基于无机聚合物水泥的新型高性能轻骨料混凝土的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上环境污染最严重的国家之一。由于硅酸盐水泥的大量生产而引发的粉尘及有害和温室气体的排放是解决环境污染的关键问题。基于无机聚合物水泥的高性能轻骨料混凝土是本课题组以绿色环保胶凝材料结合轻骨料混凝土技术而开发的一种新型建筑结构材料。该材料既满足节能、低排放等环保及可持续发展的要求,又具有优良的性能。
     本文围绕无机聚合物水泥及其高性能轻骨料混凝土的制备及性能研究这一课题,系统地研究了无机聚合物水泥的制备与性能优化,并针对无机聚合物水泥高性能轻骨料混凝土的特点提出配合比设计新方法,对其拌合物性能及硬化后混凝土的微细观结构、力学性能和耐久性进行系统研究,深入分析了水胶比、轻骨料体积分数、养护龄期等因素对无机聚合物水泥高性能轻骨料混凝土力学性能的影响规律。
     本文取得的主要研究成果如下:
     1.提出将无机聚合物水泥与轻骨料混凝土结合在一起,利用轻骨料混凝土的材料特点来解决阻碍碱激发胶凝材料推广应用的碱骨料反应问题,这不仅从根本上彻底解决了无机聚合物水泥的碱骨料反应隐患,而且开辟了无机聚合物水泥高性能轻骨料混凝土研究与应用新领域。
     2.提出利用多元复合粉体对无机聚合物水泥进行性能优化,以粒化高炉矿渣粉为主要成分,复合以偏高岭土和粉煤灰,根据它们在碱性环境下的反应速度与反应产物的互补,充分填充内部孔隙,使硬化后浆体更加致密,达到优化性能的目的。
     3.基于多元复合矿粉的无机聚合物水泥净浆,较单一组分或二元复合矿粉净浆,不仅标准稠度用水量及需水量较低,而且具有良好的保水效果。多元复合矿粉净浆的流动度随用水量的增加而增加,两者之间具有明显的线性关系。
     4.根据无机聚合物水泥高性能轻骨料混凝土的特点,结合现有混凝土配合比设计的经验提出配合比设计新方法。根据无机聚合物水泥净浆微观结构及实验数据,建立水胶比与无机聚合物水泥净浆抗压强度关系模型。根据紧密堆积模型(CPM)并通过计算,来解决无机聚合物水泥高性能轻骨料混凝土配合比中的最佳砂率问题。
     5.对无机聚合物水泥高性能轻骨料混凝土进行较系统的力学性能研究,给出的应力-应变曲线模型与实测受压应力-应变曲线吻合较好。实验结果表明,无机聚合物水泥高性能轻骨料混凝土力学性能优于矿渣硅酸盐水泥高性能轻骨料混凝土。
     6.对无机聚合物水泥高性能轻骨料混凝土进行混凝土抗硫酸盐性能研究,无机聚合物水泥高性能轻骨料混凝土在半浸泡实验、全浸泡实验及干湿循环实验条件下的抗硫酸盐侵蚀性能优于矿渣硅酸盐水泥高性能轻骨料混凝土。
China is one of countries suffering the most serious environmental pollution in the world. It is the key issue to solve the environment pollution problem by controlling emissions of dust and harmful greenhouse gases from the mass production of Portland cement. High performance lightweight aggregate concrete based on inorganic polymer cement is a kind of new type high strength lightweight structural building materials developed by our research group, which was combined green environment friendly binders with light weight aggregate concrete technology. It is not only meet the requirements of environmental protection and sustainable development by saving energy and reducing emissions but also have high performance. Focusing on the hot issue of the preparation and properties research of inorganic polymer cement and high performance lightweight aggregate concrete, in this thesis, we made a systematic study of the preparation and performance optimization of inorganic polymer cement. A new method of concrete proportion research to the features of high performance lightweight aggregate concrete based on inorganic polymer cement was proposed. A detailed study on mixture performance research of high performance lightweight aggregate concrete based on inorganic polymer cement and microstructure, mechanical property and durability of hardened concrete was carried out. A deep analysis on the influence law of water-binder ratio, volume fraction of light weight aggregate and age to the mechanical property of high performance lightweight aggregate concrete based on inorganic polymer cement was made.
