二维纺锤形生色团分子的合成与光学材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
任何技术的进步都与相应领域材料的发展密切相关。二阶非线性光学材料在高速光通讯、光信息处理和光电子学等实用领域中的应用前景受到越来越广泛的重视。作为光电调制波导器件的基础,二阶非线性光学材料的研究正成为科学家们关注的热点。在光电领域中,设计具有大的分子非线性性质的有机分子仍然面临着巨大的挑战。除了高的分子非线性光学响应外,在许多光学应用方面,还要求材料要有很好的热稳定性和在光通讯波长区域内具有很好的透明性。
     通常,设计新的非线性材料时主要考虑的参数是生色团分子固有的非线性效率。影响非线性效率的主要因素是生色团分子之间的静电相互作用。这种相互作用不但与生色团分子的给电子基团、供电子基团、π电子共轭桥有关,还与生色团分子的形状有很大关系。实验和理论研究证明球形生色团分子在非线性材料中起到了非常重要的作用,球形生色团对于非线性材料来说可能是理想的形状。这是在聚合物体系中减少偶极-偶极相互作用和改进极化效率的有效方法。
     本论文正是基于这一思路,主要包括以下几部分研究工作:第二章设计合成了一系列的含氟和不含氟的二维纺锤形生色团分子,并把这些二维纺锤形生色团分子应用于主客体掺杂体系中来制备二阶非线性光学薄膜;第三章设计合成了一系列含有二维纺锤形生色团分子的聚氨酯,并制备出了PU/Poly(MMA-co-GMA)掺杂型非线性光学交联膜;第四章的工作是利用二维纺锤形生色团分子制备出了可紫外光固化交联的非线性光学薄膜和通过溶胶-凝胶法制备出了有机/无机光学杂化薄膜。
Second-order nonlinear optical (NLO) materials have attracted considerable attention due to their potential applications in broad bandwidth telecommunication, information processing, and high-density optical storage, etc. Electro-optic (EO) materials, which possess large and rapid NLO responses, low dielectric constant, high laser damage thresholds, low cost, superior chemical flexibility and ease of process, have been predicted to be the NLO polymers closest to commercialization. Especially organic second-order nonlinear chromophore acquired an enormous progress. A lot of molecules with large hyperpolarizabilities and excellent thermal and chemical stability were designed and synthesized. Before their commercialization, it is a challenge to synthesize EO polymers with large NLO effects, high thermal stability of the dipole moment after poling and low optical loss to fit the requirements of EO apparatus.
     In this dissertation, we have provided some promising attempts to synthesize novel organic chromophores. We present the synthesis of a series of two-dimensional spindle-type chromophores. The chromophores were used to prepare host-guest doped second-order nonlinear optical films. We designed and synthesized a series of PU based on spindle-type chromophores, and the PU/Poly(MMA-co-GMA) doped cross-linked films were prepared. We have successfully synthesized novel photo-cross-linked NLO materials (PU/PMMA) containing spindle-type chromophores. Second-order nonlinear optical organic/inorganic hybrid film containing two-dimensional spindle-type chromophores was successfully prepared via sol-gel process.
     In chapter 2, we present the synthesis, characterization of two-dimensional spindle-type chromophores STC-1 to STC-4. The two-dimensional spindle-type chromophores were accomplished by three different strategies:Suzuki cross-coupling reaction, Wittig reaction, Knoevenagel condensation reaction. All of the compounds were characterized by 1H-NMR spectrum and IR spectrum. Thermogravimetric analysis showed that two-dimensional spindle-type chromophores exhibited good thermal stability. All of the absorption wavelengths (λmax) of chromophores were less than 480 nm, which proved that the chromophores possessed good transparency in the visible region. The host-guest doped second-order nonlinear optical films were prepared by the chromophores and Poly(GMA-co-MMA). The cross-linked network structure formed in films after poling process. The EO coefficients of the guest-host doped films were measured with the Teng-Man setup. The temporal stability of EO response was found to be good, as the r33 value of the films maintained more than 85% of their original value after holding at 80℃in air over 200 h.
     In chapter 2, we also present the synthesis of two-dimensional fluorinated spindle-type chromophores STC-1F and STC-2F. Dimethylamine was used as electron donor and 3,4,5-trifluorophenyl was used as side groups for chromophores STC-1 and STC-2 investigated. Chromophore STC-1 with TDC as electeron acceptor and chromphore STC-2 with 4-nitrobenzylcyanid as electeron acceptor were investigated. Two-dimensional fluorinated chromophores were characterized by 1H-NMR,19F-NMR and IR spectrum. Thermogravimetric analysis showed that the chromophores displayed high thermal stability. The maximum absorption wavelength (λmax= 482 nm) of fluorinated chromophore STC-1 was blue shift 8 nm in comparison with the nonfluorinated chromophore (λmax= 490 nm) in chloroform, which increased the optical transparency in the visible region. The guest-host doped films were prepared by the chromophores and PMMA. To further explore the alignment of the chromophore moieties in the chromophores/PMMA poled films, the order parameter (Φ) was measured. STC-1 F/PMMA doped films exhibited very highΦvalues, up to 0.26 higher than 0.17 for STC-2F/PMMA doped film. The testedΦvalues were well in accordance with their r33 values.
     In chapter 3, we designed and synthesized a series of PU based on spindle-type chromophores. All of the copolymers were characterized by 1H-NMR and IR spectrum. The molecular weight and molecular weight distribution were determined by gel permeation chromatography-refractive index-multi-angle laser light scattering detection techniques. DSC thermograms showed that polyurethanes generally have different Tg with different content of chromophores. PU-4 and PU-DR19 have the same content of chromophores, but the Tg of PU-4 is higher than PU-DR19. The relatively higher Tg of PU-4 might be caused by its rigid main-chain structure. In order to enhance the thermal and temporal stabilities of the NLO materials, the PU/Poly(MMA-co-GMA) doped cross-linked films were prepared. The surface morphology of the films was characterized by the AFM images. The surface of the films was extremely flat before poling. But the surface of the films resulted in numerous hills and valleys after poling, which caused by the chromophore moieties alignment in the poling direction. The EO coefficient of PU-2/Poly(MMA-co-GMA) cross-linked film was obtained up to 32 pm/V. Compared with their analogue copolymer containing DR-19, they displayed much better EO coefficient and thermal stability due to their large hyperpolarizability and unique structure.
     In chapter 4, we synthesized PU with double-ended photo-cross-linkable groups containing spindle-type chromophores. A preliminary study of the NLO properties of the cross-linked film is presented. The PU was prepared by 2-hydroxyethyl methacrylate (2-HEMA) and NCO-terminated chromophore, which was obtained from an addition reaction of spindle-type chromophore with an excess amount of 4,4'-Methylenebis (cyclohexyl isocyanate). The chemistry reaction course was characterized by IR spectrum. TGA thermograms showed that the temperature of the 5% weight loss was 212℃and 228℃for before and after photo-cross-linking, respectively. This result indicated that the cross-linked network structure can be benefited its stability against heating. The second-order optical property of the prepared film was measured by Teng-Man technique and achieved a high EO coefficient up to 41 pm/V. The thermal and temporal stability of the film was improved by photo-cross-linking. The functionalized alkoxysilane dye (ICTES-STC) was formed by the reaction of two-dimensional spindle-type chromophores (STC) with 3-isocyanatopropyltriethoxysilane (ICTES). Second-order nonlinear optical organic/inorganic hybrid film containing two-dimensional spindle-type chromophores was successfully prepared via sol-gel process. The thermogravimetric analysis showed that the initial decomposition temperature of the hybrid film is 269℃. This result indicates that the covalent linkage between the chromophore and silica matrix could prevent the decomposition of the chromophore. After corona poling, the EO coefficient of the hybrid film was calculated to be around 12 pm/V. The results showed that the hybrid film exhibited excellent thermal stability and NLO property.
引文
[1]Prasad PN, Williams DJ. Introduction to Nonlinear Optical Effects in Molecules and Polymers, John Wiley&Sons:New York,1991.
    [2]Boyd RW. Nonlinear Optics; Academic Press:New York 1992.
    [3]Zyss J, Ledoux I. Nonlinear Optics in Multipolar Media:Theory and Experiments [J]. Chem Rev 1994; 94:77-105.
    [4]朱利.新型有机晶体L—苹果酸脲的非线性光学性质研究[D].南京:东南大学,2006.
    [5]肖定全,王民.晶体物理学[M].成都:四川大学出版社,1989.
    [6]Kajzar F, Ledoux I, Zyss J. Electric-field-induced optical second-harmonic generation in polydiacetylene solutions [J]. Phys Rev A 1987; 36:2210-2219.
    [7]Blanchard-Desce M, Baudin J-B, Jullien L, Lorne R, Ruel O, Brasselet S, Zyss J. Towards highly efficient nonlinear optical chromophores:molecular engineering of octupolar molecules [J]. Opt Mater 1999; 12:333-338.
    [8]Bosshard C, Knoepfle G, Pretre P, Guenter P. Second-order polarizabilities of nitropyridine derivatives determined with electric-fieldinduced second-harmonic generation and a solvatochromic method:a comparative study [J]. J Appl Phys 1992; 71:1594-1605.
    [9]Clays K, Persoons A. Hyper-Rayleigh scattering in solution [J]. Phys Rev Lett 1991; 66:2980-2983.
