氮气氛直流电弧放电制备新型碳纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型碳纳米材料包括纳米颗粒、管、棒、带、膜以及三维结构等,具有优异的电学、力学性能以及热学性能,显示出很好的应用前景,已经成为纳米材料研究领域的前沿和热点之一。
     本文采用直流电弧放电法,以铁、钴、镍的氧化物为催化剂,考察了高温氮气对阴极顶端电弧放电沉积产物的影响;还考察了碳源、进气温度、基底及其放置位置对其表面沉积产物的形貌、微观结构以及组成的影响。TEM和HRTEM表征结果表明,具有不同形貌特征的大直径碳管存在于阴极顶端柱状产物外围的刺状产物中;SAED和EDX表征结果表明,氮和过渡金属元素是以高分散的形式进入了大直径碳管;HRTEM和Raman表征结果表明,3-8层的石墨烯纳米片存在于柱状产物的内芯中,产率可达50 wt.%;XRD和EDX表征结果表明,石墨烯纳米片是氮掺杂的,过渡金属可能以高分散的形式存在于石墨烯纳米片中。
     SEM表征结果表明,对于放置在电弧放电区域的上面、侧面和下面的基底来说,氮气进气温度和碳源对不锈钢、石英和硅(100)基底上生成的产物的形貌的影响程度逐渐减小,其产物从准三维网状结构的膜状碳产物过渡到比较致密的碳颗粒构成的膜状碳产物;基底的种类对其表面生成的产物的形貌有一定的影响,但没有明显的规律性;对于不锈钢、石英和硅(100)基底来说,在氮气进气温度和碳源均相同的条件下,基底放置在电弧放电区域的上面、侧面和下面对其表面沉积产物的形貌的影响程度逐渐增加,其产物从准三维网状结构的膜状碳产物过渡到比较致密的碳颗粒构成的膜状碳产物。TEM表征结果表明,放置于电弧放电区域上面、侧面和下面的不锈钢、石英和硅(100)基底上生成的膜状碳产物均主要由碳纳米颗粒或碳颗粒构成。根据SEM、TEM以及HRTEM表征结果,推断准三维网状结构碳产物均由碳纳米颗粒构成。分别对大直径碳管、石墨烯纳米片以及准三维网状结构的生成机理进行了讨论。
     本文的研究结果对于新型碳膜的制备与纳米材料制备的分子设计以及电弧放电化学的发展不仅提供了重要的实验依据,而且具有一定的理论意义。
Novel carbon nanomaterials include nanoparticles, nanotubes, nanorods, nanoribbons, nanofilms, and three-dimensional (3D) nanostructures. They have excellent electrical, mechanical and optical properties, showing good prospect of applications, and become one of the forefront and hot topics of nanomaterial research.
     In this thesis, DC arc discharge method was employed and the iron, cobalt and nickel oxides were used as the catalysts. The effect of the high temperature nitrogen gas on the deposits formed on the top of the cathode was investigated. The effects of carbon sources, the temperature of nitrogen gas, substrates and their positions on the morphologies, microstructures and composition of the films formed on the surfaces of substrates were also investigated.
     The results of TEM and HRTEM characterizations show that the large diameter carbon tubes (LDCTs) with different morphologies were formed in the spinous products around the column-shaped product deposited on the top of the cathode. The results of SAED and EDX characterizations show that the LDCTs were doped with the nitrogen and transition metal elements. The results of HRTEM and Raman characterizations show that the 3-8 layer graphene nanosheets were formed in the inner core of the column-shaped product and their yield was up to 50 wt. %. The results of XRD and EDX characterizations show that the graphene nanosheets were doped with nitrogen, and may be also doped with the transition metal elements.
     The results of SEM characterization show that when the substrates were put above, at one side of, and under the arc discharge region, the effects of the temperature of nitrogen gas and carbon sources on the morphologies of the films formed on the stainless steel, quartz and Si(100) substrates gradually reduced, and the morphologies of the carbon films changed from the quasi-3D netlike structure to the dense film composed of carbon particles; and the effect of the substrates, which included stainless steel, quartz and Si(100) substrates, on the morphologies of the films formed on their surfaces was not very obvious and without the remarkable regularity. Under the same conditions of the temperature of nitrogen gas and carbon source, the effects of the positions of the stainless steel, quartz and Si(100) substrates, which were put above, at one side of, and under the arc discharge region, on the morphologies of the films formed on their surfaces gradually increased, and the morphologies of the carbon films also changed from the quasi-3D netlike structure to the dense film composed of carbon particles. The results of TEM characterization show that the carbon films formed on stainless steel, quartz and Si(100) substrates, which were put above, at one side of, and under the arc discharge region, mainly consist of carbon nanoparticles or carbon particles. It is deduced from the results of SEM, TEM and HRTEM characterizations that the quasi-3D netlike structure is mainly composed of carbon nanoparticles. The formation mechanisms of the LDCT, graphene nanosheet and quasi-3D netlike structure were discussed, respectively.