     The main achievements of the dissertation are as follows:
     1. Inorganic polymer cement was first used in lightweight aggregate concrete to solve the problem of alkali-aggregate reaction in this dissertation. It is not only solved the alkali-aggregate reaction of inorganic polymer cement thoroughly,but also broaden the research and application of high performance lightweight aggregate concrete based on inorganic polymer cement.
     2. Multiple composite powders were first used to optimize the properties of inorganic polymer cement in this dissertation. The main ingredient of multiple composite powders was slag powder and other ingredients of multiple composite powders were metakaolin and fly ash. The mechanism of optimization performance of inorganic polymer cement paste was using the complementarity of reaction speed and reaction products of multiple composite powders to make the hardened paste more dense.
     3. Compared with the paste of inorganic polymer cement based on single component or bi-component mineral powders, the paste of inorganic polymer cement based on multiple composite powders have low water demand and good water-holding capacity. The flowability of the paste of inorganic polymer cement based on multiple composite powders was increased as the water consumption increased, there has obvious linear relationship between the flowability and the water consumption.
     4. A new method of mix design of high performance lightweight aggregate concrete based on inorganic polymer cement had been proposed according the feature of the concrete and adopting the existing experience. A relational model between water-binder ratio and the compressive strength of inorganic polymer cement paste had been build up based on the macroscopic structure model of the paste and test data. The problem of optimal sand ratio of mix design of high performance lightweight aggregate concrete based on inorganic polymer cement had been solved by CPM.
     5. A systematic research of mechanical properties of high performance lightweight aggregate concrete based on inorganic polymer cement was carried out for the first time. A proposed model of σ-ε curve has a good agreement with measured σ-ε curve. The test results showed that the mechanical properties of high performance lightweight aggregate concrete based on inorganic polymer cement was superior to the mechanical properties of high performance lightweight aggregate concrete based on slag portland cement.
     6. The resistance test of sulfate attacks of high performance lightweight aggregate concrete based on inorganic polymer cement was carried out for the first time. The resistance of sulfate attacks of high performance lightweight aggregate concrete based on inorganic polymer cement was superior to the resistance of sulfate attacks of high performance lightweight aggregate concrete based on slag portland cement under the conditions of semi-soak, all-soak and dry-wet cycle.
引文
[1]冯乃谦,邢峰.高性能混凝土技术[M].北京:原子能出版社,2000.
    [2]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [3]P. K MEHTA. Greening of the concrete industry for sustainable development [J]. Concrete International,2002, July:23-28.
    [4]Ellis Gartner. Industrially interesting approaches to "IOW-CO2" cements [J]. Cement and Concrete Research,2004,34:1489-1498.
    [5]Caijun Shi, A. Fernandez Jimenez, Angel Palomo. New cements for the 21st century:The pursuit of an alternative to Portland cement [J]. Cement and Concrete Research,2011,41:750-763.
    [6]A. Palomo, M.W. Grutzeck, M.T. Blanco. Alkali-activated fly ashes A cement for the future [J]. Cement and Concrete Research,1999,29:1323-1329.
    [7]Della M. Roy. Alkali-activated cements Opportunities and challenges [J]. Cement and Concrete Research,1999,29:249-254.
    [8]J. Davidovits. Geopolymers Inorganic polymeric new materials[J]. Journal of Thermal Analysis,1991,37:1633-1656.
    [9]Peter Duxson, John L. Provis, Grant C. Lukey, etal. The role of inorganic polymer technology in the development of 'green concrete'[J]. Cement and Concrete Research,2007,37:1590-1597.
    [10]Hwai-Chung Wu, Peijiang Sun. New building materials from fly ash-based lightweight inorganic polymer [J]. Construction and Building Materials,2007,21: 211-217.
    [11]Divya Khale,Rubina Chaudhary. Mechanism of geopolymerization and factors influencing its development:a review [J]. J Mater Sci,2007,42:729-746.
    [12]王恩,倪文,孙汉.工业固体废弃物制备地质聚合物技术的原理与发展[J].矿产综合利用,2005,2:30-34.
