催化效率,我们实验中最佳掺Sn量为5.6at%。相对于未掺杂样品,Fe掺杂的TiO2纳米管阵列的紫外—可见吸收光谱上出现吸收边的红移和可见光区光吸收的增强。我们用可见光下亚甲基蓝的降解反应考察了Fe掺杂的TiO2纳米管阵列的光催化活性。结果表明Fe掺杂的TiO2纳米管阵列在可见光照射下具有良好的光催化活性,实验中得到的最佳掺Fe量为5.9at%。
     (4)ZnO@SnO2核壳型纳米棒阵列的制备及其光致发光性质
     用不同材料组成的核壳型一维纳米结构,由于它们具有优良的组合或独特性质以及它们在光电纳米器件应用方面的巨大潜力而引起了人们极大的关注。我们用一个简单的、低成本的方法合成了ZnO@SnO2核壳型纳米棒阵列。我们首先采用水溶液化学生长的方法得到自组织的ZnO纳米棒阵列,然后用液相沉积的方法将SnO2沉积在ZnO纳米棒上。我们用扫描电镜、透射电镜、X射线衍射对样品的形貌、结构进行了分析,并进行了光致发光特性的研究。实验发现,相对于单一的ZnO纳米棒阵列,ZnO@SnO2核壳型纳米棒阵列的光致发光特性显示出明显的紫外和绿光发光峰的增强。
Self-organized structures are ordered structures formed by systems in a spontaneous way under certain inside or outside conditions. Morphologies formed by deposition or crystal growth are the most typical self-organized structure. The study on the formation mechanism of self-organized structures is not only theoretically meaningful, but also can guide the practical manufacturing and thus improve the quality and property of the materials. The porous anodic alumina with nanohole arrays formed by anodization of Al is also a typical self-organized structure, which can be used as template by gas or liquid reactions to fabricate nanoarrays of metal, semiconductor or other materials. The ZnO nanoarrays obtained from gas or liquid reaction also belong to this kind. These nanostructures formed by self-organized process have significant im-portance. On one hand, the nanostructures possess of unique properties, which may lead to the development of new functional materials and devices, one the other hand, the method of self-organization is low cost and simple, which is more practically significant. In this thesis, we carried out some research on the formation and application of self-organized structures, the main contents including the following aspects:
     (1) Alternating morphology transitions in crystallization of NH4Cl on agar plates
     Two novel self-organized patterns formed by spontaneously alternating morphology transitions have been obtained in crystallization of NH4Cl on agar plates. One is the alternating morphology transitions between dense branching morphology and sparse branching morphology, and the other is the alternating morphology transitions between dense branching mor-phology and zigzag branching morphology. In these morphology transitions, the changes of branches happen simultaneously on an envelope, on the other hand, the transitions are continuously repeated, and do not just happen in the final stages of crystallization, so they are different from the previously mentioned morphology transitions. The investigation on the underlying mechanisms of these alternating morphology transitions would be helpful to understand the crystallization dynamics under a complex condition.
     The self-organized growing process of these alternating morphology transitions was investigated, it was found that the dense branching morphology grew faster than the sparse branching morphology and the zigzag morphology, and the growth rate suddenly changed during the transitions. To clarify the self-organized growth mechanism of the two novel al-ternating morphology transitions, overall investigations with various experimental conditions were carried out, and a morphological phase diagram was obtained. It was found out that the mass proportion of agar to NH4Cl and the relative humidity were the key factors to determine the morphologies of the NH4Cl aggregate. There exist eight typical patterns in this morphological phase diagram, and the patterns formed by al-ternating morphology transitions were located between some patterns. Further studies found that based on the macroscopic morphological features, these patterns could be divided into three types:DBM, fractal and cluster, while according to the characteristics of the microscopic surface morphology, these patterns could be divided into two types:rough and smooth surface. Thus we proposed a new partition of the previous morphological phase diagram, and found that the distribution of the three regions divided according to the macroscopic morphological features mainly depend on the value of Ca/CN, while the distribution of the two regions based on the characteristics of microscopic surface morphology mainly depend on the relative humidity. We considered that they were controlled by macroscopic solute transport dynamics and microscopic interfacial growth kinetics, respectively. The formation mechanisms of the different patterns were discussed from these two aspects. Based on this, the self-organized formation mechanisms of the alternating morphology transitions were suggested. We considered that both the two alternating morphology transitions result from the oscillation of solute concentration in front of the growing interface caused by the competition of crystal growth and solute transfer at a moderate mass proportion. Which one of them occurs depends on the relative humidity, which controls the supersaturation.
     (2) Effect of agar on the deposit morphology from thin-layer elec-trodeposition of Zn
     The different morphologies of deposits from the thin-layer elec-trodeposition depend on the physicochemical environment in the vicinity of the growing interface. The effect of agar on the morphology of the Zn deposits from thin-layer electrodeposition was investigated. Under the chosen conditions and without agar, the macroscopic morphology of deposit is dendritic. As the concentration of agar increases, the regular dendritic morphology disappears progressively and gives place to the dense branch morphology. The microscopical grain texture and structural characteristics of the deposits have been investigated by scanning electron microscopy and X-ray diffraction. Microscopically, the den-dritic morphology displays an orderly alignment of grains with a preferred orientation, while the dense branch morphology has a randomly oriented grain texture and diminished grain size compared to that of the dendritic morphology. This macroscopical morphological transition can be asso-ciated to the impediment of preferential oriented growth of grains at the small scale, which is caused by the random perturbations on the electrocrystallization process introduced by agar gel. The refinement of grains caused by the gel can be attributed to two factors. Firstly, agar additives reduce the activation energy of nucleation, so the nucleation rate increases. Secondly, agar molecules adsorb at the growing interface and impede the electrocrystallization process, as a result, the growth rate decreases.
     (3) Formation and photocatalytic properties of Sn-doped and Fe-doped TiO2 nanotube arrays
     Among various oxide semiconductor photocatalysts, TiO2 has been considered to be the most suitable materials for widespread environmental applications. Compared to other structures, TiO2 nanotube arrays show some advantages for practical applications, because of their high specific surface area and easiness in operation, recovery and recycling. We produced Sn-doped and Fe-doped TiO2 nanotube arrays by the template-based LPD method with the self—organized AAO membrane as the template. Their morphologies, structures and optical properties have been investigated by scanning electron microscope, transmission electron microscope, X-ray diffraction, UV-visible absorption spectroscopy. The photocatalytic properties of the Sn-doped nanotube arrays were evaluated with the degradation of methylene blue under UV irradiation. The result showed that doping an appropriate amount of Sn can effectively improve the photocatalytic activity of TiO2 nanotube arrays under UV irradiation, and the optimum dopant amount is found to be 5.6at% in our experiments. The UV-visible absorption spectra of the Fe-doped TiO2 nanotube arrays showed a red shift and an enhancement of the absorption in the visible region compared to the undoped sample. The photocatalytic properties of the Fe-doped TiO2 nanotube arrays were evaluated with the degradation of methylene blue under visible light. The result showed that the Fe-doped TiO2 nanotube arrays exhibited good photocatalytic activities under visible light irradiation, and the optimum dopant amount was found to be 5.9at% in our experiments.