     The results in this thesis not only provide an important experimental basis, but also have some theoretical significance for the preparation of novel carbon films, the molecular design of carbon nanomaterials and the development of arc discharge chemistry.
引文
[1] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162-163
    [2] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58
    [3]陈敬中,刘剑洪,纳米材料科学导论,北京,高等教育出版社,2006,72
    [4] Charinpanitkul T, Tanthapanichakoon W, Sano N. Carbon nanostructures synthesized by arc discharge between carbon and iron electrodes in liquid nitrogen. Curr. Appl. Phys., 2009, 9(3): 629-632
    [5] Sharma S P, Lakkad S C. Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique. Surf. Coat. Tech., 2009, 203(10-11): 1329-1335
    [6] Kanasaki J, Inami E, Tanimura K, et al. Formation of sp3-bonded carbon nanostructures by femtosecond laser excitation of graphite. Phys. Rev. Lett., 2009, 102(8): 087402
    [7] Ahmad B, Riaz M, Ahmad M, et al. Synthesis and characterization of higher fullerene (C84) in dc arc discharge using Cu as a catalyst. Mater. Lett., 2008, 62(19): 3367-3369
    [8] Gattia D M, Antisari M V, Marazzi R. AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets. Nanotechnology, 2007, 18(25): 255604
    [9] Osváth Z, Koós A A, Horváth Z E, et al. STM observation of asymmetrical Y-branched carbon nanotubes and nano-knees produced by the arc discharge method. Mater. Sci. Eng. C, 2003, 23(4): 561-564
    [10] Qiao W M, Song Y, Lim S Y, et al. Carbon nanospheres produced in an arc-discharge process. Carbon, 2006, 44(1): 187-190
    [11] Ha B, Park J, Kim S Y, et al. Investigation of field emission and photoemission properties of high-purity single-walled carbon nanotubes synthesized by hydrogen arc discharge. J. Phys. Chem. B, 2006, 110(47): 23742-23749
    [12] Liu Y, Ling J, Li W, et al. Effective synthesis of carbon-coated Co and Ni nanocrystallites with improved magnetic properties by AC arc discharge under an N2 atmosphere. Nanotechnology, 2004, 15(1): 43-47
    [13] Li Z J, Liu P, Zhao B, et al. Improving the synthesis of single-walled carbon nanotubes by pulsed arc discharge in air by preheating the catalysts. Carbon, 2008, 46(13): 1792-1828
    [14] Suzuki T, Guo Y, Inoue S, et al. Multiwalled carbon nanotubes mass-produced by dc arc discharge in He-H2 gas mixture. J. Nanopart. Res., 2006, 8(2): 279-285
    [15] Sun X, Bao W R, Lv Y K, et al. Synthesis of high quality single-walled carbon nanotubes by arc discharge method in large scale. Mater. Lett., 2007, 61(18): 3956-3958
    [16] Zhao X L, Ohkohchi M, Inoue S, et al. Large-scale purification of single-wall carbon nanotubes prepared by electric arc discharge. Diam. Relat. Mater., 2006, 15(4-8): 1098-1102
    [17] Ando Y, Zhao X L, Inoue S, et al. Mass production of high-quality single-wall carbon nanotubes by H2–N2 arc discharge. Diam. Relat. Mater., 2005, 14(3-7): 729-732
    [18] Xing G, Jia S L, Shi Z Q. Influence of transverse magnetic field on the formation of carbon nano-materials by arc discharge in liquid. Carbon, 2007, 45(13): 2584-2588
    [19] Ma Z B, Wang J H, Wan J. Synthesis of carbon films with diamond phase from methanol solution by pulsed arc discharge. Diam. Relat. Mater., 2004, 13(10): 1889-1891
    [20] Huang H J, Marie J, Kajiura H, et al. Improved oxidation resistance of single- walled carbon nanotubes produced by arc discharge in a bowl-like cathode. Nano Lett., 2002, 2(10): 1117-1119
    [21] Zhu H W, Jiang B, Xu C L, et al. Synthesis of high quality single-walled carbon nanotube silks by the arc discharge technique. J. Phys. Chem. B, 2003, 107(27): 6514-6518
    [22] Doherty S P, Buchholz D B, Chang R P H. Semi-continuous production of multiwalled carbon nanotubes using magnetic field assisted arc furnace. Carbon, 2006, 44(8): 1511-1517
    [23] Hao C C, Xiao F, Cui Z L, et al. Preparation and structure of carbon encapsulated copper nanoparticles. J. Nanopart. Res., 2008, 10(1): 47-51