    [10]Cho MJ, Choi DH, Sullivan PA, Akelaitis AJP, Dalton LR. Recent progress in second-order nonlinear optical polymers and dendrimers [J]. Prog Polym Sci 2008; 33:1013-1058.
    [11]Dalton LR. Nonlinear optical polymeric materials:from chromophore design to commercial applications [J]. Adv Polym Sci 2002; 158:1-86.
    [12]Firestone KA, Lao DB, Casmier DM, Clot O, Dalton LR, Reid PJ. Frequency-agile hyper-Rayleigh scattering studies of electro-optic chromophores [J]. Proc SPIE 2005; 5935:59350P.
    [13]Firestone KA, Reid P, Lawson R, Jang S-H, Dalton LR. Advances in organic electro-optic materials and processing [J]. Inorg Chim Act 2004; 357: 3957-3966.
    [14]Firestone KA. University of Washington,2005.
    [15]Verbiest T, Houbrechts S, Kauranen M, Clays K, Persoons A. Second-order nonlinear optical materials:recent advances in chromophore design [J]. J Mater Chem 1997; 7:2175-2189.
    [16]Stadler S, Bourhil G, Braeuchle C. Problems Associated with Hyper-Rayleigh Scattering as a Means To Determine the Second-Order Polarizability of Organic Chromophores [J]. J Phys Chem 1996; 100:6927-6934.
    [17]Song OK, Woodford JN, Wang CH. Effects of two-photon fluorescence and polymerization on the first hyperpolarizability of an azobenzene dye [J]. J Phys Chem A 1997; 101:3222-3226.
    [18]Reis H. Problems in the comparison of theoretical and experimental hyperpolarizabilities revisited [J]. J Chem Phys 2006; 125:014506.
    [19]Wang C H, Lin YC, Tai OY, Jen AKY. Hyper-Rayleigh scattering and frequency dependence of the first molecular hyperpolarizability of a strong chargetransfer chromophore [J]. J Chem Phys 2003,119,6237-6244.
    [20]Singer KD, Kuzyk MG, Sohn JE. Second-order nonlinear-optical processes in orientationally ordered materials:relationship between molecular and macroscopic properties [J]. J Opt Soc Am B 1987; 4:968-976.
    [21]Oudar JL, Chemla DS. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment [J]. J Chem Phys 1977; 66: 2664-2668.
    [22]Oudar JL. Optical nonlinearities of conjugated molecules Stilbene derivatives and highly polar aromatic compounds [J]. J Chem Phys 1977; 67:446-457.
    [23]Teng CC, Man HT. Simple reflection technique for measuring the electro-optic coefficient of poled polymers [J]. Appl Phys Lett 1990; 56:1734-1736.
    [24]Schildkraut JS. Determination of the electrooptic coefficient of a poled polymer film [J]. Appl Opt 1990; 29:2839-2841.
    [25]Dentan V, Levy Y, Dumont M, Chastaing RE. Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection [J]. Opt Commun 1989; 69:379-383.
    [26]Chen A, Chuyanov V, Garner S, Steier WH, Dalton LR. In Organic Thin Films for Photonic Applications [J]. Optical Society of America:Washington, DC, 1997; 14.
    [27]Kalluri S, Garner S, Ziari M, Steier WH, Shi Z, Dalton LR. Simple two-slit interference electro-optic coefficients measurement technique and efficient coplanar electrode poling of polymer thin films [J]. Appl Phys Lett 1996; 69: 275-277.
    [28]Dalton LR. Nonlinear optical polymeric materials:from chromophore design to commercial applications [J]. Adv Polym Sci 2002; 158:1-86.
    [29]Dalton LR, Harper AW, Ghosn R, Steier WH, Ziari M, Jen AKY, et al. Synthesis and Processing of Improved Organic Second-Order Nonlinear Optical Materials for Applications in Photonics [J]. Chem Mater 1995; 7:1060-1081.
    [30]Becker MW, Sapochak LS, Ghosen R, Xu C, Dalton LR, Jen AK-Y, et al. Large and Stable Nonlinear Optical Effects Observed for a Polyimide Covalently Incorporating a Nonlinear Optical Chromophore [J]. Chem Mater 1994; 6: 104-106.
    [31]Kang H, Zhu P, Yang Y, Facchetti A, Marks TJ. Self-assembled electrooptic thin films with remarkably blue-shifted optical absorption based on an x-shaped chromophore [J]. J Am Chem Soc 2004; 126:15974-15975.
    [32]Park DH, Lee CH, Herman WN. Analysis of multiple reflection effects in reflective measurements of electrooptic coefficients of poled polymers in multilayer structures [J]. Opt Express 2006; 14:8866-8884.
    [33]Sullivan PA, Olbricht BC, Akelaitis AJP, Mistry AA, Liao Y, Dalton LR. Tri-component Diels-Alder polymerized dendrimer glass exhibiting large, thermally stable, electro-optic activity [J]. J Mater Chem 2007; 17:2899-2903.
    [34]Lee SK, Cho MJ, Jin J-I, Choi DH. Stability control of the electrooptic effect with new maleimide copolymers containing photoreactive tricyanopyrrolidene-based chromophores [J]. J Polym Sci, Part A:Polym Chem 2007; 45:531-542.
    [35]Sullivan PA, Akelaitis AJP, Lee SK, McGrew G, Lee SK, Dalton LR, et al. Novel Dendritic Chromophores for Electrooptics:Influence of Binding Mode and Attachment Flexibility on Electro-optic Behavior [J]. Chem Mater 2006; 18: 344-351.
    [36]Olbricht BC, Sullivan PA, Wen G-A, Mistry A, Robinson BH, Dalton LR, et al. Laser-Assisted Poling of Binary Chromophore Materials [J]. J Phys Chem C 2008; 112:7983-7988.
    [37]Davies JA, Elangovan A, Sullivan PA, Olbricht BC, Robinson BH, Dalton LR, et al. Rational enhancement of second-order nonlinearity: Bis-(4-methoxyphenyl)heteroaryl-amino donor-based chromophores:Design, synthesis, and electrooptic activity [J]. J Am Chem Soc 2008; 130:10565-10575.
    [38]卢兆强.新型电光高分子和高性能聚合物的设计、合成与性能[D].武汉:武汉大学,2004.
    [39]王耀.新型二阶非线性光学聚合物膜材料的设计、制备与性能研究[D].长春:吉林大学化学学院,2008.
    [40]Lindsay GA, Singer KD. Polymers for Second-Order Nonlinear Optics [M]. American Chemical Society:Washington, DC,1995.
    [41]Dalton L, Harper A, Ren A, Wang F, Todorova G, Chen J, et al. Polymeric Electro-optic Modulators:From Chromophore Design to Integration with Semiconductor Very Large Scale Integration Electronics and Silica Fiber Optics [J]. Ind Eng Chem Res 1999; 38:8-33.
    [42]Kajzar F, Lee KS, Jen AK-Y. Polymeric materials and their orientation techniques for second-order nonlinear optics [J]. Adv Polym Sci 2003; 161:1-85.
    [43]Skotheim TA, Reynolds JR, Eds. Handbook of Conducting Polymers. Conjugated Polymers:Theory, Synthesis, Properties, and Characterization[C], 3rd ed.; CRC Press:Boca Raton, FL,2007.
    [44]Kim T-D, Luo J, Cheng Y-J, Ma H, Dalton LR, Jen AK-Y, et al. Binary Chromophore Systems in Nonlinear Optical Dendrimers and Polymers for Large Electrooptic Activities [J]. J Phys Chem C 2008; 112:8091-8098.
    [45]Song H, Oh M, Ahn S, Steier WH. Flexible low-voltage electro-optic polymer Modulators [J]. Appl Phys Lett 2003,82,4432-4434.
    [46]Huang Y, Paloczi GT, Yariv A, Zhang C, Dalton LR. Fabrication and Replication of Polymer Integrated Optical Devices Using Electron-Beam Lithography and Soft Lithography [J]. J Phys Chem B 2004; 108:8606-8613.
    [47]Cox CH, Ackerman EL High Electro-Optic Sensitivity (r33) Polymers:They Are Not Just for Low Voltage Modulators Any More [J]. J Phys Chem B 2004; 108: 8540-8542.
    [48]Staub K, Levina GA, Barlow S, Kowalczyk TC, Lackritz HS, Barzoukas M, et al. Synthesis and stability studies of conformationally locked 4-(diarylamino)aryl and 4-(dialkylamino)phenyl-substituted second-order nonlinear optical polyene chromophores [J]. J Mater Chem 2003; 13:825-833.
    [49]Melikian G, Rouessac FP, Alexandre C. Synthesis of substituted Dicyanomethylendihydrofurans [J]. Synth Commun 1995; 25:3045-3051.
    [50]Kinnibrugh T, Bhattacharjee S, Sullivan P, Isborn C, Robinson BH, Eichinger BE. Influence of Isomerization on Nonlinear Optical Properties of Molecules [J]. J Phys Chem B 2006; 110:13512-13522.
    [51]Kang H, Evmenenko G, Dutta P, Clays K, Song K, Marks TJ. X-Shaped Electro-optic Chromophore with Remarkably Blue-Shifted Optical Absorption Synthesis, Characterization, Linear/Nonlinear Optical Properties, Self-Assembly, and Thin Film Microstructural Characteristics [J]. J Am Chem Soc 2006; 128: 6194-6205.