     (4) Synthesis and photoluminescence properties of the ZnO@SnO2 core-shell nanorod arrays
     Coaxial one-dimensional nanostructures consisting of different materials have attracted considerable research attention because of their combined or unique properties and great potential for applications in electronic and optoelectronic nanodevices. We produced ZnO@SnO2 core-shell nanorod arrays by using a very simple and low cost method. In this method, self-organized ZnO nanorod arrays were first obtained by aqueous chemical growth method, and then SnO2 was deposited on the ZnO nanorod arrays by liquid phase deposition method. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction were used to characterize the structure and morphologies of the products. Photoluminescence properties were also investigated. It was found that the ZnOiSnO2 nanorod arrays showed enhanced UV and green emissions compared with the bare ZnO nanorod arrays.
引文
[1]吴彤,自组织方法论研究,清华大学出版社,2001
    [2]孙霞,吴自勤,黄畇,分形原理及其应用,中国科学技术大学出版社,2003
    [3]K. J. Falconer, Fractal geometry, mathematical foundations and applications, Wiley&Son,1990
    [4]褚武扬等,材料科学中的分形,化学工业出版社,2004
    [5]刘立营,王秀峰,章春香,程冰,分形理论及其在无机材料研究中的应用,陶瓷6(2008)22
    [6]张济忠,分形,清华大学出版社,1995
    [7]陈玉华,王勇,李新梅,分形理论在材料表界面研究中的应用现状及展望,表面技术32(2003)8
    [8]T. Vicsek, Fractal Growth Phenomena, World Scientific, Singapore, 1992
    [9]D. W. Schaeffer, Fractal Models and the Structure of Materials, Materials Research Society Bulletin,13(1988)22
    [10]T. A. Witten, L. M. Sander, Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon, Phys. Rev. Let.47(1981)1400
    [11]M. J. Vold, Computer simulation of floc formation in a colloidal suspension, Colloid Sci.18(1963)684
    [12]M. Eden, Proceedings of the Fourth Birkley Symposium, ed. J. Neyman, Univ. California Press, Berkley,1961
    [13]M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, Y. Sawada, Fractal structures of Zinc Metal Leaves Grown by Electrodeposition, Phys. Rev.
    Lett.53(1984)286 [14] Y. Sawada, A. Dougherty, J. P. Gollub, Dendritic and Fractal patterns in Electrolytic Metal Deposites, Phys. Rev. Lett.56(1986)1260
    [15]D. Grier, E. Ben-Jacob, R. Clarke, and L. M. Sander, Morphology and Microstructure in Electrochemical Deposition of Zinc, Phys. Rev. Lett. 56(1986)1264
    [16]F. Sagues, M. Q. Lopez-Salvans, P. Claret, Growth and forms in quasi-two-dimensional electrocrystallization, Phys. Rep.337(2000)97
    [17]E. Ben-Jacob, R. Godbey, N. D. Goldenfeld, J. Koplik, H. Levine, T. Mueller, and L. M. Sander, Experimental Demonstration of the Role of Anisotropy in interfacial pattern formation, Phys. Rev. Lett. 55(1985)1315
    [18]L. Ristroph, M. Thrasher, M. B. Mineev-Weinstein, and H. L. Swinney, Fjords in viscous fingering:Selection of width and opening angle, Phys. Rev. E 74(2006)015201
    [19]H. Honjo, S. Ohta, M. Matsushita, Irregular fractal-like crystal growth of ammonium chloride, J. Phys. Soc. Japan.55(1986)2487
    [20]Jun-ichiro Suda, Mitsugu Matsushita, Kunihide Izumi, Morphological Diversity in the Crystal Growth of Potassium and Rubidium Dichromates in Gelatin Gel, Journal of the Physical Society of Japan 69(2000)124
    [21]M. P. Zorzano, D. Hochberg, M. T. Cuevas, and J.-M. Gomez-Gomez, Reaction-diffusion model for pattern formation in E. coli swarming colonies with slime, Phys. Rev. E 71(2005)031908
    [22]J. I. Wakita, H. Shimada, H. Itoh, T. Matsuyama, and M. Matsushita, Periodic Colony Formation by Bacterial Species Bacillus subtil is, J. Phys. Soc. Jpn 70(2001)911
    [23]钟声,超薄电解质溶液薄膜中的电化学沉积,南京大学博士学位论文,2001
    [24]P. P. Trigueros, F. Sagues, J. Claret, Influence of an inert electrolyte on the morphology of quasi-two-dimensional electrodepsits, Phys. Rev. E 49(1994)4328
    [25]N. Hecker, D. G. Grier, and L. M. Sander, in Fractal Aspects of Materials, edited by R. B. Laibowitz, B. B. Mandelbrot, and D. E. Passoja (Materials Research Society, University Park, PA,1985)
    [26]V. Fleury, M. Rosso, and J. N. Chazalviel, Geometrical aspect of electrodeposition:The Hecker effect, Phys. Rev. A 43(1991)6908
    [27]A. Kuhn and F. Argoul, Spatiotemporal morphological transitions in thin-layer electrodeposition:The Hecker effect, Phys. Rev. E 49(1994)4298
    [28]P. Garik, D. Barkey, E. Ben-Jacob, E. Bochner, N. Broxholm, B. Miller, B. Orr, R. Zamir, Laplace-and Diffusion-Field-Controlled Growth in Electrochemical Deposition, Phys. Rev. Lett.62(1989)2703
    [29]M.-Q. Lopez-Salvans, F. Sagues, J. Claret, and J. Bassas, Further insights on dynamic morphological transitions in quasi-two-dimensional electrodeposition, Phys. Rev. E 56(1997)6869
    [30]K. Q. Zhang, M. Wang, S. Zhong, G. X. Chen, and N. B. Ming, Pattern selection induced by electroconvection in the electrodeposition of iron, Phys. Rev. E 61(2000)5512
    [31]G. Gonzalez, G. Marshall, F. V. Molina, S. Dengra, and M. Rosso, Viscosity effects in Thin-layer electrodeposition, J. Electrochem. Soc. 148(2001)C479
    [32]H. Eba and K. Sakurai, Pattern transition in Cu-Zn binary electrochemical deposition, J. Electroanal. Chem.571(2004)149
    [33]M. Q. Lopez-Salavans, F. Sagues, J. Claret, J. Bassas, Fingering instability in thin-layer electrodeposition:general trends and mor-phological transition, J. Electroanal. Chem.421(1997)205
    [34]M. Wang, N. B. Ming, Alternating Morphology Transitions in Elec-trochemical Deposition, Phys. Rev. Lett.71(1993)113
    [35]H. Honjo, S. Ohta, Dense-granching morphology of an NH4C1 crystal, Phys. Rev. A 45(1992)R8332