    [24] Takikawa H, Kusano O, Sakakibara T. Graphite cathode spot produces carbon nanotubes in arc discharge. J. Phys. D: Appl. Phys., 1999, 32(18): 2433-2437
    [25] Wang M, Wang X Q, Li Z H, et al. An efficient method to produce single-walled carbon nanotubes by round-trip arc discharge. Mater. Chem. Phys., 2006, 97(2-3): 243-246
    [26] Sano N, Kawanami O, Charinpanitkul T, et al. Study on reaction field in arc-in-water to produce carbon nano-materials. Thin Solid Films, 2008, 516(19): 6694-6698
    [27] Yamaguchi T, Bandow S, Iijima S. Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods. Chem. Phys. Lett., 2004, 389(1-3): 181-185
    [28] Huang H J, Yang S H, Gu G. Preparation of carbon-coated cobalt nanocrystals in new gas blow arc reactor and their characterization. J. Phys. Chem. B, 1998, 102(18): 3420-3424
    [29] Keidar M, Levchenko L, Arbel T, et al. Magnetic-field-enhanced synthesis ofsingle-wall carbon nanotubes in arc discharge. J. Appl. Phys., 2008, 103(9): 094318
    [30] Paradise M, Goseami T. Carbon nanotubes-production and industrial application. Mater. Design, 2007, 28(5): 1477-1489
    [31] Hiramatsu M, Deguchi T, Nagao H, et al. Area-selective growth of aligned single-walled carbon nanotube films using microwave plasma-enhanced CVD. Diam. Relat. Mater., 2007, 16(4-7): 1126-1130
    [32] Lee S, Choi S, Park K H, et al. Hot-filament CVD synthesis and application of carbon nanostructures. Thin Solid Films, 2008, 516(5): 700-705
    [33] Baddour C E, Fadlallah F, Nasuhoglu D, et al. A simple thermal CVD method for carbon nanotube synthesis on stainless steel 304 without the addition of an external catalyst. Carbon, 2009, 47(1): 313-318
    [34] Fang T H, Wang T H, Lu D M, et al. Structural characteristics of carbon nanostructures synthesized by ECR-CVD. Microelectron. J., 2008, 39(12): 1600-1604
    [35] Noda M, Yukawa H, Matsushima M, et al. Porous carbon film electrodes prepared by pulsed discharge plasma CVD. Diam. Relat. Mater., 2009, 18(2-3): 426-428
    [36] Hulicova-Jurcakova D, Li X, Zhu Z H, et al. Graphitic carbon nanofibers synthesized by the chemical vapor deposition (CVD) method and their electro- chemical performances in supercapacitors. Energ. Fuel., 2008, 22(6): 4139- 4145
    [37] Matsuda T, Mesko M, Ogino A, et al. Synthesis of vertically aligned carbon nanotubes on submicron-sized dot-catalyst array using plasma CVD method. Diam. Relat. Mater., 2008, 17(4-5): 772-775
    [38] Bai S, Li F, Yang Q H, et al. Influence of ferrocene/benzene mole ratio on the synthesis of carbon nanostructures. Chem. Phys. Lett., 2003, 376(1-2): 83-89
    [39] Nyamori V O, Coville N J. Effect of ferrocene/carbon ratio on the size and shape of carbon nanotubes and microspheres. Organometallics, 2007, 26(16): 4083- 4085
    [40] Wienecke M, Bunescu M C, Deistung K, et al. MWCNT coatings obtained by thermal CVD using ethanol decomposition. Carbon, 2006, 44(4): 718-723
    [41] Sun X L, Li R Y, Stansfield B, et al. Controlled synthesis of pointed carbon nanotubes. Carbon, 2007, 45(4): 732-737
    [42] Jayatissa A H, Guo K. Synthesis of carbon nanotubes at low temperature by filament assisted atmospheric CVD and their field emission characteristics. Vacuum, 2009, 83(5): 853-856
    [43] Ago H, Imamura S, Okazaki T, et al. CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy. J. Phys. Chem. B, 2005, 109(20): 10035-10041
    [44] Kuang M H, Wang Z L, Bai X D, et al. Catalytically active nickel{110} surfacesin growth of carbon tubular structures. Appl. Phys. Lett., 2000, 76(10): 1255-1257
    [45] Tao X Y, Zhang X B, Cheng J P, et al. Morphology-controllable CVD synthesis of carbon nanomaterials on an alkali-element-doped Cu catalyst. Chem. Vapor Depos., 2006, 12(6): 353-356
    [46] Huczko A. Synthesis of aligned carbon nanotubes. Appl. Phys. A-Mater., 2002, 74(5): 617-638
    [47] Wu Y T, Su H C, Tsai C M, et al. Carbon nanotube formation by laser direct writing. Appl. Phys. Lett., 2008, 93(2): 023108
    [48] Zhang M F, Yudasaka M, Iijima S. Production of large-diameter single-wall carbon nanotubes by adding Fe to a NiCo catalyst in laser ablation. J. Phys. Chem. B, 2004, 108(34): 12757-12762