    [13]张书政,龚克成.地聚合物[J].材料科学与工程学报,2003,21:430-436.
    [14]施惠生,吴敏.土聚水泥的聚合反应与研究现状[J].材料导报,2007,21:88-91.
    [15]徐彬,蒲心诚.古代混凝土的卓越耐久性与碱矿渣水泥的发展前景[J].房材与应用,1997,4:23-25.
    [16]Shao-Dong Wang, Karen L. Scrivener. Hydration products of alkali activated slag cement [J]. Cement and Concrete Research,1995,25:561-571.
    [17]P. Duxson, A. Fernandez-Jimenez, J. L. Provis. Geopolymer technology:the current state of the art [J]. J Mater Sci,2007,42:2917-2933.
    [18]A. Fernandez-Jimenez, I. Garci'a-Lodeiro, A. Palomo Durability of alkali-activated fly ash cementitious materials [J]. J Mater Sci,2007,42:3055-3065
    [19]T. Bakharev, J.G. Sanjayana, Y.-B. Cheng. Sulfate attack on alkali-activated slag concrete [J]. Cement and Concrete Research,2002,32:211-216.
    [20]A. Palomo, M.T. Blanco-Varela, M.L. Granizo, etal. Chemical stability of cementitious materials based on metakaolin [J]. Cement and Concrete Research,1999, 29:997-1004.
    [21]Fernando Pacheco-Torgal, Joa-o Castro-Gomes, Said Jalali Alkali-activated binders:A review [J]. Construction and Building Materials,2008,22:1305-1314.
    [22]T. Bakharev. Resistance of geopolymer materials to acid attack[J]. Cement and Concrete Research,2005,35:658-670.
    [23]Hongling Wang, Haihong Li, Fengyuan Yan. Synthesis and mechanical properties of metakaolinite-based geopolymer[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2005,268:1-6.
    [24]F. Puertas, S. Martinez-Ramirez, S. Alonso, T. Vazquez. Alkali-activated fly ash/slag cement Strength behaviour and hydration products [J]. Cement and Concrete Research,2000,30:1625-1632.
    [25]T. Bakharev. Durability of geopolymer materials in sodium and magnesium sulfate solutions[J]. Cement and Concrete Research,2005,35:1233-1246.
    [26]C. Shi, P. Xie Interface between cement paste and quartz sand in alkali-activated slag mortars[J]. Cement and Concrete Research,1998,28:887-896.
    [27]A.R. Brough, A. Atkinson. Sodium silicate-based, alkali-activated slag mortars Part I. Strength, hydration and microstrucrure [J]. Cement and Concrete Research, 2002,32:865-879.
    [28]Morten E. Simonsen, Erik G. Soaard. ESI-MS investigation of the polymerization of inorganic polymers[J]. International Journal of Mass Spectrometry, 2009,285:78-85.
    [29]J. P. HOS, P. G. McCORMICK. Investigation of a synthetic aluminosilicate inorganic polymer[J] Journal of Materials Science,2002,37:2311-2316.
    [30]M. Sofi, J.S.J. van Deventer, P.A. Mendis. Engineering properties of inorganic polymer concretes (IPCs) [J]. Cement and Concrete Research,2007,37:251-257.
    [31]T. Bakharev, J.G. Sanjayan, Y.-B. Cheng. Resistance of alkali-activated slag concrete to alkali-aggregate reaction[J]. Cement and Concrete Research,2001,31: 331-334.
    [32]A. Fernandez-Jimenez, F. Puertas. The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate [J]. Cement and Concrete Research, 2002,32:1019-1024.
    [33]杨立信.前苏联碱矿渣水泥的发展概况[J].水泥,1992,8:40-45.
    [34]杨立信.乌克兰在碱性粉煤灰胶结料方面的研究[J].硅酸盐通报,1992,6:42-45.
    [35]John L. Provis, Chu Zheng Yong, Peter Duxson. Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2009,336:57-63.
    [36]Jonathan L. Bell, Patrick E. Driemeyer, Waltraud M. Kriven. Formation of Ceramics from Metakaolin-Based Geopolymers:Part Ⅰ-Cs-Based Geopolymer[J]. J. Am. Ceram. Soc.,2009,92:1-8.