    [36]M. Yasui, M. Matsushita, Morphological Changes in Dendritic Crystal Growth of Ammonium Chloride on Agar Plates, J. Phys. Soc. Jpn. 61(1992)2327
    [37]M. Wang, X. Y. Liu, C. S. Strom, P. Bennema, W. van Enckevort, N. B. Ming, Fractal Aggregations at Low Driving Force with Strong Anisotropy, Phys. Rev. Lett.80(1998)3089
    [38]X.Y. Liu, M. Wang, D.W. Li, C. S. Strom, P. Bennema, N. B. Ming, Nucl eat ion-limited aggregation of crystallites in fractal growth, Journal of Crystal Growth 208(2000)687
    [39]D. W. Li, M. Wang, P. liu, R. W. Peng, and N. B. Ming, Spontaneous Correlation of Crystallographic Orientations in Crystallite Aggrega-tion:Physical Origin and Its Influence on Pattern Formation, J. Phys. Chem. B 107(2003)96
    [40]F. J. Lamelas, S. Seader, M. Zunic, C. V. Sloane, M. Xiong, Morphology transitions during the growth of alkali halides from solution, Phys. Rev. B 67(2003)045414
    [41]任刚,陈浩明,多孔型阳极氧化铝膜在纳米结构制备方面的研究和进展,材料导报16(2002)45
    [42]F. Keller, M. S. Hunter, and D. L. Robinson, Structural features of oxide coatings on aluminum, Journal of the Electrochemical Society 100(1953)411
    [43]G. Thompson and G. C. Wood, Anodic films on aluminum, In treatise on materials science and technology, New York:Academic Press,1983
    [44]G. E. Thompson, Y. Xu, P. Skeldon, K. Shimizu, S. H. Han, and G. C. Wood, Anodic oxidation of aluminum, Philosophical Magazine B,55(1987) 651
    [45]G. C. Wood, P. Skeldon, G. E. Thompson, and K. Shimizu, A model for the incorporation of electrolyte species into anodic alumina, Journal of the Electrochemical Society 143(1996)74
    [46]J. P. OSulliva and G. C. Wood, Morphology and mechanism of formation of porous anodic films on aluminium, Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences 317(1970)511
    [47]A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys.84(1989)6023
    [48]J. Siejka and C. Ortega, Study of field-assisted pore formation in compact anodic oxide films on aluminum, J. Electrochem. Soc.124(1977)883
    [49]V. P. Parkhutik and V. I. shershlsky, Theoretical modelling of porous oxide growth on aluminium, J. Phys. D:Appl. Phys.25(1992)1258
    [50]0. Jessensky, F. Muller, and U. Gosele, Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina, Appl. Phys. Lett.72(1998)1173
    [51]H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a twostep replication of honeycomb structures of anodic alumina, Science 268(1995)1466
    [52]H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Highly ordered nanochannel-array architecture in anodic alumina, Applied Physics Letters,71(1997)2770
    [53]张璋,电化学模板辅助新型磁性纳米材料的研究,复旦大学硕士学位论文,2007
    [54]赵彦春,陈淼,徐洮,刘维民,刘相,多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用,化学物理学报17(2004)369
    [55]A. Huczko, Template-based synthesis of nanomaterials, Appl. Phys. A 70(2000)365
    [56]G. Z. Cao, D. W. Liu, Template-based synthesis of nanorod, nanowire, and nanotube arrays, Advances in Colloid and Interface Science 136(2008)45
    [57]T. L. Wade, J.-E. Wegrowe, Template synthesis of nanomaterials, Eur. Phys. J. Appl. Phys.29(2005)3
    [58]J. G. Lu, P. C. Chang, Z. Y. Fan, Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications, Materials Science and Engineering R 52(2006)49
    [59]H. Masuda, K. Yasui, and K. Nishio, Fabrication of Ordered Arrays of Multiple Nanodots Using Anodic Porous Alumina as an Evaporation Mask, Adv. Mater.12(2000)1031
    [60]H. Masuda, M. Satoh. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask, Jpn. J. Appl. Phys.35(1996)1126
    [61]T. R. Kline, M. L. Tian, J.G. Wang, A. Sen, M.W.H. Chan, and Thomas E. Mallouk, Template-Grown Metal Nanowires, Inorganic Chemistry, 45(2006)7555
    [62]C. A. FOSS, Jr. G. L. Hornyak, J. A. Stockert, and C. R. Martin, Tem-plate-Synthesized Nanoscopic Gold Particles:Optical Spectra and the Effects of Particle Size and Shape, J. Pkys. Ckem.98(1994)2963
    [63]R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X.W. Qi, and L. T. Li, Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in Anodic Alumina Membrane, J. Phys. Chem. B 108(2004)16713
    [64]L. Li, Y. Zhang, G. H. Li, X.W. Wang, L. D. Zhang, Synthetic control of large-area, ordered bismuth nanowire arrays, Materials Letters 59(2005)1223
    [65]Bin Wu, John J. Boland, Synthesis and dispersion of isolated high aspect ratio gold nanowires, Journal of Colloid and Interface Science 303 (2006)611
    [66]X. Y. Zhang, G. H. Wen, Y. F. Chan, R. K. Zheng, X. X. Zhang, and N. Wang, Fabrication and magne tic properties of ul tra thin Fe nanowire arrays, Appl. Phys. Lett.83(2003)3341
    [67]J.X. Xu, X.M. Huang, G. Z. Xie, Y. H. Fang, D. Z. Liu, Study on the structures and magnetic properties of Ni, Co-A1203 electrodeposited nanowire array, Materials Research Bulletin 39(2004)811
    [68]S. Wen and J. A. Szpunar, Direct electrodeposition of highly ordered magnetic nickel nanowires on silicon wafer, Micro & Nano Letters,1 (2006)89
    [69]D. J. Sellmyer, M. Zheng, R. Skomski, Magnetism of Fe, Co and Ni nanowires in self-assembled arrays, J. Phys.:Condens. Matter 13(2001) R433
    [70]S. W. Lin, S. C. Chang, R. S. Liu, S. F. Hu, N. T. Jan, Fabrication and magnetic properties of nickel nanowires, Journal of Magnetism and Magnetic Materials 282(2004)28
    [71]J. B an, C. Tie, Z. Xu, et al. Templates ynthesis of an array of nickel nanotubules and its magnetic behavior, Adv. Mater.13(2001)1631.