    [52]Traber B, Wolff JJ, Rominger F, Oeser T, Gleiter R, Goebel M, et al. Hexasubstituted donor-acceptor benzenes as nonlinear optically active molecules with multiple charge-transfer transitions [J]. Chem-Eur J 2004; 10:1227-1238.
    [53]Brown EC, Marks TJ, Ratner MA. Nonlinear Response Properties of Ultralarge Hyperpolarizability Twisted pi.-System Donor-Acceptor Chromophores. Dramatic Environmental Effects on Response [J]. J Phys Chem B 2008; 112: 44-50.
    [54]Wang Y, Frattarelli DL, Facchetti A, Cariati E, Tordin E, Marks TJ, et al. Twisted pi.-Electron System Electrooptic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Nonbonded Repulsions [J]. J Phys Chem C 2008; 112:8005-8015.
    [55]Kang H, Facchetti A, Jiang H, Cariati E, Righetto S, Marks TJ, et al. Ultralarge hyperpolarizability twisted pi-electron system electro-optic chromophores: Synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies [J]. J.Am Chem Soc 2007,129,3267-3286.
    [56]Cheng YJ, Luo J, Hau S, Bale DH, Dalton LR, Jen AKY, et al. Large Electro-optic Activity and Enhanced Thermal Stability from Diarylaminophenyl-Containing High-beta. Nonlinear Optical Chromophores [J]. Chem Mater 2007; 19:1154-1163.
    [57]Budy, S. M.; Suresh, S.; Spraul, B. K.; Smith, D. W. High-Temperature Chromophores and Perfluorocyclobutyl Copolymers for Electrooptic Applications [J]. J Phys Chem C 2008,112,8099-8104.
    [58]Jen AK-Y, Cai Y, Bedworth PV, Marder SR. Synthesis and characterization of highly efficient and thermally stable diphenylaminosubstituted thiophene stilbene chromophores for nonlinear optical applications [J]. Adv Mater 1997; 9: 132-135.
    [59]Hu Z-Y, Fort A, Barzoukas M, Jen AKY, Barlow S, Marder SR. Trends in Optical Nonlinearity and Thermal Stability in Electrooptic Chromophores Based upon the 3-(Dicyanomethylene)-2,3-dihydrobenzothiophene-1,1-dioxide Acceptor [J]. J Phys Chem B 2004; 108:8626-8630.
    [60]Rao VP, Jen AKY, Wong KY, Drost KJ. Novel push-pull thiophenes for second order nonlinear optical applications [J]. Tetrahedron Lett 1993; 34:1747-1750.
    [61]Jen AKY, Rao VP, Wong KY, Drost KJ. Functionalized thiophenes:second-order nonlinear optical materials [J]. J Chem Soc:Chem Commun 1993; 90-92.
    [62]Shi Y, Zhang C, Zhang H, Bechtel JH, Dalton LR, Robinson BH, et al. Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape [J]. Science 2000; 288:119-122.
    [63]Liu S, Haller MA, Ma H, Dalton LR, Jang S-H, Jen AK-Y. Focused microwave-assisted synthesis of 2,5-dihydrofuran derivatives as electron acceptors for highly efficient nonlinear optical chromophores [J]. Adv Mater 2003; 15:603-607.
    [64]Luo J, Haller M, Ma H, Liu S, Dalton LR, Jen AK-Y, et al. Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Optics [J]. J Phys Chem B 2004; 108: 8523-8530.
    [65]Liao Y, Eichinger BE, Firestone KA, Jen AK-Y, Dalton LR, Robinson BH, et al. Systematic study of the structure-property relationship of a series of ferrocenyl nonlinear optical chromophores [J]. J Am Chem Soc 2005; 127:2758-2766.
    [66]Liao Y, Anderson CA, Sullivan PA, Akelaitis AJP, Robinson BH, Dalton LR. Electro-Optical Properties of Polymers Containing Alternating Nonlinear Optical Chromophores and Bulky Spacers [J]. Chem Mater 2006; 18:1062-1067.
    [67]Kim T-D, Kang J-W, Luo J, Jang S-H, Dalton LR, Jen AK-Y, et al. Ultralarge and Thermally Stable Electro-Optic Activities from Supramolecular Self-Assembled Molecular Glasses [J]. J Am Chem Soc 2007; 129:488-489.
    [68]Mingqian H, Leslie TM, Sinicropi JA. Synthesis of Chromophores with Extremely High Electrooptic Activity.1. Thiophene-Bridge-Based Chromophores [J]. Chem Mater 2002; 14:4662-4668.
    [69]Raposo MMM, Sousa AMRC, Kirsch G, Ferreira F, Belsley M, de Matos Gomes E, et al. Synthesis of tricyanovinyl-substituted thienylpyrroles and characterization of the solvatochromic, electrochemical and nonlinear optical properties [J]. Tetrahedron 2005; 61:11991-11998.
    [70]Raimundo JM, Blanchard P, Gallego-Planas N, Mercier N, Ledoux-Rak I, Hierle R, et al. Design and synthesis of push-pull chromophores for second-order nonlinear optics derived from rigidified thiophenebased pi.-conjugating spacers [J]. J Org Chem 2002; 67:205-218.
    [71]Hammond SR, Clot O, Firestone KA, Bale DH, Jen AK-Y, Dalton LR, et al. Site-Isolated Electro-optic Chromophores Based on Substituted 2,2'-Bis(3,4-propylenedioxythiophene) pi.-Conjugated Bridges [J]. Chem Mater 2008; 20:3425-3434.
    [72]Chen D, Fetterman HR, Chen A, Steier WH, Dalton LR, Wang W, et al. Demonstration of 110 GHz electro-optic polymer modulators [J]. Appl Phys Lett 1997; 70:3335-3337.
    [73]Briers D, De Cremer L, Koekelberghs G, Foerier S, Verbiest T, Samyn C. Influence of the position of the connecting spacer of the chromophore on the nonlinear optical response [J]. Macromol Rapid Commun 2007; 28:942-947.
    [74]Ma H, Liu S, Luo J, Suresh S, Dalton LR, Jen AK-Y, et al. Highly efficient and thermally stable electrooptical dendrimers for photonics [J]. Adv Funct Mater 2002,12,565-574.
    [75]Qin A, Yang Z, Bai F, Ye C. Design and Synthesis of a Thermally Stable Second-Order Nonlinear Optical Chromophore and Its Poled Polymers [J]. J Polym Sci, Part A 2003; 41:2846-2853.
    [76]Li ZA, Zeng Q, Yu G, Li Z, Ye C, Liu YQ, Qin JG. New Azo Chromophore-Containing Conjugated Polymers [J]. Macromol Rapid Commun 2008; 29:136-141.
    [77]Li YB, Deng YH, Tong XL, Wang XG. Formation of Photoresponsive Uniform Colloidal Spheres from an Amphiphilic Azobenzene-Containing Random Copolymer [J]. Macromolecules 2006; 39:1108-1115.
    [78]Cheng YJ, Luo JD, Steven H, Bale DH, Kim TD, Jen AK-Y, et al. Large Electro-optic Activity and Enhanced Thermal Stability from Diarylaminophenyl-Contain ing High Nonlinear Optical Chromophores [J]. Chem Mater 2007; 19:1154-1163.
    [79]Carella A, Borbone F, Caruso U, Centore R, Roviello A, Barsella A, Quatela A. NLO Behavior of Polymers Containing Y-Shaped Chromophores [J]. Macromol Chem Phys.2007; 208:1900-1907.
    [80]Tong M, Sheng CX, Vardeny ZV. Nonlinear optical spectroscopy of excited states in polyfluorene [J]. Physical Review B,2007; 75:125207.
    [81]Li ZA, Wu WB, Yu G, Liu YQ, Ye C, Qin JG, and Li Z. Dendronlike Main-Chain Nonlinear Optical (NLO) Polyurethanes Constructed from "H"-Type Chromophores:Synthesis and NLO Properties [J]. ACS Appl Mater Interfaces 2009; 1:856-863.
    [82]Kang H, Zhu PW, Yang Y, Facchetti A, and Marks TJ. Self-Assembled Electrooptic Thin Films with Remarkably Blue-Shifted Optical Absorption Based on an X-Shaped Chromophore [J]. J Am Chem Soc 2004; 126: 15974-15975.
    [83]Kang H, Evmenenko G, Dutta P, Clays K, Song K, and Marks TJ. X-Shaped Electro-optic Chromophore with Remarkably Blue-Shifted Optical Absorption. Synthesis, Characterization, Linear/Nonlinear Optical Properties, Self-Assembly, and Thin Film Microstructural Characteristics [J]. J Am Chem Soc 2006; 128: 6194-6205.
    [84]Kuo WJ, Hsiue GH, and Jeng RJ. Synthesis and macroscopic second-order nonlinear optical properties of poly(ether imide)s containing a novel two-dimensional carbazole chromophore with nitro acceptors [J]. J Mater Chem 2002; 12:868-878.
    [85]Gupta G, Steier WiH, Liao Y, Luo JD, Dalton LR, Jen AK-Y. Modeling photobleaching of optical chromophores:Light-intensity effects in precise trimming of integrated polymer devices [J]. J Phys Chem C 2008; 112: 8051-8060.
    [86]Zhang C, Dalton LR, Oh M-C, Zhang H and Steier WH. Low V7r electrooptic modulators from cld-1:chromophore design and synthesis, material processing, and characterization [J]. Chem Mater 2001; 13:3043-3050.