    [37]J.G.S. van Jaarsveld, J.S.J. van Deventer, G.C. Lukey. The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers [J]. Chemical Engineering Journal,2002,89:63-73.
    [38]Xiaolu Guo, Huisheng Shi, Warren A. Dick Compressive strength and microstructural characteristics of class C fly ash geopolymer [J]. Cement and Concrete Composites,2010,32:142-147.
    [39]丁铸,张德成,卢令超.碱激发多组分胶凝材料的综述[J].水泥,1996,5:3-8.
    [40]曹德光,苏达根,宋国胜.低模数硅酸钠溶液的结构及其键合反应特性[J].硅酸盐学报,2004,32:1036-1039.
    [41]禹尚仁,王悟敏.无熟料硅酸钠矿渣水泥的水化机理[J].硅酸盐学报,1990,18:104-109.
    [42]陈友治,蒲心诚.新型碱矿渣水泥研究[J].重庆建筑大学学报,1998,20:8-13.
    [43]杨立荣,王春梅,封孝信.粉煤灰/矿渣基地聚合物的制备及固化机理研究[J].武汉理工大学学报,2009,31:115-119.
    [44]王国东,樊志国,卢都友.硅铝原料对地聚物制备和性能的影响[J].硅酸盐通报,2009,28:239-244.
    [45]诸华军,姚晓,张祖华.矿渣掺量对偏高岭土基土聚水泥抗压强度及孔结构的影响[J].南京工业大学学报,2009,31:1-4.
    [46]聂轶苗,马鸿文,杨静.矿物聚合材料固化过程中的聚合反应机理研究[J]..现代地质,2006,20: 340-346.
    [47]杨南如.碱胶凝材料形成的物理化学基础(Ⅰ)[J].硅酸盐学报,1996,24:209-215.
    [48]杨南如.碱胶凝材料形成的物理化学基础(Ⅱ)[J].硅酸盐学报,1996,24:459-465.
    [49]史才军,巴维尔.克利文科,黛拉.罗伊.碱-激发水泥和混凝土[M].北京:化学工业出版社,2008.
    [50]M. Palacios, F. Puertas. Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars [J]. Cement and Concrete Research,2005,35:1358-1367.
    [51]A. Sathonsaowaphaka, P. Chindaprasirt, K.Pimraksab. Workability and strength of lignite bottom ash geopolymer mortar [J]. Journal of Hazardous Materials,2009, 168:44-50.
    [52]P. Chindaprasirt, T. Chareerat, V. Sirivivatnanon. Workability and strength of coarse high calcium fly ash geopolymer [J]. Cement and Concrete Composites,2007, 29:224-229.
    [53]袁润章.胶凝材料学[M].北京:中国建筑工业出版社,1980.
    [54]方永浩,郑波,张亦涛.偏高岭土及其在高性能混凝土中的应用[J].硅酸盐学报,2003,31:801-805.
    [55]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002.
    [56]孔德玉,张俊芝,倪彤元.碱激发胶凝材料及混凝土研究进展[J].硅酸盐学报,2009,37:151-159.
    [57]M. Luz Granizo, M. T. Blanco-Varela, S. Martinez-Ramirez. Alkali activation of metakaolins:parameters affecting mechanical, structural and microstructural properties[J]. J Mater Sci,2007,42:2934-2943.
    [58]Sang-Sook Park, Hwa-Young Kang. Strength and microscopic characteristics of alkali-activated fly ash-cement [J]. Korean J. Chem. Eng.,2006,23:367-373.
    [59]Jonathan Tailby, Kenneth J.D. MacKenzie. Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals [J]. Cement and Concrete Research,2010,40:787-794.
    [60]A. Fernandez-Jimenez, J.G. Palomo, F. Puertas. Alkali-activated slag mortars, Mechanical strength behaviour [J]. Cement and Concrete Research,1999,29: 1313-1321.
    [61]Hua Xu, Jannie S.J. Van Deventer. Geopolymerisation of multiple minerals[J]. Minerals Engineering,2002,15:1131-1139.