    [72]S. H. Zhang, Z. X. Xie, Z. Y. Jiang, X. Xu, J. Xiang, R. B. Huang and L. S. Zheng, Synthesis of silver nanotubes by electroless deposition in porous anodic aluminium oxide templates, Chem. Commun. (2004)1106
    [73]Z. G. Hu, C. Kong, Y. X. Han, H. X. Zhao, Y. Y. Yang, H. Y. Wu, Large-scale synthesis of defect-free silver nanowires by electrodeless deposition, Materials letters 61(2007)3931
    [74]P. Kohli, J. E. Wharton,0. braide, C. R.Martin, Template Synthesis of Gold Nanotubes in an Anodic Alumina Membrane, J. Nanosci. Nanotech. 4(2004)605
    [75]X.Y. Yuan, G. S. Wu, T. Xie, Y. Lin, L. D. Zhang, Self-assembly synthesis and magnetic studies of Co-P alloy nanowire arrays, Nanotechnology 15(2004)59
    [76]Brinda B. Lakshmi, Peter K. Dorhout, and Charles R. Martin, Sol-Gel Template Synthesis of Semiconductor Nanostructures, Chem. Mater. 9(1997)857
    [77]H. Q. Cao, X. Q. Qiu, Y. Liang, L. Zhang, M. J. Zhao, Q. M. Zhu, Sol-Gel Template Synthesis and Photoluminescence of n-andp-Type Semiconductor Oxide Nanowires, Chem. Phys. Chem.7 (2006) 497
    [78]G. S. Wu, T. Xie, X.Y. Yuan, Y. Li, L. Yang, Y. H. Xiao, L. D. Zhang, Controlled synthesis of ZnO nanowires or nanotubes via sol-gel template process, Solid State Communications 134(2005)485
    [79]X.Y.Wang, X.Y.Wang, W. G. Huang, P.J.Sebastian, G. Sergio, Sol-gel template synthesis of highly ordered MnO2 nanowire arrays, Journal of power sources,140(2005)211
    [80]Lifang Cheng, Xingtang Zhang, Bin Liu, HongzheWang, Yuncai Li, Yabin Huang and Zuliang Du, Template synthesis and characterization of W03/TiO2 composite nanotubes, Nanotechnology 16(2005)1341
    [81]S. Q. Liu, K. L. Huang, Straightforward fabrication of highly ordered Ti02 nanowire arrays in AAM on aluminum substrate, Solar Energy Materials & Solar Cells 85(2005)125
    [82]M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique, Chemical Physics Letters 363(2002) 123
    [83]H Y Sun, X H Li, W Li, F Li, B T Liu and X Y Zhang, Low-temperature synthesis of wurtzite ZnS single-crystal nanowire arrays, Nanotechnology 18(2007)115604
    [84]Takahashi K, Limmer SJ, Wang Y, et al. Synthesis and electrochemical properties of single-crystal V205 nanorod arrays by template-based electrodeposition, J. PHYS. CHEM. B 108 (2004) 9795
    [85]Oh J, Tak Y, Lee Y, Electrodeposition of Cu2O nanowires using nanoporous alumina template, ELECTROCHEMICAL AND SOLID STATE LETTERS 7(2004)C27
    [86]X. P. Shen, A. H. Yuan, F.Wang, J. M. Hong, Z. Xu, Fabrication of well-aligned CdS nanotubes by CVD-template method, Solid State Com-munications 133(2005)19
    [87]X. P. Shen, H. J. Liu, X. Fan, Y. Jiang, et al. Construction and photoluminescence of In2O3 nanotube array by CVD-template method, Journal of Crystal Growth,276(2004)471-477
    [88]X. P. Shen, M. Han, J. M. Hong, Z. Xue, Z. Xu, Template-based CVD synthesis of ZnS nanotube arrays, Chemical vapor deposition 11(2005)250
    [89]S. Yamanaka, T. Hamaguchi, H. Muta, K. Kurosaki, M. Uno, Fabrication of oxide nanohole arrays by a liquid phase deposition method, Journal of Alloys and Compounds 373(2004)312
    [90]Bae CH, Park SM, Park SC, et al. Array of ultraviolet luminescent ZnO nanodots fabricated by pulsed laser deposition using an anodic aluminium oxide template, Nanotechnology 17(2006)381
    [91]J. Li, C. Papadopoulos, J. M. Xu, M. Moskovits, Highly-ordered carbon nanotube arrays for electronics applications, Appl. Phys. Lett.75(1999) 367
    [92]C.W. Wang, M. K. Li, S. L. Pan, H. L. Li, Well-aligned carbon nanotube array membrane synthesized in porous alumina template by chemical vapor deposition, Chinese Science Bulletin,45(2000)1373
    [93]Q. B. Wu, S. Ren, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, Template-based synthesis of carbon nanofibres and their field emission characteris-tics,Surface and Interface Analysis 36(2002)493
    [94]Fung Suong Ou, M. M. Shaijumon, Lijie Ci, and P. M. Ajayan, Template assembly of tube-in-tube carbon nanotubes grown using Cu as catalyst, Carbon 45(2007)1713
    [95]A. Leela Mohana Reddy and S. Ramaprabhu, Template assisted synthesis of aligned carbon nanotubes and their supercapacitor applications, International Journal of Nanomanufacturing 2(2008)507
    [96]J. Li, M. Moskovits, T. L. Haslett, Nanoscale Electroless Metal Deposition in Aligned Carbon Nanotubes, Chem Mater 10(1998)1963
    [97]周小燕,管状ZnO材料自组织可控生长及光电性能的研究,电子科技大学硕士毕业论文,2004
    [98]Z. L. Wang, Zinc oxide nanostructures:growth, properties and Applications, J. Phys.:Condens. Matter 16(2004)R829
    [99]M.H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science 292(2001)1897
    [100]Z. Y. Fan and J. G. Lu, Zinc Oxide Nanostructures:Synthesis and Properties, Journal of nanoscience and nanotechnology 5(2005)1561
    [101]R. S. Wagner and W. C. Ellis, Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Appl. Phys. Lett.4(1964)89
    [102]P. D. Yang, H. Q. Yan, S. Mao, et al. Controlled growth of ZnOnanowires and their optical properties, Adv. Mater,12(2002)323
    [103]X. Q. Meng, D.X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, L. Dong, Z.Y. Xiao, Y. C. Liu and X. W. Fan, Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing, Chemical Physics Letters 413(2005)450
    [104]A.Umar, S. H. Kim, Y. S.Lee, K. S. Nahm, Y. B. Hahn, Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor-solid growth mechanism:Structural and optical properties, Journal of crystal growth, 282(2005)131
    [105]Y.S. Zhang, L. S. Wang, X.H. Liu, Y. J. Yan, C. Q. Chen, and J. Zhu, Synthesis ofNano/Micro Zinc Oxide Rods and Arrays by Thermal Evaporation Approach on Cylindrical Shape Substrate, J. Phys. Chem. B 109(2005) 13091
    [106]L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lingdquist, Purpose-Built Anisotropic Metal Oxide Material:3D Highly Oriented-Microrod Array of ZnO,J. Phys. Chem. B,105(2001)3350