    [87]Liao Y, Anderson CA, Sullivan PA, Akelaitis AJP, Robinson BH and Dalton LR. Electro-Optical Properties of Polymers Containing Alternating Nonlinear Optical Chromophores and Bulky Spacers [J]. Chem Mater 2006; 18:1062-1067.
    [88]Zhang C, Wang CG, Dalton LR, Zhang H and Steier WH. Progress toward Device-Quality Second-Order Nonlinear Optical Materials.4. A Trilink High μβ NLO Chromophore in Thermoset Polyurethane:A "Guest-Host" Approach to Larger Electrooptic Coefficients [J]. Macromolecules 2001; 34:253-261.
    [89]Barto RR, Frank CW, Bedworth PV, Taylor RE, Anderson WW, Ermer S, Jen AK-Y. Bonding and Molecular Environment Effects on Near-Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore-Polymer Materials [J]. Macromolecules 2006; 39:7566-7577.
    [90]Chen YC, Chang HL, Lee RH, Dai SHA, Su WC, Jeng RJ. Nonlinear optical polyimides consisting of chromophore-containing dendrons with site-isolation effect [J]. Polym Adv Technol 2009; 20:493-500.
    [91]Schab-Balcerzak E, Siwy M, Kawalec M, Sobolewska A, Chamera A, Miniewicz A. Synthesis, Characterization, and Study of Photoinduced Optical Anisotropy in Polyimides Containing Side Azobenzene Units [J]. J Phys Chem A 2009; 113:8765-8780.
    [92]He M, Zhou YM, Miao JL, Liu C, Cui YP, Zhang T. The synthesis and optical properties of novel fluorinated polyimides incorporated with highly electro-optic active thiazole and benzothiazole based chromophores [J]. Dyes Pigm 2010; 86: 107-114.
    [93]Zeng Q, Qiu GF, Ye C, Qin JG, Li Z. New second-order nonlinear optical polyphosphazenes:Convenient postfunctionalization synthetic approach and application of the concept of suitable isolation group [J]. Dyes Pigm 2010; 84: 229-236.
    [94]Shi ZW, Luo JD, Huang S, Cheng Y-J, Kim T-D, Jen AK-Y, et al. Controlled Diels-Alder Reactions Used To Incorporate Highly Efficient Polyenic Chromophores into Maleimide-Containing Side-Chain Polymers for Electro-Optics [J]. Macromolecules 2009; 42:2438-2445.
    [95]Faccini M, Balakrishnan M, Torosantucci R, Driessen A, Reinhoudt DN, Verboom W. Facile Attachment of Nonlinear Optical Chromophores to Polycarbonates [J]. Macromolecules 2008,41,8320-8323.
    [96]Park S-H, Ogino K, Sato H. Synthesis and characterization of a main-chain polymer for single component photorefractive materials [J]. Synth Met.2000; 113:135-143.
    [97]车鹏超,亚宁,王晓工.重氮偶合方法合成主链型光响应偶氮聚合物.高分子学报2006;8:977-981.
    [98]Li SJ, Ellaya M, Dao LH. Design and synthesis of chromophores used for the main-chain NLO materials [J]. Materials Letters 2006; 60:1116-1121.
    [99]Bahulayan D, Sreekumar K. Chiral polyesters with azobenzene moieties in the main chain, synthesis and evaluation of nonlinear optical properties [J]. J Mater Chem 1999; 9:1425-1429.
    [100]Li QQ, Li Z, Zeng FX, Gong W, Li ZA, Zhu ZC, Zeng Q, Yu SS, Ye C, Qin JG. From Controllable Attached Isolation Moieties to Possibly Highly Efficient Nonlinear Optical Main-Chain Polyurethanes Containing Indole-Based [J]. J Phys Chem B 2007; 111:508-514.
    [101]Centore R, Riccio P, Fusco S, Carella A, Quatela A, Schutzmann S, Stella F, Matteis FD. Nonlinear Optical Properties of Regioregular Main-Chain Polyesters [J]. J Polym Sci, Part A:Polym Chem 2007; 45:2719-2725.
    [102]张文泉.全偶氮苯官能化树枝状分子的合成及其非线性光学性能和自组装行为研究[D].合肥:中国科学技术大学,2007.
    [103]陈鹭剑.共轭多烯类杂化材料的设计、制备及非线性光学研究[D].杭州:浙江大学,2007.
    [104]Furuta P, Frechet JMJ. Controlling Solubility and Modulating Peripheral Function in Dendrimer Encapsulated Dyes [J]. J Am Chem Soc 2003; 125: 13173-13181.
    [105]Li ZA, Wu WB, Li QQ, Yu G, Xiao L, Liu YQ, Ye C, Qin JG, Li Z. High-Generation Second-Order Nonlinear Optical (NLO) Dendrimers: Convenient Synthesis by Click Chemistry and the Increasing Trend of NLO Effects [J]. Angew Chem 2010; 122:2823-2827.
    [106]Li ZA, Yu G, Wu WB, Liu YQ, Ye C, Qin JG, Li Z. Nonlinear Optical Dendrimers from Click Chemistry:Convenient Synthesis, New Function of the Formed Triazole Rings, and Enhanced NLO Effects [J]. Macromolecules 2009; 42:3864-3868.
    [107]Li ZA, Wu WB, Li QQ, Yu G, Xiao L, Liu YQ, Ye C, Qin JG, Li Z. High-Generation Second-Order Nonlinear Optical (NLO) Dendrimers: Convenient Synthesis by Click Chemistry and the Increasing Trend of NLO Effects [J]. Angew Chem Int Ed 2010; 49:2763-2767.
    [108]Wu T-M, Dai SHA, Kuo W-J, Liu Y-L, Chen FMC, Jeng R-J, Chen Y-C, Juang T-Y. Orderly Arranged NLO Materials Based on Chromophore-Containing Dendrons on Exfoliated Layered Templates [J]. ACS Appl Mater Interfaces 2009; 1:2371-2381.
    [109]Kim TD, Kang JW, Luo JD, Jang SH, Ka JW, Tucker N, Jen AK-Y, et al. Ultralarge and Thermally Stable Electro-Optic Activities from Supramolecular. Self-Assembled Molecular Glasses [J]. J Am Chem Soc 2007,129,488-489.
    [110]Sullivan PA, Akelaitis AJP, Lee SK, McGrew G, Lee SK, Choi DH, Dalton LR. Novel Dendritic Chromophores for Electro-optics:Influence of Binding Mode and Attachment Flexibility on Electro-optic Behavior [J]. Chem Mater 2006; 18: 344-351.
    [111]Shi ZW, Hau S, Luo JD, Kim T-D, Tucker NM, Ka J-W, Sun H, Pyajt A, Dalton L, Chen AT, AK-Y Jen. Highly Efficient Diels-Alder Crosslinkable Electro-Optic Dendrimers for Electric-Field Sensors [J]. Adv Funct Mater 2007; 17:2557-2563.
    [112]谢建达.交联型偶氮苯基超支化聚合物的合成及其非线性光学性能的研究[D].合肥:中国科学技术大学,2008.
    [113]Bai YW, Song NH, Gao JP, Sun X, Wang XM, Yu GM, Wang ZY. A New Approach to Highly Electrooptically Active Materials Using Cross-Linkable, Hyperbranched Chromophore-Containing Oligomers as a Macromolecular Dopant [J]. J Am Chem Soc 2005; 127:2060-2061.
    [114]Li Z, Qin AJ, Lam JWY, Dong YP, Dong YQ, Ye C, Williams ID, Tang BZ. Facile Synthesis, Large Optical Nonlinearity, and Excellent Thermal Stability of Hyperbranched Poly(aryleneethynylene)s Containing Azobenzene Chromophores [J]. Macromolecules 2006; 39:1436-1442.
    [115]Zhu ZC, Li ZA, Tan Y, Li Z, Li QQ, Zeng Q, Ye C, Qin JG. New hyperbranched polymers containing second-order nonlinear optical chromophores:Synthesis and nonlinear optical characterization [J]. Polymer 2006; 47:7881-7888.
    [116]Chen LJ, Qian GD, Jin XF, Cui YJ, Gao JK, Wang ZY, Wang MQ. Inorganic-Organic Hybrid Nonlinear Optical Films Containing Bulky Alkoxysilane Dyes [J]. J Phys Chem B 2007; 111:3115-3121.
    [117]Cui YJ, Qian GD, Chen LJ, Wang ZY, Gao JK, Wang MQ. Enhanced Thermal Stability of Dipole Alignment in Inorganic-Organic Hybrid Films Containing Benzothiazole Chromophore [J]. J Phys Chem B 2006; 110:4105-4110.
    [118]XF Jin, YJ Cui, JK Gao, JJ Nie, WJ Liu, GD Qian. High thermally stable hybrid nonlinear optical films containing heterocycle chromophores [J]. Thin Solid Films 2009; 517:5079-5083.
    [119]Yu JC, Qiu JY, Cui YJ, Hu JT, Liu LY, Xu L, Qian GD. Preparation and electro-optic properties of hybrid sol-gel films containing imidazole chromophore [J]. Materials Letters 2009; 63:2594-2596.
    [120]Chaumel F, Jiang HW, Kakkar A. Sol-Gel Materials for Second-Order Nonlinear Optics [J]. Chem Mater 2001; 13:3389-3395.
    [121]李富友.光响应多功能材料的分子设计、合成、构效关系及其LB膜性质的研究[D].北京:北京师范大学,2000.