    [49] Tamir S, Drezner Y. New aspects on pulsed laser deposition of aligned carbon nanotubes. Appl. Surf. Sci., 2006, 252(13): 4819-4823
    [50] Rusop M, Mominuzzaman S M, Soga T, et al. Properties of a-C:H films grown in inert gas ambient with camphoric carbon precursor of pulsed laser deposition. Diam. Relat. Mater., 2004, 13(11-12): 2180-2186
    [51] Bystrzejewski M, Lange H, Huczko A, et al. One-step catalyst-free generation of carbon nanospheres via laser-induced pyrolysis of anthracene. J. Solid State Chem., 2008, 181(10): 2796-2803
    [52] Hu S D, Bai P K, Tian F, et al. Hydrophilic carbon onions synthesized by millisecond pulsed laser irradiation. Carbon, 2009, 47(3): 876-883
    [53] Svrcek V. Fabrication of filled carbon nanotubes with fresh silicon nanocrystals produced in situ by nanosecond pulsed laser processing in environmentally friendly solutions. J. Phys. Chem. C, 2008, 112(34): 13181-13186
    [54] Hu A M, Rybachuk M, Lu Q B, et al. Femtosecond pulsed laser deposition and optical properties of diamond-like amorphous carbon films embedded with sp-bonded carbon chains. Diam. Relat. Mater., 2008, 17(7-10): 1643-1646
    [55] Cappelli E, Scilletta C, Servidori M, et al. Morphology, structure and density evolution of carbon nano-structures deposited by N-IR pulsed laser ablation of graphite. Diam. Relat. Mater., 2008, 17(7-10): 1476-1481
    [56] Harris P J F. Solid state growth mechanisms for carbon nanotubes. Carbon, 2007, 45(2): 229-239
    [57] Woo S K, Hong Y T, Kwon O C. Flame synthesis of carbon nanotubes using a double-faced wall stagnation flow burner. Carbon, 2009, 47(3): 912-916
    [58] Wang Z S, Li F S. Preparation of hollow carbon nanopheres via explosive detonation. Mater. Lett., 2009, 63(1): 58-60
    [59] Xiong Y J, Xie Y, Li X X, et al. Production of novel amorphous carbon nanostructures from ferrocene in low-temperature solution. Carbon, 2004, 42(8-9): 1447-1453
    [60] Cambaz Z G, Yushin G, Osswald S, et al. Noncatalytic synthesis of carbonnanotubes, graphene and graphite on SiC. Carbon, 46(6): 841-849
    [61] Li J L, Wang L J, Bai G Z, et al. Carbon tubes produced during high-energy ball milling process. Scripta Mater., 2006, 54(1): 93-97
    [62] Liu N, Luo F, Wu H X, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater., 2008, 18(10): 1518–1525
    [63] Wang Y H, Wang L P, Yu Y H, et al. DLC film fabrication on te inner surface of a cylinder by carbon ion implantation. IEEE T. Plasma Sci., 2006, 34(4): 1116-1120
    [64] Sun Z Y, Zhang X R, Han B X, et al. Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide-ethanol solution. Carbon, 2007, 45(13): 2589- 2596
    [65] Chang K W, Lim Z Y, Du F Y, et al. Synthesis of mesoporous carbon by using polymer blend as template for the high power supercapacitor. Diam. Relat. Mater., 2009, 18(2-3): 448-451
    [66] Li Y L, Kinloch I A, Shaffer M S, et al. Synthesis of single-walled carbon nanotubes by a fluidized-bed method. Chem. Phys. Lett., 2004, 384(1-3): 98-102
    [67] Bi H, Kou K C, Ostrikov K, et al. Unconventional Ni-P alloy-catalyzed CVD of carbon coil-like micro- and nano-structures. Mater. Chem. Phys., 2009, 116(2-3): 442-448
    [68] Rashid A, Landstr?m L, Brodoceanu D, et al. Lamp-assisted CVD of carbon micro/nano-structures using metal catalysts and CH2I2 precursor. Appl. Surf. Sci., 2009, 255(10): 5368-5372
    [69] Wang X B, You H J, Liu F M, et al. Large-scale synthesis of few-layered graphene using CVD. Chem. Vapor Depos., 2009, 2009, 15(1-3): 53-56
    [70] Guo J J, Liu G H, Wang X M, et al. High-pressure Raman spectroscopy of carbon onions and nanocapsules. Appl. Phys. Lett., 2009, 95(5): 051920
    [71] Hou S S, Chung D H, Lin T H. High-yield synthesis of carbon nano-onions in counterflow diffusion flames. Carbon, 2009, 47(4): 938-947
    [72] Ma X Y, Yuan B H. Fabrication of carbon nanoflowers by plasma-enhanced chemical vapor deposition. Appl. Surf. Sci., 2009, 255(18): 7846-7850