    [107]L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater.15(2003)464
    [108]B. Postels, H. H. Wehmann, A. Bakin, M. Kreye, D. Fuhrmann, J. Blaesing, A. Hangleiter, A. Krost and A. Waag, Controlled low-temperature fabrication of ZnO nanopillars with a wet-chemical Approach, Nanotechnology 18(2007) 195602
    [109]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, and P. D. Yang, Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays, Angew. Chem. Int. Ed.42(2003)3031
    [110]X.X. Liu, Z.G. Jin, S. J. Bu, J. Zhao, and Z. F. Liu, Growth of ZnO Films with Controlled Morphology by Aqueous Solution Method, J. Am. Ceram. Soc.89(2006)1226
    [111]R. Ghosh, M. Dutta, and D. Basak, Self-seeded growth and ultraviolet photoresponse properties of ZnO nanowire arrays, APPLIED PHYSICS LETTERS 91(2007)073108
    [112]Q Ahsanulhaq, Jin-Hwan Kim and Yoon-Bong Hahn, Controlled selective growth of ZnO nanorod arrays and their field emission properties, Nanotechnology 18(2007)485307
    [113]B. ORegan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353(1991)737
    [114]李春,氧化锌低维结构的可控制制备及其光致发光与场致电子发射性能研究,武汉大学博士学位论文,2008
    [115]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nanowire dye-sensitized solar cells, Nature Materials 4(2005)455
    [116]吕建国,ZnO半导体光电材料的制备及其性能的研究,浙江大学博士学位论文,2005
    [117]M.C. Jeong, B. Y. Oh, M. H. Ham, S. W. Lee, J. M. Myoung, ZnO Nanowire Inserted GaN/ZnO Heterojunction Light-Emitting Diodes, small 3(2007)568
    [118]李光明,杨艳丽h,姚宁,张兵临,史新伟,王新昌,一维Zno纳米结构的场发射研究进展,材料导报21(2007)110
    [119]C J Lee, T J Lee, S C Lyu, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature, Appl. Phys. Lett. 81(2002)3648
    [120]张琦锋,戎懿,陈贤祥等,ZnO纳米线的气相沉积制备及场发射特性,半导体学报,27(2006)1225
    [121]张银洪,贺蕴秋,气敏材料及其传感器选择性研究进展,材料导报19(2005)23
    [122]T.Seiyama, A. Kato, K. Fulishi,M. Nagatani, A new detector for gaseous components using semi conductive thin films, Analytical Chemistry, 34(1962)1502
    [123]J. X. Wang, X. W. Sun, Y. Yang, et al. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications, Nanotechnology 17(2006)4995
    [124]J. Y. Park, D. E. Song, S. S. Kim, An approach to fabricating chemical sensors based on ZnO nanorod arrays, Nanotechnology,19 (2008) 105503
    [125]Wang C H, Chu X F, Wu M M, Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods, Sensors and Actuators B 113(2006)320
    [126]E. J. Suarez-Dominguez and J. A. Betancourt-Mar, Mechanisms of bands and spirals formation during the drying of watery solutions of mercury (Ⅱ) chloride with agar-agar, J. Phys.:Conf. Ser.23(2005)78
    [127]J. A. Betancourt-Mar and E. J. Sudrez-Dominguez, in Thinking in Patterns:Fractals and Related Phenomena in Nature, edited by M. M. Novak, World Scientific, Singapore,2004
    [128]B. Ratajska-Gadomska and W. Gadomski, Water structure in nanopores of agarose gel by Raman spectroscopy, J. Chem. Phys.121 (2004) 12583
    [129]E. Ben-Jacob and P. Garik, The formation of patterns in non-equilibrium growth, Nature 343(1990)523
    [130]H. K. Henisch, Crystals in Gels and liesegang Rings, Cambridge University Press, Cambridge,1988
    [131]A. L. Slade, A. E. Cremers, and H. C. Thomas, The Obstruction Effect in the Self-Diffusion Coefficients of Sodium and Cesium in Agar Gels, J. Phys. Chem.70(1966)2840
    [132]H. Roder, K. Bromann, H. Brune, and K. Kern, Diffusion-Limited Aggregation with Active Edge Diffusion, Phys. Rev. Lett.74(1995)3217
    [133]J. Wu and B. G. Liu, Z. Y. Zhang, and E. G. Wang, Reaction limited aggregation in surfactant-mediated epitaxy, Phys. Rev. B 61(2000)13212
    [134]T. Michely, M. Hohage, M. Bott, and G. Comsa, Inversion of Growth Speed Anisotropy in Two Dimensions, Phys. Rev. Lett.70(1993)3943
    [135]C. H. Claassens, M. J. H. Hoffman, J. J. Terblans and H. C. Swart, Kinetic Monte Carlo Simulation of the Growth of Various Nanostructures through Atomic and Cluster Deposition:Application to Gold Nanostructure Growth on Graphite, J. Phys.:Conf. Ser.29(2006)185
    [136]S. Ogura, K. Fukutani, M. Matsumoto, T. Okano, M. Okada, and T. Kawamura, Dendritic to non-dendritic transitions in Au islands in-vestigated by scanning tunneling microscopy and Monte Carlo simulations, Phys. Rev. B 73(2006)125442
    [137]I. Sunagawa, Growth and Morphology of Crystals, Forma,14(1999)147 [138] P. Bennema, Morphology of crystals determined by a factors, roughening temperature, F faces and connected nets, J. Phys. D:Appl. Phys. 26(1993)B1
    [139]R. F. Xiao, J. I. D. Alexander, and F. Rosenberger, Growth morphologies of crystal surfaces, Phys. Rev. A 43(1991)2977
    [140]S. Gorti, E. L. Forsythe, and M. L. Pusey, Growth Modes and Energetics of (101) Face Lysozyme Crystal Growth, Cryst. Growth Des. 5(2005)473
    [141]L. A. Smith, A. Duncan, G. B. Thomson, K. J. Roberts, D. Machin, and G. McLeod, Crystallisation of sodium dodecyl sulphate from aqueous solution:phase identification, crystal morphology, surface chemistry and kinetic interface roughening, J. Cryst. Growth 263(2004)480
    [142]M. Wang, X. Y. Liu, C. Sun, N. B. Ming, P. Bennema, and W. J. P. van Enckevort, Periodic Roughening Transitions in Diffusion-Limited Growth, Europhys. Lett.41(1998)61
    [143]M. Wang and N. B. Ming, In situ observation of sur-face-tension-induced oscillation of aqueous-solution films in needlelike crystal growth, Phys. Rev. A 44(1991)R7898
    [144]M. Wang and N. B. Ming, Concentration field oscillation in front of a dendrite tip in electrochemical deposition, Phys. Rev. A 45 (1992) 2493
    [145]V. Fleury, Branched fractal patterns in non-equilibrium elec-trochemical deposition from oscillatory nucleation and growth, Nature 390(1997)145
    [146]F. Argoul, A. Kuhn, The influence of transport and reaction processes on the morphology of a metal electrodeposit in thin gap geometry, Physica A 213(1995)209
    [147]B. Sun, X. W. Zou, Z. Z. Jin, Morphological evolution in the electrodeposition of the Pb-Sn binary system, Phys. Rev. E 69 (2004) 067202