    [62]Smith Songpiriyakij, Teinsak Kubprasit, Chai Jaturapitakkul, etal. Compressive strength and degree of reaction of biomass-and fly ash-based geopolymer[J]. Construction and Building Materials,2010,24:236-240.
    [63]Maria Izquierdo, Xavier Querol, Charles Phillipart, etal. The role of open and closed curing conditions on the leaching properties of fly ash-slag-based geopolymers[J]. Journal of Hazardous Materials,2010,176:623-628.
    [64]Susan A. Bernal, John L. Provis, Volker Rose, etal. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends[J]. Cement and Concrete Composites,2011,33:46-54.
    [65]A. Fernandez-Jimenez, M. Monzo, M. Vicent, etal. Alkaline activation of metakaolin-fly ash mixtures:Obtain of Zeoceramics and Zeocements[J]. Microporous and Mesoporous Materials,2008,108:41-49.
    [66]F. Puertas, S. Martinez-Ramirez, S. Alonso, etal. Alkali-activated fly ash/slag cement, Strength behaviour and hydration products [J]. Cement and Concrete Research,2000,30:1625-1632.
    [67]Christina K. Yip, John L. Provis, Grant C. Lukey, etal. Carbonate mineral addition to metakaolin-based geopolymers [J]. Cement and Concrete Composites, 2008,30:979-985.
    [68]Deepak Ravikumar, Sulapha Peethamparan, Narayanan Neithalath, etal. Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder[J]. Cement and Concrete Composites,2010,32:399-410.
    [69]Jae Eun Oh, Paulo J.M. Monteiro, Ssang Sun Jun. The evolution of strength and crystalline phases for alkali-activated ground blastfurnace slag and fly ash-based geopolymers[J]. Cement and Concrete Research,2010,40:189-196.
    [70]J. Temuujin, A. van Riessen, R.Williams. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes [J]. Journal of Hazardous Materials,2009,167:82-88.
    [71]Prinya Chindaprasirt, Chai Jaturapitakkul, Wichian Chalee. Comparative study on the characteristics of fly ash and bottom ash geopolymers[J]. Waste Management, 2009,29:539-543.
    [72]Frank Collins, J.G. Sanjayan. Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder [J]. Cement and Concrete Research,1999,29:459-462.
    [73]A. Buchwald, M. Schulz. Alkali-activated binders by use of industrial by-products[J]. Cement and Concrete Research,2005,35:968-973.
    [74]Frantisek Skvara, Lubomir Kopecky, Vit Smilauer. Material and structural characterization of alkali activated low-calcium brown coal fly ash [J]. Journal of Hazardous Materials,2009,168:711-720.
    [75]Fernando Pacheco-Torgal, Joao Castro-Gomes, Said Jalal i. Tungsten mine waste geopolymeric binder:Preliminary hydration products investigations [J]. Construction and Building Materials,2009,23:200-209.
    [76]C. Fernandez Pereira, Y. Luna, X. Querol. Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers [J]. Fuel,2009,88: 1185-1193.
    [77]Apha Sathonsaowaphak, Prinya Chindaprasirt, Kedsarin Pimraksa. Workability and strength of lignite bottom ash geopolymer mortar [J]. Journal of Hazardous Materials,2009,168:44-50.
    [78]钟白茜,杨南如.水玻璃-矿渣水泥的水化性能研究[J].硅酸盐通报,1994,1:4-8.
    [79]殷志峰,郑青,程麟.碱激发废渣制备道路胶凝材料的力学性能实验研究[J].中国水泥,2009,3:60-62.
    [80]Sanjay Kumar, Rakesh Kumar, S. P. Mehrotra. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer[J]. J Mater Sci,2010,45:607-615.
    [81]Ubolluk Rattanasak, Prinya Chindaprasirt. Influence of NaOH solution on the synthesis of fly ash geopolymer [J]. Minerals Engineering,2009,22:1073-1078.
    [82]Z. Zuhua, Y. Xiao, Z. Huajun, etal. Role of water in the synthesis of calcined kaolin-based geopolymer [J]. Applied Clay Science,2009,43:218-223.