    [73] Qi X S, Zhong W, Deng Y, et al. Characterization and magnetic properties of helical carbon nanotubes and carbon nanobelts synthesized in acetylene decomposition over Fe-Cu nanoparticles at 450°C. J. Phys. Chem. C, 2009, 113(36): 15934-15940
    [74] Noda M, Yukawa H, Matsushima M, et al. Porous carbon film electrodes prepared by pulsed discharge plasma CVD. Diam. Relat. Mater., 2009, 18(2-3): 426-428
    [75] Nieto-Márquez A, Valverde J L, Keane M A. Selective low temperature synthesis of carbon nanospheres via the catalytic decomposition of trichloroethylene. Appl.Catal. A-Gel.,2009, 352(1-2): 159-170
    [76] Wu S Y, Ding Y S, Zhang X M, et al. Synthesis and characterization of carbon thin wires linked carbon hollow spheres encapsulating Ag nanoparticles. Mater. Lett., 2008, 62(17-18): 3301-3304
    [77] Liu Q, Liu W, Cui Z M, et al. Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods. Carbon, 2007, 45(2): 268-273
    [78] Qi Y X, Li M S, Bai Y J. Carbon nanobelts synthesized via chemical metathesis route. Mater. Lett., 2007, 61(4-5): 1122-1124
    [79] Kim W S, Moon S Y, Bang S Y, et al. Fabrication of graphene layers from multiwalled carbon nanotubes using high dc pulse. Appl. Phys. Lett., 2009, 95(8): 083103
    [80] Ma H L, Su D S, Klein-Hoffmann A, et al. Morphologies and microstructures of tree-like carbon produced at different reaction conditions in a CVD process. Carbon, 2006, 44(11): 2254-2260
    [81] Zeng L Y, Peng H Y, Wang W B, et al. Direct current discharge plasma chemical vapor deposition of nanocrystalline graphite films on carbon fibers. J. Phys. Chem., 2008, 112(29): 10735-10739
    [82] Somani S P, Somani P R, Noda M, et al. Carbon nanocapsules encapsulating cobalt nanoparticles by pulsed discharge plasma chemical vapor deposition. Diam. Relat. Mater., 2008, 17(4-5): 576-580
    [83] Yang Z Q, Verbeeck J, Schryvers D, et al. TEM and Raman characterisation of diamond micro- and nanostructures in carbon spherules from upper soils. Diam. Relat. Mater., 2008, 17(6): 937-943
    [84] Yang L, May P W, Yin L, et al. Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid. Diam. Relat. Mater., 2007, 16(4-7): 725-729
    [85] Sevilla M, Fuertes A B. Easy synthesis of graphitic carbon nanocoils from saccharides. Mater. Chem. Phys., 2009, 113(1): 208-214
    [86] Narksitipan S, Thongtem T, Thongtem S. Characterization of sp3 carbon produced by plasma deposition on gamma-TiAl alloys. Appl. Surf. Sci., 2008, 254(23): 7759-7764
    [87] Sheng Z M, Wang J N. Growth of magnetic carbon with a nanoporous and graphitic structure. Carbon, 2009, 47(14): 3271-3279
    [88] Xiao Y, Liu Y L, Cheng L Q, et al. Flower-like carbon materials prepared via a simple solvothermal route. Carbon, 2006, 44(8): 1581-1616
    [89] Bystrzejewski M, Lange H, Huczko A, et al. One-step catalyst-free generation of carbon nanospheres via laser-induced pyrolysis of anthracene. J. Solid State Chem., 2008, 181(10): 2796-2803
    [90] Jankhah S, Abatzoglou N, Gitzhofer F, et al. Catalytic properties of carbon nano-filaments produced by iron-catalysed reforming of ethanol. Chem. Eng. J., 2008, 139(3): 532-539
    [91] Wang P, Wei J Y, Huang B B, et al. Synthesis and characterization of carbon spheres prepared by chemical vapour deposition. Mater. Lett., 2007, 61(26): 4854-4856
    [92] Wu X C, Tao Y R, Mao C J, et al. Synthesis of nitrogen-doped horn-shaped carbon nanotubes by reduction of pentachloropyridine with metallic sodium. Carbon, 2007, 45(11): 2253-2259
    [93] Cheng W J, Jiang J C, Zhang Y, et al. Silicon carbon nitride cones prepared from an ellipsoid microwave plasma chemical vapor deposition reactor. Mater. Lett., 2004, 58(27-28): 3467-3469
    [94] Hu H Y, Chen G, Zhang J Y. Facile synthesis of CNTs-doped diamond-like carbon film by electrodeposition. Surf. Coat. Tech., 2008, 202(24): 5943-5946
    [95] Foong Y M, Hsieh J, Li X, et al. The study on the effect of erbium on diamond-like carbon deposited by pulsed laser deposition technique. J. Appl. Phys., 2009, 106(6): 064904