    [148]S. Fautrat, P. Mills, Electrochemical deposition with a forced fluid flow inducing a transition from dendrites to disordered ramified morphologies, Phys. Rev. E 53(1996)4990
    [149]T. Nagatani, F. sagues, Morphological Evolution in DLA under Rotating Flow, J. Phys. Soc. Jpn.59(1990) 3447
    [150]L. Lopez-Tomas, J. Claret, and F. Sagues, Quasi-Two-Dimensional Electrodeposition under Forced fluid Flow, Phys. Rev. Lett.71(1993)4373
    [151]M. Wang, W. J. P. van Enckevort, N. B. Ming, P. Bennema, Formation of a mesh-like electrodepositi induced by electroconvection, Nature 367(1994)438
    [152]K.Q. Zhang, M. Wang, S. Zhong, G.X. Chen, N.B. Ming, Pattern selection induced by electroconvection in the electrodeposition of iron, Phys. Rev. E 61(2000)5512
    [153]M. Wang, N.B. Ming, P. Bennema, Pattern formation in noise-reduced electrochemical deposition, Phys. Rev. E 48(1993)3825
    [154]S. Zhong, Y. Wang, M. Wang, M.Z. Zhang, X.B. Yin, R.W. Peng, N.B. Ming Formation of nanostructured copper filaments in electrochemical deposition, Phys. Rev. E 67(2003)061601
    [155]S. Bandyopadhyay, S. Roy, D. Chakravorty, Fractal growth of copper in a gel medium, Solid State Commun.99(1996)835
    [156]S. Banerjee, S. Banerjee, A. Datta, D. Chakravorty, Nanocomposite gel-derived films by fractal growth of silver, Europhys. Lett. 46(1999)346
    [157]B. N. Pal, D. Chakravorty, Pattern Formation of Zinc Nanoparticles in Silica Film by Electrodeposition, J. Phys. Chem. B 110(2006)20917
    [158]D. Barkey, F. Oberholtzer, Q. Wu, Kinetic Anisotropy and Dendritic Growth in Electrochemical Deposition, Phys. Rev. Lett.75(1995)2980
    [159]T. W. Cornelius, J. Brotz, N. Chtanko, D. Dobrev, G. Miehe, R. Neumann, M. E. Toimil Molares, Controlled fabrication of poly-and sin-gle-crystalline bismuth nanowires, Nanotechnology 16(2005)S246
    [160]S.H. Kim, H. J. Sohn, Y. C. Joo, Y. W. Kim, T.H. Yim, H. Y. Lee, T. Kang, Effect of saccharin addition on the microstructure of electrodeposited Fe-36 wt.% Ni alloy, Surf. Coat. Technol.199 (2005) 43
    [161]J. W. Mullin, Crystallisation, Butterworths, London,1972
    [162]L. Oniciu, L. Muresan, Some fundamental aspects of leveling and brightening in metal electrodeposition,J. Appl. Electrochem.21(1991)565
    [163]A. Gomes, M. I. da Silva Pereira, Pulsed electrodeposition of Zn in the presence of surfactants, Electrochim. Acta.51(2006)1342
    [164]M. Paunovic, M. Schlesinger, Fundamentals of electrochemical deposition, Wiley, New York,1998
    [165]D. J. MacKinnon, J. M. Brannen, R. M. Morrison, The effect of thiourea on zinc electrowinning from industrial acid sulphate elec-trolyte, J. Appl. Electrochem.18(1988)252
    [166]D. J. Mackinnon, J. M. Brannen, P. L. Fenn, Characterization of impurity effects in Zinc electrowinning from industrial acid sluphate electrolyte, J. Appl. Electrochem.17(1987)1129
    [167]F. Ganne, C. Cachet, G. Maurin, R. Wiart, E. Chauveau, J. Petitjean, Impedance spectroscopy and modelling of zinc deposition in chloride electrolyte containing a commercial additive, J. Appl. Electrochem. 30(2000)665.
    [168]Z. D. Stankovic, M. Vukovic, The influence of thiourea on kinetic parameters on the cathodic and anodic reaction at different metals in H2SO4 solution, Electrochim. Acta.41(1996)2529
    [169]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science 293(2001)269
    [170]D.S. Bhatkhande, V.G. Pangarka, A. A C M Beenackers, Photocatalytic degradation for environmental applications, J. Chem. Technol. Biotechnol. 77(2001)102
    [171]U.I. Gayaa, A.H. Abdullaha, Heterogeneous photocatalytic deg-radation of organic contaminants over titanium dioxide:A review of fundamentals, progress and problems, J. Photochem. Photobiol. C 9 (2008)1
    [172]0. Carp, C. L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid. State. Ch.32(2004)33
    [173]R. Thiruvenkatachari, S. Vigneswaran, S. Moon, A review on UV/TiO2 photocatalytic oxidation process, Korean J. Chem. Eng.25(2008)64
    [174]A. Fujishima, X. T. Zhang, D. A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep.63(2008)515
    [175]K. Rajeshwar, N. R. de Tacconi, C. R. Chenthamarakshan, Semi-conductor-Based Composite Materials:Preparation, Properties, and Performance, Chem. Mater.13(2001)2765
    [176]S. Biswas, M.F. Hossain, T. Takahashi, Y. Kubota, A. Fujishima, Photophysics and photochemistry of colloidal CdS-TiO2 coupled semi-conductors—photocatalytic oxidation of indole, Thin Solid Films 516 (2008)7313
    [177]D.N. Ke, H. J. Liu, T.Y. Peng, X. Liu, K. Dai, Preparation and photocatalytic activity of W03/TiO2 nanocomposite particles, Mater. Lett. 62(2008)447
    [178]E.M. E1-Maghraby, Y. Nakamura, S. Rengakuji, Composite TiO2-SnO2 nanostructured films prepared by spin-coating with high photocatalytic performance, Catal. Commun.9(2008)2357
    [179]F. Lin, D. M. Jiang, X. M. Ma, The effect of milling atmospheres on photocatalytic property of Fe-doped TiO2 synthesized by mechanical alloying, J. Alloys Compd.470(2009)375
    [180]A. Di Paola, E. Garcia-Lopez, S. Ikeda, G. Marci, B. Ohtani, L. Palmisano, Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2, Catal. Today 75 (2002)87
    [181]J.J. Xu, Y.H. Ao, D.G. Fu, C.W. Yuan, Synthesis of Gd-doped TiO2 nanoparticles under mild condition and their photocatalytic activity, Colloid Surface A 334(2009)107
    [182]J. X. Yu, S. W. Liu, Z. L. Xiu, W. N. Yu, G. J. Feng, Combustion synthesis and pho toca talytic acti vi ties of Bi3+-doped TiO2 nanocrystals, J. Alloys Compd.461 (2008)L17
    [183]Y. A. Cao, W. S. Yang, W. F. Zhang, G. Z. Liu, P. Yue, Improved photocatalytic activity of Sn4t doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition, New. J. Chem.28(2004)218
    [184]S. Z. Chen, P. Y. Zhang, D. M. Zhuang, W. P. Zhu, Investigation of nitrogen doped TiO2 photocatalytic films prepared by reactive magnetron sputtering, Catal. Commun.5(2004)677