    [122]Jiang HW, Kakkar AK. An Alternative Route Based on Acid-Base Hydrolytic Chemistry to NLO Active Organic-Inorganic Hybrid Materials for Second-Order Nonlinear Optics [J]. J Am Chem Soc 1999; 121:3657-3665.
    [123]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社,2001.
    [124]Boubekeur-Lecaque L, Coe BJ, Clays K, Foerier S, Verbiest T, Asselberghs I. Redox-Switching of Nonlinear Optical Behavior in Langmuir-Blodgett Thin Films Containing a Ruthenium(II) Ammine Complex [J]. J Am Chem Soc 2008; 130:3286-3287.
    [125]Schrader S, Zauls V, Dietzel B, Flueraru C, Prescher D, Reiche J, Motschmann H, Brehmer L. Linear and nonlinear optical properties of Langmuir-Blodgett multilayers from chromophore-containing maleic acid anhydride polymers [J]. Mater Sci Eng C 1999; 8-9:527-537.
    [126]Wang Y, Wang CS, Wang XJ, Guo Y, Cui ZC, Yang B, et al. Hydrogen-Bonding Fabrication of NLO Langmuir-Blodgett Films with Nontraditional Molecular Architecture and Unique Thermal Stability [J]. Chem Mater 2005; 17: 1265-1268.
    [127]Van Cott KE, Guzy M, Neyman P, Brands C, Heflin JR, Gibson HW, Davis RM. Layer-By-Layer Deposition and Ordering of Low-Molecular-Weight Dye Molecules for Second-Order Nonlinear Optics [J]. Angew Chem Int Ed 2002; 41: 3236-3238.
    [128]Johal MS, Casson JL, Chiarelli PA, Liu D-G, Shaw JA, Robinson JM, Wang H-L. Polyelectrolyte Trilayer Combinations Using Spin-Assembly and Ionic Self-Assembly [J]. Langmuir 2003,19,8876-8881.
    [129]Wang Y, Wang XJ, Guo Y, Cui ZC, Lin Q, Yang B, et al. Electric-Field-Induced Layer-by-Layer Fabrication of Second-Order Nonlinear Optical Films with High Thermal Stability [J]. Langmuir 2004; 20:8952-8954.
    [1]Dirk CW, Katz HE, Schilling ML and King LA. Use of Thiazole Rings To Enhance Molecular Second-Order Nonlinear Optical Susceptibilities [J]. Chem Mater 1990; 2:700-705.
    [2]Chou SSP, Sun DJ, Lin HC and Yang PK. Synthesis of Suifone-Substituted Thiophene Chromophores for Second-Order Nonlinear Optics [J]. Tetrahedron Lett 1996; 37:7279-7282.
    [3]Facchetti A, Abbotto A, Beverina L, Boom ME van der, Dutta P, Evmenenko G, Marks TJ and Pagani GA. Azinium-(π-Bridge)-Pyrrole NLO-Phores:Influence of Heterocycle Acceptors on Chromophoric and Self-Assembled Thin-Film Properties [J]. Chem Mater 2002; 14:4996-5005.
    [4]Facchetti A, Abbotto A, Beverina L, Boom ME van der, Dutta P, Evmenenko G, Pagani GA and Marks TJ. Layer-by-Layer Self-Assembled Pyrrole-Based Donor-Acceptor Chromophores as Electro-Optic Materials [J]. Chem Mater 2003; 15:1064-1072.
    [5]Facchetti A, Beverina L, Boom ME van der, DuttaEvmenenko G, Pagani GA and Marks TJ. Strategies for Electrooptic Film Fabrication. Influence of Pyrrole-Pyridine-Based Dibranched Chromophore Architecture on Covalent Self-Assembly, Thin-Film Microstructure, and Nonlinear Optical Response [J]. J Am Chem Soc 2006; 128:2142-2153.
    [6]Varanasi PR, Jen AK-Y, Chandrasekhar J, Namboothiri INN and Rathna A. The Important Role of Heteroaromatics in the Design of Efficient Second-Order Nonlinear Optical Molecules:Theoretical Investigation on Push-Pull Heteroaromatic Stilbenes [J]. J Am Chem Soc 1996; 118:12443-12448.
    [7]Albert IDL, Marks TJ and Ratner MA. Large Molecular Hyperpolarizabilities. Quantitative Analysis of Aromaticity and Auxiliary Donor-Acceptor Effects [J]. J Am Chem Soc 1997; 119:6575-6582.
    [8]Breitung EM, Shu C-F and McMahon RJ. Thiazole and Thiophene Analogues of Donor-Acceptor Stilbenes:Molecular Hyperpolarizabilities and Structure-Property Relationships [J]. J Am Chem Soc 2000; 122:1154-1160.
    [9]Abbotto A, Bradamante S and Pagani GA. Diheteroarylmethanes.5.1 E-Z Isomerism of Carbanions Substituted by 1,3-Azoles:13C and 15N π-Charge/Shift Relationships as Source for Mapping Charge and Ranking the Electron-Withdrawing Power of Heterocycles [J]. J Org Chem 1996; 61: 1761-1769.
    [10]Liao Y, Firestone KA, Bhattacharjee S, Luo JD, Haller M, Hau S, Anderson CA, Lao D, Eichinger BE, Robinson BH, Reid PJ, Jen AK-Y and Dalton LR. Linear and Nonlinear Optical Properties of a Macrocyclic Trichromophore Bundle with Parallel-Aligned Dipole Moments [J]. J Phys Chem B 2006; 110:5434-5438.
    [11]Cheng YJ, Luo JD, Hau S, Bale DH, Kim TD, Shi ZW, Lao DB, Tucker NM, Tian YQ, Dalton LR, Reid PJ and Jen AK-Y. Large Electro-optic Activity and Enhanced Thermal Stability from Diarylaminophenyl-Containing High-β Nonlinear Optical Chromophores [J]. Chem Mater 2007; 19:1154-1163.
    [12]Cai CZ, Liakatas I, Wong M-S, Bolsch M, Bosshard C, Gulnter P, Concilio S, Tirelli N and Suter UW. Donor-Acceptor-Substituted Phenylethenyl Bithiophenes:Highly Efficient and Stable Nonlinear Optical Chromophores [J]. Org Lett 1999; 1:1847-1849.
    [13]Facchetti A, Beverina L, Boom ME van der, Dutta P, Evmenenko G, Shukla AD, Stern CE, Pagani GA and Marks TJ. Strategies for Electrooptic Film Fabrication. Influence of Pyrrole-Pyridine-Based Dibranched Chromophore Architecture on Covalent Self-Assembly, Thin-Film Microstructure, and Nonlinear Optical Response [J]. J Am Chem Soc 2006; 128:2142-2153.
    [14]Breitung EM, Shu C-F and McMahon RJ. Thiazole and Thiophene Analogues of Donor-Acceptor Stilbenes:Molecular Hyperpolarizabilities and Structure-Property Relationships [J]. J Am Chem Soc 2000; 122:1154-1160.
    [15]Mu XJ, Zou JP, Qian QF and Zhang W. Manganese (Ⅲ) Acetate Promoted Regioselective Phosphonation of Heteroaryl Compounds [J]. Org Lett 2006; 8: 5291-5293.
    [16]Carella A, Casalboni M, Centore R, Fusco S, Noce C, Quatela A, Peluso A and Sirigu A. Diff erent nonlinear optical performances of polymers containing benzimidazole chromophores [J]. Opt Mater 2007; 30:473-477.
    [17]Leung MK, Chang CC, Wu MH, Chuang KH, Lee JH, Shieh SJ, Lin SC and Chiu CF.6-N,N-Diphenylaminobenzofuran-Derived Pyran Containing Fluorescent Dyes:A New Class of High-Brightness Red-Light-Emitting Dopants for OLED [J]. Org Lett 2006; 8:2623-2626.
    [18]Razus AC, Birzan L, Surugiu NM, Corbu AC and Chiraleu F. Syntheses of azulen-1-yl-benzothiazol-2-yl diazenes [J]. Dyes Pigm 2007; 74:26-33.
    [19]Coe BJ, Harris JA, Hall JJ, Brunschwig BS, Hung S-T, Libaers W, Clays K, Coles SJ, Horton PN, Light ME, Hursthouse MB, Orduna J. Syntheses and Quadratic Nonlinear Optical Properties of Salts Containing Benzothiazolium Electron-Acceptor Groups [J]. Chem Mater 2006; 18:5907-5918.
    [20]Lopez-Calahorra F, Martinez-Rubio M, Velasco D, Brillasb E and Juliac L. Synthesis and non-linear optical and redox properties of 6-nitro-6'-piperidyl-2,2'-bisbenzothiazole:a new type of push-pull molecules [J]. Tetrahedron 2004; 60:285-289.
    [21]Batista RMF, Costa SPG, Malheiro EL, Belsley M and Raposo MMM. Synthesis and characterization of new thienylpyrrolyl-benzothiazoles as efficient and thermally stable nonlinear optical chromophores [J]. Tetrahedron 2007; 63:4258-4265.
    [22]Jang S-H, Luo J, Tucker NM, Leclercq A, Zojer E, Haller MA, Kim T-D, Kang J-W, Dalton LR, Jen AK-Y. Pyrroline Chromophores for Electro-Optics [J]. Chem Mater 2006; 18:2982-2988.