    [96] Nakazawa H, Sugita H, Enta Y, et al. Atomic hydrogen etching of silicon-incorporated diamond-like carbon films prepared by pulsed laser deposition. Diam. Relat. Mater., 2009, 18(5-8): 831-834
    [97] Zhang J H, Du J, Ma D K, et al. One-dimensional chain Fe3O4 nanoparticles encapsulated in worm-shaped carbon shell. Solid State Commun., 2007, 144(3-4): 168-173
    [98] Hu Q, Hirai M, Joshi R K, et al. Structural and electrical characteristics of nitrogen-doped nanocrystalline diamond films prepared by CVD. J. Phys. D: Appl. Phys., 2009, 42(2): 025301
    [99] Lin C T, Chen T H, Chin T S, et al. Quasi two-dimensional carbon nanobelts synthesized using a template method. Carbon, 2008, 46(5): 741-746
    [100] Mi Y Z, Hu W B, Dan Y M. Synthesis of carbon micro-rods via a solvothermal route. Mater. Res. Bull., 2009, 44(4): 950-952
    [101] Wen B, Zhao J J, Li T J, et al. n-diamond from catalysed carbon nanotubes: synthesis and crystal structure. J. Phys: Condens. Mater., 2005, 17(48): L513-519
    [102] Braga N A, Cairo C A A, Almeida E C, et al. From micro to nanocrystalline transition in the diamond formation on porous pure titanium. Diam. Relat. Mater., 2008, 17(11): 1891-1896
    [103] Obraztsov A N, Kopylov P G, Chuvilin A L, et al. Production of single crystal diamond needles by a combination of CVD growth and thermal oxidation. Diam. Relat. Mater., 2009, 18(10): 1289-1293
    [104] Yang S M, He Z T, Li Q T, et al. Diamond films with preferred <110> texture by hot filament CVD at low pressure. Diam. Relat. Mater., 2008, 17(12): 2075-2079
    [105] Li D S, Zuo D W, Lu W Z, et al. Effects of methane concentration on diamond spherical shell films prepared by DC-plasma jet CVD. Solid State Ionics, 2008,179(21-26): 1263-1267
    [106] Crisci A, Mermoux M, Saubat-Marcus B. Deep ultra-violet Raman imaging of CVD boron-doped and non-doped diamond films. Diam. Relat. Mater., 2008, 17(7-10): 1207-1211
    [107] Xie Y G, Huang Q Z, Huang B Y. Preparation of high purity carbon nanospheres by the chemical reaction of calcium carbide and oxalic acid. Carbon, 2009, 47(9): 2290-2299
    [108] Ma J, Wang J N. Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach. Chem. Mater., 2008, 20(9): 2895-2902
    [109] Suzuki T, Suhama K, Zhao X L, et al. Purification of single-wall carbon nanotubes produced by arc plasma jet method. Diam. Relat. Mater., 2007, 16(4-7): 1116-1120
    [110] Chen Y H, Iqbal Z, Mitra S. Microwave-induced controlled purification of single-walled carbon nanotubes without sidewall functionalization. Adv. Funct. Mater., 2007, 17(18): 3946-3951
    [111]方华,刘爱东,纳米材料及其制备,哈尔滨,哈尔滨地图出版社,2005,23-30
    [112] Sergiienko R, Shibata E, Suwa H, et al. Synthesis of amorphous carbon nanoparticles and carbon encapsulated metal nanoparticles in liquid benzene by an electric plasma discharge in ultrasonic cavitation field. Ultrason. Sonochem., 2006, 13(1): 6-12
    [113] Shibata E, Sergiienko R, Suwa H, et al. Synthesis of amorphous carbon particles by an electric arc in the ultrasonic cavitation field of liquid benzene. Carbon, 2004, 42(4): 885-888
    [114] Jager C, Henning T, Schlogl R, et al. Spectral properties of carbon black. J. Non-Cryst. Solids, 1999, 258(1-3): 161-179
    [115] Antisari M V, Montone A, Jovic N, et al. Low energy pure shear milling: A method for the preparation of graphite nano-sheets. Scripta Mater., 2006, 55(11): 1047-1050
    [116] Janot R, Guérard D. Ball-milling: the behavior of graphite as a function of the dispersal media. Carbon, 2002, 40(15): 2887-2896
    [117] Chen G H, Weng W G, Wu D J, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon, 2004, 42(4): 753-759
    [118] Sun G L, Li X J, Qu Y D, et al. Preparation and characterization of graphite nanosheets from detonation technique. Mater. Lett., 2008, 62(4-5): 703-706
    [119] Sun G L, Li X J, Yan H H, et al. Production of nanosized graphite powders from natural graphite by detonation. Carbon, 2008, 46(3): 476-481
    [120] Obraztsov A N, Obraztsova E A, Tyurnina A V, et al. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 2007, 45(10): 2017-2021