    [185]F. Dong, W. R. Zhao, Z. B. Wu, Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect, Nanotechnology 19(2008)365607
    [186]H. F. Yu, Photocatalytic abilities of gel-derived P-doped TiO2,J. Phys. Chem. Solids.68(2007)600
    [187]J.X. Yu, S. W. Liu, Z. L. Xiu, W. N. Yu, G. J. Feng, Synthesis of sulfur-doped TiO2 by solvothermal method and its visible-light photocatalytic activity, J. Alloys Compd.471 (2009)L23
    [188]X. B. Chen, S. S. Mao, Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications, Chem. Rev.107(2007)2891
    [189]M. Anpo, Preparation, Characterization, and Reactivities of Highly Functional Titanium Oxide-Based Photocatalysts Able to Operate under UV-Visible Light Irradiation:Approaches in Realizing High Efficiency in the Use of Visible Light, Bull. Chem. Soc. Jpn.77(2004)1427
    [190]T. Y. Han, C. F. Wu, C. T. Hsieh, Hydrothermal synthesis and visible light photocatalysis of metal-doped titania nanoparticles, J. Vac. Sci. Technol. B 25(2007)430
    [191]Y. Yang, H. Y. Wang, X. Li, C. Wang, Electrospun mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis, Mater. Lett. 63(2009)331
    [192]S. Klosek, D. Raftery, Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol, J. Phys. Chem. B 105(2001) 2815
    [193]S. W. Yang, L. Gao, Photocatalytic activity of nitrogen doped rutile TiO2nanoparticles under visible light irradiation, Mater. Res. Bull.43 (2008)1872
    [194]T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A 265(2004) 115
    [195]J. Zhu, J. Ren, Y.N. Huo, Z.F. Bian, H. X. Li, Nanocrystalline Fe/TiO2 Visible Photocatalyst with a Mesoporous Structure Prepared via a Nonhydrolytic Sol-Gel Route, J. Phys. Chem. C 111(2007) 18965
    [196]A. Kumbhar, G. Chumanov, Synthesis of iron (Ⅲ)-doped titania nanoparticles and its application for photodegradation of sulforho-damine-B pollutant, J. Nanopart. Res.7(2005)489
    [197]W. Y. Teoh, R. Amal, L. Madler, S. E. Pratsinis, Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid, Catal. Today 120(2007)203
    [198]J. F. Zhu, F. Chen, J. L. Zhang, H. J. Chen, M. Anpo, Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization, J. Photochem. Photobiol. A 180 (2006)196
    [199]H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, M. Anpo, Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2, Catal. Today 84(2003)191
    [200]T. Z. Tong, J. L. Zhang, B. Z. Tian, F. Chen, D. N. He, Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation, J. Hazard. Mater.155(2008)572
    [201]Z. Ambrus, N. Balazs, T. Alapi, G. Wittmann, P. Sipos, A. Dombi, K. Mogyorosi, Synthesis, structure and photocatalytic properties of Fe (Ⅲ)-doped TiO2 prepared from TiCl3, Appl. Catal. B 81(2008)27
    [202]M. Salari, S. M. Mousavi khoie, P. Marashi, M. Rezaee, Synthesis of TiO2 nanoparticles via a novel mechanochemical method,J. Alloys Compd. 469 (2009)386
    [203]H. J. Yun, H. Lee, J. B. Joo, W. Kim, J. Yi, Influence of Aspect Ratio of TiO2 Nanorods on the Photocatalytic Decomposition of Formic Acid, J. Phys. Chem. C 8(2009)3050
    [204]Q. J. Li, B. B. Liu, Y. G. Li, R. Liu, X. L. Li, D. M. Li, S. D. Yu, D. D. Liu, P. Wang, B. Li, B. Zou, T. Cui, G. T. Zou, Ethylene glycol-mediated synthesis of nanoporous anatase TiO2 rods and rutile TiO2 self-assembly chrysanthemums, J. Alloys Compd.471(2009)477
    [205]C. Wang, T. M. Wang, S. K. Zheng, Investigation of the photoreactivity of nanocrystalline TiO2 thin film by ion-implantation technique, Physica E 14(2002)242
    [206]F. Sayilkan, M. Asilturk, P. Tatar, N. Kiraz, E. Arpac, H. Sayilkan, Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vis-lights, J. Hazard. Mater.144(2007)140
    [207]J.H. Sun, X.L. Wang J. Y. Sun, R.X. Sun, S. P. Sun, L. P. Qiao, Photocatalytic degradation and kinetics of Orange G using nanosized Sn(IV)/TiO2/AC photocatalyst, J. Mol. Catal. A 260(2006)241
    [208]H. M. Zhang, X. Quan, S. Chen, H. M. Zhao, Y. Z. Zhao, The removal of sodium dodecylbenzene sulfonate surfactant from water using sil-ica/titania nanorods/nanotubes composite membrane with photocatalytic capability, Appl. Surf. Sci.252(2006)8598
    [209]S. H. Zhan, D. R. Chen, X.L. Jiao, Y. Song, Mesoporous TiO2/SiO2 composite nanofibers with selective photocatalytic properties, Chem. Commun. (2007)2043
    [210]J. L. Zhao, X. H. Wang, T. Y. Sun, L. T. Li, Crystal phase transition and properties of titanium oxide nanotube arrays prepared by anodi-zation,J. Alloys Compd.434(2007)792
    [211]S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, P. Schmuki, Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications,Nano Lett.7(2007)1286
    [212]M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, C. P. Tripp, Tem-plate-assisted Fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates, Adv. Mater.16(2004)2052
    [213]T. Mayaalagan, B Viswanathan, U. V. Varadaraju, Fabrication and characterization of uniform TiO2 nanotube arrays by sol-gel template method, Bull. Mater. Sci.29(2006)705
    [214]R. E. Cochran, J. J. Shyue, N. P. Padture, Template-based, near-ambient synthesis of crystalline metal-oxide nanotubes, nanowires and coaxial nanotubes, Acta Mater.55(2007)3007
    [215]M. C. Hsua, I. C. Leub, Y. M. Suna, M. H. Hon, Fabrication of CdS@TiO2 coaxial composite nanocables arrays by liquid-phase deposition, J. Cryst. Growth.285(2005)642
    [216]T. Hamaguchi, M. Uno, S. Yamanaka, Photocatalytic activity of titania nanohole arrays, J. Photochem. Photobiol. A 173(2005)99
    [217]S. K. Zheng, T. M. Wang, W. C. Hao, R. Shen, Improvement of photocatalytic activity of TiO2 thin film by Sn ion implantation, Vacuum 65(2002)155
    [218]L.Q. Jing, H. G. Fu, B. Q. Wang, D. J. Wang, B. F. Xin, S. D. Li, J. Z. Sun, Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles, Appl. Catal. B 62(2006) 282