    [83]J.W. Phair, J.S.J. Van Deventer. Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers[J]. Int. J. Miner. Process, 2002,66:121-143.
    [84]Hua Xu, J.S.J. Van Deventer. The geopolymerisation of alumino-silicate minerals[J]. Int. J. Miner. Process,2000,59:247-266.
    [85]W.K.W. Lee, J.S.J. van Deventer. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements [J]. Cement and Concrete Research,2002,32:577-584.
    [86]J.S.J. van Deventer, J.L. Provis, P. Duxson, etal. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products[J]. Journal of Hazardous Materials,2007,139:506-513.
    [87]Ross P. Williams, Arie van Riessen. Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD[J]. Fuel,2010,89: 3683-3692.
    [88]D. Zaharaki,K. Komnitsas, V. Perdikatsis. Use of analytical techniques for identification of inorganic polymer gel composition[J]. J Mater Sci,2010,45: 2715-2724.
    [89]王旻.碱激发胶凝材料的反应产物[J].硅酸盐学报,2009,37:1130-1136.
    [90]Angel Palomo, Santiago Alonso, Ana Fernandez-Jimenez. Alkaline Activation of Fly Ashes:NMR Study of the Reaction Products[J]. J. Am. Ceram. Soc,2004, 87:1141-1145.
    [91]John L. Provis, Grant C. Lukey, and Jannie S. J. van Deventer. Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results [J]. Chem. Mater,2005,17:3075-3085.
    [92]Redmond R. Lloyd, John L. Provis, Jannie S. J. van Deventer. Microscopy and microanalysis of inorganic polymer cements.1:remnant fly ash particles [J]. J Mater Sci,2009,44:608-619.
    [93]Redmond R. Lloyd, John L. Provis, Jannie S. J. van Deventer. Microscopy and microanalysis of inorganic polymer cements.2:the gel binder [J]. J Mater Sci,2009, 44:620-631.
    [94]I. Lecomte, C. Henrist, M. Liegeois. (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement [J]. Journal of the European Ceramic Society,2006,26:3789-3797.
    [95]A. Fernandez-Jimenez, A. Palomo, M. Criado. Microstructure development of alkali-activated fly ash cement:a descriptive model [J]. Cement and Concrete Research,2005,35:1204-1209.
    [96]Peter Duxsona, John L. Provis, Grant C. Lukey. Understanding the relationship between geopolymer composition, microstructure and mechanical properties[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2005,269:47-58.
    [97]Zhang Yunsheng, Sun Wei, Li Zongjin. Composition design and microstructural characterization of calcined kaolin-based geopolymer cement[J]. Applied Clay Science,2010,47:271-275.
    [98]Pavel Rovnanik. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer [J]. Construction and Building Materials, 2010,24:1176-1183.
    [99]Daniel L.Y. Kong a, Jay G. Sanjayan. Effect of elevated temperatures on geopolymer paste, mortar and concrete [J]. Cement and Concrete Research,2010,40: 334-339.
    [100]Peigang He, Dechang Jia, Tiesong Lin. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites [J]. Ceramics International,2010,36:1447-1453.
    [101]G. Kovalchuk, A. Fernandez-Jimenez, A. Palomo. Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development-Part II [J]. Fuel,2007,86:315-322.
    [102]龚洛书.轻集料混凝土[M].北京:中国铁道出版社,1996.
    [103]JGJ51-2002,轻骨料混凝土技术规程[S].北京:中国标准出版社,2002.
    [104]J. Wongpa, K. Kiattikomol, C. Jaturapitakkul. Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. [J]. Materials and Design,2010,31:4748-4754.
    [105]Aaron R. Sakulich, Edward Anderson, Caroline Schauer. Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete [J]. Construction and Building Materials,2009,23:2951-2957.
    [106]王文长,段炼.混凝土的应力应变关系[J].太原工学院学报,1981,1:125-138.
    [107]沈钟,赵振国,康万利.胶体与表面化学[M].北京:化学工业出版社,2012.
    [108]De Larrard F.Concrete Mixture Proportioning:A Scientific Approach [M]. London:E&FN Spon,1999.
    [109]过镇海.混凝土的强度和本构关系[M].北京:中国建筑工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700