    [121] Kokai F, Takahashi K, Kasuya D, et al. Laser vaporization synthesis of polyhedral graphite. Appl. Phys. A, 2003, 77(1): 69-71
    [122] Song X L, Liu Y N, Zhu J W. Synthesis of polyhedral graphite in a forced flow arc discharge. Mater. Lett., 2007, 61(26): 4781-4783
    [123] Mani R C, Sunkara M K, Baldwin R P, et al. Nanocrystalline graphite for electrochemical sensing. J. Electrochem. Soc., 2005, 152(4): 154-159
    [124] Chou C C, Lee S H. Rheological behavior and tribological performance of a nanodiamond-dispersed lubricant. J. Mater. Process. Tech., 2008, 201(1-3): 542-547
    [125] Zhao F L, Gong Z, Liang S D, et al. Ultrafast optical emission of nanodiamond induced by laser excitation. Appl. Phys. Lett., 2004, 85(6): 914-916
    [126] Enoki T, Kobayashi Y, Katsuyama C, et al. Structures and electronic properties of surface/edges of nanodiamond and nanographite. Diam. Relat. Mater., 2007, 16(12): 2029-2034
    [127] Zhu W, Kochanski G P, Jin S. Low field emission from undoped nanostructured diamond. Science, 1998, 282(5393): 1471-14731
    [128] Subramanian K, Kang W P, Davidson J L, et al. Nanodiamond lateral field emitter devices on thick insulator substrates for reliable high power applications. Diam. Relat. Mater., 2008, 17(4-5): 786-789
    [129] Krueger A. New carbon materials: biological applications of functionalized nanodiamond materials. Chem. Eur. J. 2008, 14(5): 1382-1390
    [130] Yu S J, Kang M W, Chang H C, et al. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc., 2005, 127(50), 17604-17605
    [131] Decarli P S, Jamieson J C. Formation of diamond by explosive shock. Science, 1961, 133(3467): 1821-1822
    [132] Kang X, Xue Q J. Deaggregation of ultradispersed diamond from explosive detonation by a graphitization-oxidation method and by hydroiodic acid treatment. Diam. Relat. Mater., 2007, 16(2): 277-282
    [133] Amans D, Chenus A C, Ledoux G, et al. Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater., 2009, 18(2-3): 177-180
    [134] Yang G M, Zheng W T, Tian H W, et al. Investigation on nanodiamond and carbon nanotube-diamond nanocomposite synthesized using RF-PECVD. Chem. Vapor Depos., 2008, 14(7-8): 236-240
    [135] Gouzman I, Fuchs O, Lifshitz Y, et al. Nanodiamond growth on diamond by energetic plasma bombardment. Diam. Relat. Mater., 2007, 16(4-7): 762-766
    [136] Zhang F M, Shen J, Sun J F, et al. Conversion of carbon nanotubes to diamond by spark plasma sintering. Carbon, 2005, 43(6): 1254-1258
    [137] Terranova M L, Orlanducci S, Fiori A, et al. Controlled evolution of carbon nanotubes coated by nanodiamond: the realization of a new class of hybrid nanomaterials. Chem. Mater., 2005, 17(12): 3214-3220
    [138] Xiao X C, Elam J W, Trasobares S, et al. Synthesis of a self-assembled hybrid of ultrananocrystalline diamond and carbon nanotubes. Adv. Mater., 2005, 17(12): 1496-1500
    [139] Shen J, Zhang F M, Sun J F, et al. Spark plasma sintering assisted diamond formation from carbon nanotubes at very low pressure. Nanotechnology, 2006, 17(9): 2187-2191
    [140] Zhang F M, Shen J, Sun J F, et al. Direct synthesis of diamond from low purity carbon nanotubes. Carbon, 2006, 44(14): 3113-3148
    [141] Chen M Y, Yeh C M, Hwang J, et al. Synthesis of nano-scale diamond tips on micro-size diamond powders/Ni/Al. Diam. Relat. Mater., 2008, 17(7-10): 1821-1825
    [142] Orlanducci S, Fiori A, Tamburri E, et al. Nanocrystalline non-planar carbons: rowth of carbon nanotubes and curled nanostructures. Cryst. Res. Technol., 2005, 40(10–11), 928-931
    [143] Ugarte D. Curling and closing of graphitic networks under electron beam irradiation. Nature, 1992, 359(6397): 707-709
    [144] Xu B S, Tanaka S I. Formation of giant onion-like fullerenes under Al nano- particles by electron irradiation. Acta Mater, 1998, 46(15): 5249-5257
    [145] Cabioch T, Jaouen M, Thune E, et al. Carbon onions formation by high-dose carbon ion implantation into copper and silver. Surf. Coat. Tech., 2000, 128-129: 43-50