    [219]F. Fresno, D. Tudela, A. J. Maira, F. Rivera, J. M. Coronado, J. Soria, Triphenyltin hydroxide as a precursor for the synthesis of nanosized tin-doped TiO2 photocatalysts, Appl. Organometal. Chem.20 (2006)220
    [220]H. Sayilkan, Improved photocatalytic activity of Sn4+-doped and undoped TiO2 thin film coated stainless steel under UV-and VIS-irradiation, Appl. Catal. A 319(2007)230
    [221]E. Arpac, F. Sayilkan, M. Asilttlrk, P. Tatar, Nadir Kiraz, H. Sayilkan, Photocatalytic performance of Sn-doped and undoped TiO2 nanostructured thin films under UV and vis-lights, J. Hazard. Mater.140(2007)69
    [222]J. Li, H. C. Zeng, Hollowing Sn-Doped TiO2 Nanospheres via Ostwald Ripening, J. Am. Chem. Soc.129(2007)15839
    [223]F. Fresno, D. Tudela, J. M. Coronado, M. Ferndndez-Garcia, A. B. Hungria, J. Soria, Influence of Sn41 on the structural and electronic properties of Til_xSnxO2 nanoparticles used as photocatalysts, Phys. Chem. Chem. Phys.8(2006)2421
    [224]C. R. Xiong, K. J. Balkus, Mesoporous Molecular Sieve Derived TiO2 Nanofibers Doped with SnO2, J. Phys. Chem. C 111(2007) 10359
    [225]D. Chen, Y. F. Gao, G. Wang, H. Zhang, W. Lu, J. H. Li, Surface Tailoring for Controlled Photoelectrochemical Properties:Effect of Patterned TiO2 Microarrays, J. Phys. Chem. C 111(2007)13163
    [226]S. D. Sharma, D. Singh, K. K. Saini, C. Kant, V. Sharma, S. C. Jain, C. P. Sharma, Sol-gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst, Appl. Catal. A 314(2006)40
    [227]X. Z. Li a, F. B. Li, C. L. Yang, W. K. Ge, Photocatalytic activity of WOx-TiO2 under visible light irradiation, J. Photochem. Photobiol. A 141(2001)209
    [228]X. Z. Li, F. B. Li, Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment, Environ. Sci. Technol.35(2001)2381
    [229]J. Sun, L. Gao, Q. H. Zhang, Synthesizing and Comparing the Photocatalytic Properties of High Surface Area Rutile and Anatase Titania Nanoparticles, J. Am. Ceram. Soc.86(2003)1677
    [230]A. I. Martinez, D. R. Acosta, G. Cedillo, Effect of SnO2 on the photocatalytical properties of TiO2 films, Thin Solid Films 490 (2005) 118
    [231]T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii, S. Ito, A Patterned TiO2(Anatase)/TiO2(Rutile) Bilayer-Type Photocatalyst:Effect of the Anatase/Rutile Junction on the Photocatalytic Activity, Angew. Chem. Int. Ed.41(2002)2811
    [232]T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crys-talline Phases, J. Catal.203(2001)82
    [233]S. Deki, S. Iizuka, K. Akamatsu, M. Mizuhata, A. Kajinami, Fabrication and Structural Control of Fe/Ti Oxide Thin Films with Graded Compositional Profiles by Liquid Phase Deposition, J. Am. Ceram. Soc.88 (2005)731
    [234]X. W. Zhang, M. H. Zhou, L. C. Lei, Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD, Catal. Commun.7(2006)427
    [235]D. H. Kim, H. S. Hong, S. J. Kim, J. S. Song, K. S. Lee, Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying, J. Alloy. Compd.375(2004)259
    [236]D. M. Chen, Z. Y. Jiang, J. Q. Geng, Q. Wang, D. Yang, Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity, Ind. Eng. Chem. Res.46(2007)2741
    [237]Y. Z. Li, T. Kunitake, S. Fujikawa, Efficient Fabrication and Enhanced Photocatalytic Activities of 3D-Ordered Films of Titania Hollow Spheres, J. Phys. Chem. B 110(2006)13000
    [238]Xiang J, Lu W, Hu YJ, Wu Y, Yan H, Lieber CM. Ge/Si nanowire heterostructures as highperformance field-effect transistors, Nature 441(2006)489
    [239]Wang K, Chen JJ, Zhou WL, Zhang Y, Yan YF, Pern J, Mascarenhas A. Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent ConductingOxide Substrates for Solar Cell Ap-plications, Adv Mater 20(2008)3248
    [240]Y. J. Hwang, A. Boukai, P. D. Yang, High Density nSi/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity, Nano Lett 9(2009)410
    [241]J. G. Lu, P. C. Chang, Z. Y. Fan, Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications, Mat Sci Eng R 52(2006)49
    [242]L. C. Tien, D. P. Norton, B. P. Gila, S. J. Pearton, H. T. Wang, B. S. Kang, F. Ren, Detection of hydrogen with Sn02-coated ZnO nanorods, Appl Surf Sci 253(2007)4748
    [243]S. K. Tripathy, T. Sahoo, I. H. Lee, Y. T. Yu, Synthesis, charac-terization and photoluminescence studies of ZnOrod@SnO2 nanocomposites, Mater Lett 61(2007)4690
    [244]L.Shi, Y. M. Xu, S. K. Hark, Y. Liu, S. Wang, L. M. Peng, K. W. Wong, Q. Li, Optical and Electrical Performance of SnO2 Capped ZnO Nanowire Arrays, Nano Lett 7(2007)3559
    [245]T. P. Niesen, M. R. De Guire, Review:deposition of ceramic thin films at low temperatures from aqueous solutions, Solid State Ionics 151 (2002)61
    [246]T. Hamaguchi, N. Yabuki, M. Uno, S. Yamanaka, M. Egashira, Y. Shimizu, T. Hyodo, Synthesis and H2 gas sensing properties of tin oxide nanohole arrays with various electrodes, Sensor Actuat B 113(2006)852
    [247]J. H. Lee, I. C. Leu, M. C. Hsu, Y. W. Chung, M.H. Hon, Fabrication of Aligned TiO2 One-Dimensional Nanostructured Arrays Using a One-Step Templating Solution Approach, J Phys Chem B 109(2005)13056
    [248]K. Tsukuma, T. Akiyama, H. Imai, Liquid phase deposition film of tin oxide, J non-cryst solids 210(1997)48
    [249]A. B. Djurisic, Y. H. Leung, Optical Properties of ZnO Nanostructures, Small 2(2006)944
    [250]J.H. Li, D. X. Zhao, X. Q. Meng, Z.Z.Zhang, J.Y. Zhang, D. Z. Shen, Y. M. Lu, X. W. Fan, Enhanced Ultraviolet Emission from ZnS-Coated ZnO Nanowires Fabricated by Self-Assembling Method, J Phys Chem B 110(2006)14685
    [251]S. Z. Li, C. L. Gan, H. Cai, C. L. Yuan, J. Guo, P. S. Lee, J. Ma, Enhanced photoluminescence of Zn0/Er203 core-shell structure nanorods synthesized by pulsed laser deposition, Appl Phys Lett 90(2007)263106
    [252]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders, J Appl Phys 79(1996)7983
    [253]Y. F. Gao, M. Nagai,Y. Masuda, F. Sato, K. Koumoto, Electrochemical deposition of ZnO film and its photoluminescence properties, J Cryst Growth 286(2006)445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700