    [23]Kuo WJ, Hsiue GH and Jeng RJ. Synthesis and macroscopic second-order nonlinear optical properties of poly(ether imide)s containing a novel two-dimensional carbazole chromophore with nitro acceptors [J]. J Mater Chem 2002; 12:868-878.
    [24]Ren J, Wang SM, Wu LF, Xu ZX and Dong BH. Synthesis and properties of novel Y-shaped NLO molecules containing thiazole and imidazole chromophores [J]. Dyes Pigm 2008; 76:310-314.
    [25]Li QQ, Li Z, Zeng FX, Gong W, Li ZA, Zhu ZC, Zeng Q, Yu SS, Ye C, Qin JG. From Controllable Attached Isolation Moieties to Possibly Highly Efficient Nonlinear Optical Main-Chain Polyurethanes Containing Indole-Based Chromophores [J]. J Phys Chem B 2007; 111:508-514.
    [26]Gong W, Li QQ, Li Z, Lu CG, Zhu J, Li SY, Yang JW, Cui YP and Qin JG. Synthesis and Characterization of Indole-Containing Chromophores for Second-Order Nonlinear Optics [J]. J Phys Chem B 2006; 110:10241-10247.
    [27]Yamamoto H, Katogi S, Watanabe T, Sato H, Miyata S and Hosomi T. New molecular design approach for noncentrosymmetric crystal structures:Lambda (A)-shaped molecules for frequency doubling [J]. Appl Phys Lett 1992; 60: 935-937.
    [28]Zyss J and Oudar LL. Structural dependence of nonlinear-optical properties of methy-(2,4-dinitrophenyl)-aminopropanoate crystals [J]. Phys Rev A 1982; 26: 2016-2018.
    [29]Miyata S and Sasabe H. Poled Polymers and Their Applications to SHG and EO Devices; Gordon and Breach Science:Australia,1997.
    [30]Kuo WJ, Hsiue GH, Jeng RJ. Novel Guest-Host NLO Poly(ether imide) Based on a Two-Dimensional Carbazole Chromophore with Sulfonyl Acceptors [J]. Macromolecules 2001; 34:2373-2384.
    [31]Plater MJ and Jackson T. Polyaromatic amines. Part 3:Synthesis of poly(diarylamino)styrenes and related compounds [J]. Tetrahedron 2003; 59: 4673-4685.
    [32]Palay M, Harris J, Looser H, Baumert J, Bjorklund G, Jundt D and Twieg R. A Solvatochromic Method for Determining Second-Order Polarizabilities of Organic Molecules [J]. J Org Chem 1989; 54:3774-3778.
    [33]Villeminl D and Liao L. Rapid and Efficient Synthesis of 2-[3-cyano-4-(2-aryliden)-5,5-dimethyl-5H-furan-2-ylidene]-malononitrile under Focused Microwave Irradiation [J]. Synth Commun 2001; 31:1771-1780.
    [34]Fei X, Fu N, Wang Y, Cui ZC, Zhang DM, Ma CX, Liu SY and Yang B. Synthesis and Characterization of Crosslinkable Poly(MMA-co-GMA) and Its Application in Arrayed Waveguide Grating [J]. Chem J Chinese U 2006; 27: 571-574.
    [35]Raimundo J-M, Blanchard P, Gallego-Planas N, Mercier N, Ledoux-Rak I, Hierle R, Roncali J. Design and Synthesis of Push-Pull Chromophores for Second-Order Nonlinear Optics Derived from Rigidified Thiophene-Based π-Conjugating Spacers [J]. J Org Chem 2002; 67:205-218.
    [36]Kim SH, Lee SY, Gwon SY, Son YA, Bae JS. D-π-A solvatochromic charge transfer dyes containing a 2-cyanomethylene-3-cyano-4,5,5-trimethyl-2, 5-dihydrofuran acceptor [J]. Dyes Pigm 2010; 84:169-175.
    [37]Kim O-K, Fort A, Barzoukas M, Blanchard-Desce M, Lehn J-M. Nonlinear optical chromophores containing dithienothiophene as a new type of electron relay [J]. J Mater Chem 1999; 9:2227-2232.
    [38]Steybe F, Effenberger F, Gubler U, Bosshard C, Gunter P. Highly polarizable chromophores for nonlinear optics:syntheses, structures and properties of donor-acceptor substituted thiophenes and oligothiophenes [J]. Tetrahedron 1998; 54:8469-8480.
    [39]Raposo M, Ferreira AM, Amaro M, Belsley M, Moura J. The synthesis and characterization of heterocyclic azo dyes derived from 5-N,N-dialkylamino-2,2'-bithiophene couplers [J]. Dyes Pigm 2009; 83:59-65.
    [40]Teng CC and Man HT. Simple reflection technique for measuring the electro-optic coefficient of poled polymers [J]. Appl Phys Lett 1990; 56: 1734-1736.
    [41]Marder SR, Kippelen B, Jen AK-Y and Peyghambarian N. Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications [J]. Nature 1997; 388:845-851.
    [42]Dalton LR, Steier WH, Robinson BH, Zhang C, Ren A, and Jen AK-Y, et al. From molecules to opto-chips:organic electro-optic materials [J]. J Mater Chem 1999; 9:1905-1920.
    [43]Dalton LR, Harper AW, Ren A, Wang F, Todorova G, Chen J, Zhang C and Lee M. Polymeric Electro-optic Modulators:From Chromophore Design to Integration with Semiconductor Very Large Scale Integration Electronics and Silica Fiber Optics [J]. Ind Eng Chem Res 1999; 38:8-33.
    [44]Robinson BH and Dalton LR. Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials [J]. J Phys Chem A 2000; 104:4785-4795.
    [45]Ren L, Li GY, Hu X. Synthesis and characterization of a new fluorinated nonlinear optical chromophore [J]. Dyes Pigm 2005; 67:207-210.
    [46]Ma H, Chen BQ, Sassa T, Dalton LR and Jen AK-Y. Highly Efficient and Thermally Stable Nonlinear Optical Dendrimer for Electrooptics [J]. J Am Chem Soc 2001; 123:986-987.
    [47]Ma H, Wu JY, Herguth P, Chen BQ and Jen AK-Y. A Novel Class of High-Performance Perfluorocyclobutane-Containing Polymers for Second-Order Nonlinear Optics [J]. Chem Mater 2000; 12:1187-1189.
    [48]Pitois C, Wiesmann D, Lindgren M and Hult A. Functionalized Fluorinated Hyperbranched Polymers for Optical Waveguide Applications [J]. Adv Mater 2001; 13:1483-1487.
    [49]Smith DWJ and Babb DA. Perfluorocyclobutane Aromatic Polyethers. Synthesis and Characterization of New Siloxane-Containing Fluoropolymers [J]. Macromolecules 1996; 29:852-860.
    [50]Ameduri B and Boutevin B. Copolymerization of fluorinated monomers:recent developments and future trends [J]. J Fluorine Chem 2000; 104:53-62.
    [51]Wu X, Wu J, Liu Y, Jen AK-Y. Highly efficient, thermally and chemically stable nonlinear optical chromophores based on the a-perfluoroaryldicyanovinyl electron acceptors [J]. Chem Commun 1999; 23:2391-2392.
    [52]Luo JD, Ma H, Haller M, Jen AK-Y, Barto Richard R. Large electro-optic activity and low optical loss derived from a highly fluorinated dendritic nonlinear optical chromophore [J]. Chem Commun 2002; 8:888-889.
    [53]Hua JL, Zhang W, Li Z, Qin JG, Shen YC, Zhang Y, et al. Arylaldehydes-pentafluorophenyl Hydrazones as Second-order Nonlinear Optical Chromophores:A Novel Approach for Remarkably Defeating the Nonlinearity-transparency Trade-off [J]. Chem Lett 2002; 31:232-233.
    [54]Page RH, Jurich MC, Reck B, Sen A, Twieg RJ, Swalen JD, Bjorklund GC. Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films [J]. J Opt Soc Am B 1990; 7:1239-1250.
    [55]Zhang C, Dalton LR, Oh M-C, Zhang H and Steier WH, Low Vπ Electrooptic Modulators from CLD-1:Chromophore Design and Synthesis, Material Processing, and Characterization [J]. Chem. Mater.2001; 13:3043-3050.
    [56]Albert IDL, Marks TJ, Ratner MA. Large Molecular Hyperpolarizabilities. Quantitative Analysis of Aromaticity and Auxiliary Donor-Acceptor Effects [J]. J Am Chem Soc 1997; 119:6575-6582.
    [57]Zhang CZ, Wang CY, Yang H, Ima C, Lu GY, Wang CS. Design and synthesis of a novel polymer with a large macroscopic second harmonic generation coefficient based on quantum chemical calculations [J]. Mater Chem Phys 2010; 120:302-306.
    [58]Collis GE, Burrell AK, Scott SM, Officer DL. Toward Functionalized Conducting Polymers:Synthesis and Characterization of Novel β-(Styryl)terthiophenes [J]. J Org Chem 2003; 68:8974-8983.
    [1]Bouder TL, Maury O, Bondon A, Costuas K, Amouyal E, Ledoux I, Zyss J, Bozec HL. Synthesis, Photophysical and Nonlinear Optical Properties of Macromolecular Architectures Featuring Octupolar Tris(bipyridine) Ruthenium(II) Moieties:Evidence for a Supramolecular Self-Ordering in a Dentritic Structure [J]. J Am Chem Soc 2003; 125:12284-12299.
    [2]Schab-Balcerzak E, Siwy M, Kawalec M, Sobolewska A, Chamera A, Miniewicz A. Synthesis, Characterization, and Study of Photoinduced Optical Anisotropy in Polyimides Containing Side Azobenzene Units [J]. J Phys Chem A 2009; 113:8765-8780.
    [3]Zhang CZ, Wang CY, Im C, Lu GY, Wang CS. Significant Effect of Bromo Substituents on Nonlinear Optical Properties of Polymer and Chromophores [J]. J Phys Chem B 2010; 114:42-48.
    [4]Tambe SM, Tasaganva RG, Jogul JJ, Castiglione DC, Kariduraganavarl MY. Development of Polyurethanes with Azo-Type Chromophores for Second-Order Nonlinear Optical Applications [J]. J Appl Polym Sci 2009; 114:2291-2300.
    [5]Chang PH, Chen JY, Tsai HC, Hsiue GH. Molecular Design of Nonlinear Optical Polymer Based on DCM to Enhance the NLO Efficiency and Thermal Stability [J]. J Polym Sci, Part A:Polym Chem 2009; 47:4937-4949.
    [6]Li ZA, Zeng Q, Li Z, Dong SC, Zhu ZC, Li QQ, Ye C, Di CA, Liu YQ, Qin JG. An Attempt To Modify Nonlinear Optical Effects of Polyurethanes by Adjusting the Structure of the Chromophore Moieties at the Molecular Level Using "Click" Chemistry [J]. Macromolecules 2006; 39:8544-8546.
    [7]Li ZA, Wu WB, Ye C, Qin JG, Li Z. Two Types of Nonlinear Optical Polyurethanes Containing the Same Isolation Groups:Syntheses, Optical Properties, and Influence of Binding Mode [J]. J Phys Chem B 2009; 113: 14943-14949.
    [8]Faccini M, Balakrishnan M, Torosantucci R, Driessen A, Reinhoudt DN, Verboom W. Facile Attachment of Nonlinear Optical Chromophores to Polycarbonates [J]. Macromolecules 2008; 41:8320-8323.
    [9]Lee SH, Kim YK, Won YH. Nonlinear Optical Properties of Poly-p-(phenylene terephthalates) with Side Group Chromophores [J]. Macromolecules 1999; 32: 342-347.
    [10]Nemoto N, Miyata F, Nagase Y. Novel Types of Polyesters Containing Second-Order Nonlinear Optically Active Chromophores with High Density [J]. Macromolecules 1996; 29:2365-2371.
    [11]Faccini M, Balakrishnan M, Diemeer MBJ, Torosantucci R, Driessen A, Reinhoudt DN, Verboom W. Photostable nonlinear optical polycarbonates [J]. J Mater Chem 2008; 18:5293-5300.
    [12]Robinson BH, Dalton LR. Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials [J]. J Phys Chem A 2000; 104:4785-4795.
    [13]Luo JD, Liu S, Haller M, Liu L, Ma H, Jen AK-Y. Design, Synthesis, and Properties of Highly Efficient Side-Chain Dendronized Nonlinear Optical Polymers for Electro-Optics [J]. Adv Mater 2002; 14:1763-1768.
    [14]Kim TD, Kang JW, Luo JD, Jang SH, Ka JW, Herman WN, Jen AK-Y. Ultralarge and Thermally Stable Electro-Optic Activities from Supramolecular Self-Assembled Molecular Glasses [J]. J Am Chem Soc 2007; 129:488-489.
    [15]Shi W, Luo J, Huang S, Zhou XH, Kim TD, Cheng YJ, Polishak BM, Younkin TR, Block BA, Jen AK-Y. Reinforced Site Isolation Leading to Remarkable Thermal Stability and High Electrooptic Activities in Cross-Linked Nonlinear Optical Dendrimers [J]. Chem Mater 2008; 20:6372-6377.
    [16]Li Z, Dong S, Li P, Li Z, Ye C, Qin J. New PVK-Based Nonlinear Optical Polymers:Enhanced Nonlinearity and Improved Transparency [J]. J Polym Sci, Part A:Polym Chem 2008; 46:2983-2993.
    [17]Li Z, Yu G, Dong S, Wu W, Liu Y, Ye C, Qin J, Li Z. The role of introduced isolation groups in PVK-based nonlinear optical polymers:Enlarged nonlinearity, improved processibility, and enhanced thermal stability [J]. Polymer 2009; 50:2806-2814.
    [18]Li Z, Hu P, Yu G, Zhang W, Jiang Z, Liu Y, Ye C, Qin J, Li Z. "H"-shape second order NLO polymers:synthesis and characterization [J]. Phys Chem Chem Phys 2009; 11:1220-1226.
    [19]Li Z, Yu G, Wu W, Liu Y, Ye C, Qin J. Nonlinear Optical Dendrimers from Click Chemistry:Convenient Synthesis, New Function of the Formed Triazole Rings, and Enhanced NLO Effects [J]. Macromolecules 2009; 42:3864-3868.
    [20]Robinson BH, Dalton LR. Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials [J]. J Phys Chem A 2000; 104:4785-4795.
    [21]Robinson BH, Dalton LR, Harper HW, Ren A, Wang F, Zhang C, Ledoux I, Zyss J, Jen AK-Y. The molecular and supramolecular engineering of polymeric electro-optic materials [J]. Chem Phys 1999; 245:35-50.
    [22]Lee JY, Bang HB, Park EJ, Baek CS, Rhee BK, Lee SM. Synthesis and nonlinear optical properties of novel polyurethanes with high thermal stability of dipole alignment [J]. Synth Met 2004; 144:159-167.
    [23]Caruso U, Casalboni M, Fort A, Fusco M, Panunzi B, Quatela A, Roviello A, Sarcinelli F. New side-chain polyurethanes with highly conjugated push-pull chromophores for second order NLO applications [J]. Opt Mater 2005; 27: 1800-1810.
    [24]Lee JY, Bang HB, Baek CS. Synthesis and nonlinear optical properties of novel T-type polyurethanes with high thermal stability of second harmonic generation [J]. Synth Met 2005; 148:161-168.
    [25]Chang PH, Chen JY, Tsai HC, Hsiue GH. Molecular Design of Nonlinear Optical Polymer Based on DCM to Enhance the NLO Efficiency and Thermal Stability [J]. J Polym Sci, Part A:Polym Chem 2009; 47:4937-4949.
    [26]Tambe SM, Tasaganva RG, Jogul JJ, Castiglione DC, Kariduraganavar MY. Development of Polyurethanes with Azo-Type Chromophores for Second-Order Nonlinear Optical Applications [J]. J Appl Polym Sci 2009; 114:2291-2300.
    [27]Li Z, Dong S, Yu G, Li Z, Liu Y, Ye C, Qin JG. Novel second-order nonlinear optical main-chain polyurethanes:Adjustable subtle structure, improved thermal stability and enhanced nonlinear optical property [J]. Polymer 2007; 48: 5520-5529.
    [28]Li Q, Li Z, Zeng F, Gong W, Li Z, Zhu Z, Zeng Q, Yu S, Ye C, Qin JG. From Controllable Attached Isolation Moieties to Possibly Highly Efficient Nonlinear Optical Main-Chain Polyurethanes Containing Indole-Based Chromophores [J]. J Phys Chem B 2007; 111:508-514.
    [29]Chen L, Qian G, Jin X, Cui Y, Gao J, Wang Z, Wang M. Inorganic-Organic Hybrid Nonlinear Optical Films Containing Bulky Alkoxysilane Dyes [J]. J Phys Chem B 2007; 111:3115-3121.
    [30]Cui Y, Ren H, Yu J, Wang Z, Qian G. An indanone-based alkoxysilane dye with second order nonlinear optical properties [J]. Dyes Pigm 2009; 81:53-57.
    [31]Chochos CL, Economopoulos SP, Deimede V, Gregoriou VG, Kallitsis JK. Synthesis of a Soluble n-Type Cyano Substituted Polythiophene Derivative:A Potential Electron Acceptor in Polymeric Solar Cells [J]. J Phys Chem C 2007; 111:10732-10740.
    [32]Li YS, Li MS, Chang FC. Kinetics and Curing Mechanism of Epoxy and Boron Trifluoride Monoethyl Amine Complex System [J]. J Polym Sci, Part A Polym Chem 1999; 37:3614-3624.
    [33]Su WFA, Chen KC, Tseng SY. Effects of Chemical Structure Changes on Thermal, Mechanical, and Crystalline Properties of Rigid Rod Epoxy Resins [J]. J Appl Polym Sci 2000; 78:446-451.
    [34]Lee JY, Shim MJ, Kim SW. Synthesis of Liquid Crystalline Epoxy and Its Mechanical and Electrical Characteristics-Curing Reaction of LCE with Diamines by DSC Analysis [J]. J Appl Polym Sci 2002; 83:2419-2425.
    [35]He M, Zhou YM, Dai J, Liu R, Cui YP, Zhang T. Synthesis and nonlinear optical properties of soluble fluorinated polyimides containing hetarylazo chromophores with large hyperpolarizability [J]. Polymer 2009; 50:3924-3931.
    [36]Won DS, Kim JH, No HJ, Cho YJ, Lee JY, Rheeb BK, Choib HD. Synthesis and nonlinear optical properties of a novel polyurethane containing cyanovinylthiophene with enhanced thermal stability of dipole alignment for electro-optic applications [J]. Polym Int 201; 59:162-168.
    [37]No HJ, Jang HN, Cho YJ, Lee J-Y. Synthesis and Nonlinear Optical Properties of Novel Y-Type Polyurethane Containing Tricyanovinylthiazole with Enhanced Thermal Stability of Second Harmonic Generation [J]. J Polym Sci, Part A: Polym Chem 2010; 48:1166-1172.
    [38]Teng CC, Man HT. Simple reflection technique for measuring the electro-optic coefficient of poled polymers [J]. Appl Phys Lett 1990; 56:1734-1736.
    [1]Jungauer D, Reck B, Tweig R, Yoon DY, Willeon CG and Swalen JD, Novel second-nonlinear optical polymers via chemical cross-linking-induced vitrification under electric field [J]. J Appl Phys 1989; 66:3241-3247.
    [2]Shi Y, Steier WH, Chen M, Yu LP and Dalton LR, Thermosetting nonlinear optical polymer:Polyurethane with disperse red 19 side groups [J]. Appl Phys Lett 1992; 60:2577-2579.
    [3]Park J, Marks TJ, Yang J and Wong GK, Chromophore-Functionalized Polymeric Thin-Film Nonlinear Optical Materials Effects of in Situ Cross-Linking on Second Harmonic Generation Temporal Characteristics [J]. Chem Mater 1990; 2:229-231.
    [4]Chen M, Yu LP, Dalton LR, Shi Y and Steier WH, New Polymers with Large and Stable Second-Order Nonlinear Optical Effects [J]. Macromolecules 1991; 24:5421-5428.
    [5]Xu C, Wu B, Dalton LR, Ranon PM, Shi Y and Shier WH, New Random Main-Chain, Second-Order Nonlinear Optical Polymers [J]. Macromolecules 1992; 25:6716-6718.
    [6]Wu JW, Valley JF, Ermer S, Binkley ES, Kenney JT and Lipwomb GF, Thermal stability of electro-optic response in poled polyimide systems [J]. Appl Phys Lett 1991; 58:225-227.
    [7]Robinson BH, Dalton LR, Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials [J]. J Phys Chem A 2000; 104:4785-4795.
    [8]Robinson BH, Dalton LR, Harper HW, Ren A, Wang F, Zhang C, Todorova G, et al, The molecular and supramolecular engineering of polymeric electro-optic materials [J]. Chem Phys 1999; 245:35-50.
    [9]Zhang CZ, Wang CY, Yang H, Im C, Lu GY, Wang CS, Design and synthesis of a novel polymer with a large macroscopic second harmonic generation coefficient based on quantum chemical calculations [J]. Mater Chem Phys 2010; 120:302-306.
    [10]Chang PH, Chen JY, Tsai HC, Hsiue GH, Molecular design of nonlinear optical polymer based on DCM to enhance the NLO efficiency and thermal stability [J]. J Polym Sci Part A:Polym Chem 2009; 47:4937-4949.
    [11]Tambe SM, Tasaganva RG, Jogul JJ, Castiglione DC, Kariduraganavar MY, Development of Polyurethanes with Azo-Type Chromophores for Second-Order Nonlinear Optical Applications [J]. J Appl Polym Sci 2009; 114:2291-2300.
    [12]Kang H, Facchetti A, Jiang H, Cariati E, et al, Ultralarge Hyperpolarizability Twisted π-Electron System Electro-Optic Chromophores:Synthesis, Solid-State and Solution-Phase Structural Characteristics, Electronic Structures, Linear and Nonlinear Optical Properties, and Computational Studies [J]. J Am Chem Soc 2007; 129:3267-3286.
    [13]Ma H, Chen B, Sassa T, Dalton LR, Jen AK-Y, Highly Efficient and Thermally Stable Nonlinear Optical Dendrimer for Electrooptics [J]. J Am Chem Soc 2001; 123:986-987.
    [14]Shi Z, Hau S, Luo JD, Kim TD, Tucker N, Ka JW, Sun H, Pyajt A, Chen A, Dalton L, Jen AK-Y, Highly Efficient Diels-Alder Crosslinkable Electro-Optic Dendrimers for Electric-Field Sensors [J]. Adv Funct Mater 2007; 17: 2557-2563.
    [15]Ranon PM, Shi Y, Steier WH, Xu C, Wu B, Dalton LR, Effcient poling and thermal crosslinkling of randomly bonded main-chain polymers for stable second-order nonlinearities [J]. Appl Phys Lett 1993; 62:2605-2607.
    [16]Tsutsumi N, Matsumoto O, Sakai W, Kiyotsukuri T, Nonlinear Optical Polymers.2. Novel NLO Linear Polyurethane with Dipole Moments Aligned Transverse to the Main Backbone [J]. Macromolecules 1996; 29:592-597.
    [17]Page RH, Jurich MC, Reck B, Sen A, Twieg RJ, Swalen JD, Bjorklund GC, Willson CG, Electrochromic and optical waveguide studies of corona-poled electro-optic polymer films [J]. J Opt Soc Am B 1990; 7:1239-1250.
    [18]He M, Zhou YM, Dai J, Liu R, Cui YP, Zhang T, Synthesis and nonlinear optical properties of soluble fluorinated polyimides containing hetarylazo chromophores with large hyperpolarizability [J]. Polymer 2009; 50:3924-3931.
    [19]Won DS, Kim JH, No HJ, Cho YJ, Lee JY, Rheeb BK, Choib HD, Synthesis and nonlinear optical properties of a novel polyurethane containing cyanovinylthiophene with enhanced thermal stability of dipole alignment for electro-optic applications [J]. Polym Int 2010; 59:162-168.
    [20]No HJ, Jang HN, Cho YJ, Lee JY, Synthesis and Nonlinear Optical Properties of Novel Y-Type Polyurethane Containing Tricyanovinylthiazole with Enhanced Thermal Stability of Second Harmonic Generation [J]. J Polym Sci Part A:Polym Chem 2010; 48:1166-1172.
    [21]Lee JY, Kim JH, Jung WT, Park YK Synthesis and nonlinear optical properties of novel Y-type polyurethanes with high thermal stability of dipole alignment [J]. J Mater Sci 2007; 42:3936-3943.
    [22]Teng CC, Man HT, Simple reflection technique for measuring the electro-optic coefficient of poled polymers [J]. Appl Phys Lett 1990; 56:1734-1736.
    [23]Cho MJ, Lee SK, Jin JI, Choi DH, Dalton LR. Electro-optic property of chromophore-terminated trifunctional dendrimer in a guest-host system [J]. Thin Solid Films 2006; 515:2303-2309.
    [24]Pan QW, Fang CS, Qin ZH, Gu QT, Shi W. Side radical influence on the nonlinear optical properties and thermal stability of poled polymer films [J]. J Mater Sci 2002; 37:4853-4855.
    [25]Kang H, Evmenenko G, Dutta P, Clay K, Kai S, Marks TJ. X-Shaped Electro-optic Chromophore with Remarkably Blue-Shifted Optical Absorption. Synthesis, Characterization, Linear/Nonlinear Optical Properties, Self-Assembly, and Thin Film Microstructural Characteristics [J]. J Am Chem Soc 2006; 128:6194-6205.
    [26]Liao Y, Eichinger BE, Jen AK-Y, Dalton LR, Robinson BH, et al. Systematic Study of the Structure-Property Relationship of a Series of Ferrocenyl Nonlinear Optical Chromophores [J]. J Am Chem Soc 2005; 127:2758-2766.
    [27]Jang SH, Luo J, Tucker NM, Leclercq A, Dalton LR, et al. Pyrroline Chromophores for Electro-Optics [J]. Chem Mater 2006; 18:2982-2988.
    [28]Cu, YJ, Qian GD, Chen LJ, Wang ZY, et al. Enhanced Thermal Stability of Dipole Alignment in Inorganic-Organic Hybrid Films Containing Benzothiazole Chromophore [J]. J Phys Chem B 2006; 110:4105-4110.
    [29]Wang SW, Zhao LS, Yang S, Pang SJ, Cui ZC. Fabrication of photo-cross-linked stable organic-inorganic hybrid second-order nonlinear optical films [J]. Mater Lett 2009; 63:292-294.
    [30]Chen LJ, Qian GD, Jin XF, Cui YJ, et al. Inorganic-Organic Hybrid Nonlinear Optical Films Containing Bulky Alkoxysilane Dyes [J]. J Phys Chem B 2007; 111:3115-3121.
    [31]Chen LJ, Qian GD, Cui YJ, Jin XF, Wang, ZY, Wang MQ. Hybrid Materials Covalently Incorporated with Isophorone-Based Dyes through Sol-Gel Process for Nonlinear Optical Applications [J]. J Phys Chem B 2006; 110: 19176-19182.
    [32]Yu JC, Qiu JY, Cui YJ, Hu JT, Qian GD, et al. Preparation and electro-optic properties of hybrid sol-gel films containing imidazole chromophore [J]. Mater Lett 2009; 63:2594-2596.
    [33]Cui YJ, Li BZ, Yu C, Yu JC, Qian GD, et al. Synthesis and NLO properties of hybrid inorganic-organic films containing thiophene ring [J]. Thin Solid Films 2009; 517:5075-5078.
    [34]Jin XF, Cui YJ, Gao JK, Nie JJ, Liu WJ, Qian GD. High thermally stable hybrid nonlinear optical films containing heterocycle chromophores [J]. Thin Solid Films 2009; 517:5079-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700