    [146] Thune E, Cabioc’h T, Ph Guérin, et al. Nucleation and growth of carbon onions synthesized by ion-implantation: a transmission electron microscopy study. Mater. Lett., 2002, 54(2-3): 222-228
    [147] Rettenbacher A S, Elliott B, Hudson J S, et al. Preparation and functionalization of multilayer fullerenes (carbon nanoonions). Chem-Eur. J., 2006, 12(2): 376-387
    [148] Sano N, Wang H, Alexandrou I, et al. Properties of carbon onions produced by an arc discharge in water. J. Appl. Phys., 2002, 92(5): 2783-2788
    [149] Imasaka K, Kanatake Y, Ohshiro Y, et al. Production of carbon nanoonions and nanotubes using an intermittent arc discharge in water. Thin Solid Films, 2006, 506-507: 250-254
    [150] Zhou J F, Shen Z Y, Hou S M, et al. Adsorption and manipulation of carbon onions on highly oriented pyrolytic graphite studied with atomic force microscopy. Appl. Surf. Sci., 2007, 253(6): 3237-3241
    [151] Radhakrishnan G, Adams P M, Bernstein L S. Plasma characterization and room temperature growth of carbon nanotubes and nano-onions by excimer laser ablation. Appl. Surf. Sci., 2007, 253(19): 7651-7655
    [152] Blank V D, Denisov V N, Kirichenko A N, et al. High pressure transformation of single-crystal graphite to form molecular carbon-onions. Nanotechnology, 2007, 18(34): 345601
    [153] Blank V D, Kulnitskiy B A, Perezhogin I A. Structural peculiarities of carbon onions, formed by four different methods: onions and diamonds, alternative products of graphite high-pressure treatment. Scripta Mater., 2009, 60(6): 407-410
    [154] Yamada K, Kunishige H, Sawaoka A B. Formation process of carbyne produced by shock compression. Naturwissenschaften, 1991, 78(10): 450-452
    [155] Hatta N, Murata K. Very long graphitic nano-tubules synthesized by plasma- decomposition of benzene. Chem. Phys. Lett., 1994, 217(4): 398-402
    [156] Ozawa M, Goto H, Kusunoki M, et al. Continuously growing spiral carbon nanoparticles as the intermediates in the formation of fullerenes and nanoonions. J. Phys. Chem. C, 2002, 106(29): 7135-7138
    [157] Barry L, Tobin J, Copley M, et al. MnS doped mesoporous silica catalysts for the generation of novel carbon nanocages. Appl. Catal. A-Gen., 2008, 341(1-2): 8-11
    [158] Li Z L, Jaroniec M, Papakonstantinou P, et al. Supercritical fluid growth of porous carbon nanocages. Chem. Mater., 2007, 19(13): 3349-3354
    [159] Wang J N, Zhang L, Niu J J, et al. Synthesis of high surface area, water- dispersible graphitic carbon nanocages by an in situ template approach. Chem. Mater., 2007, 19(3): 453-459
    [160] Chen H, Huang R B, Tang Z C, et al. Single titanium crystals encapsulated in carbon nanocages obtained by laser vaporization of sponge titanium in benzene vapor. Appl. Phys. Lett., 2000, 77(1): 91-93
    [161] Liu J W, Xu L Q, Zhang W, et al. Formation of carbon nanotubes and cubic and spherical nanocages. J. Phys. Chem. B, 2004, 108(52): 20090-20094
    [162] Sheng Z M, Wang J N. Thin-walled carbon nanocages: direct growth, characterization, and applications. Adv. Mater., 2008, 20(5): 1071-1075
    [163] Li H B, Liang Y Y, Yin G. Template-free fabrication of fullerene (C60, C70) nanometer-sized hollow spheres under solvothermal conditions. Carbon, 2008, 46(13): 1736-1740
    [164] Sathish M, Miyazawa K. Size-tunable hexagonal fullerene (C60) nanosheets at the liquid-liquid interface. J. Am. Chem. Soc., 2007, 129(45): 13816-13817
    [165] Kuchibhaffa S V N T, Karakoti A S, Bera D, et al. One dimensional nano- structured materials. Prog. Mater. Sci., 2007, 52(5): 699-913
    [166] Liao L, Zheng M B, Zhang Z, et al. The characterization and application of p-type semiconducting mesoporous carbon nanofibers. Carbon, 47(7): 1841- 1845
    [167] Jang S M, Miyawaki J, Tsuji M, et al. The preparation of a novel Si-CNF composite as an effective anodic material for lithium–ion batteries. Carbon, 47(15): 3383-3391
    [168] Jarrah N A, van Ommen J G, Lefferts L. Mechanistic aspects of the formation of carbon-nanofibers on the surface of Ni foam: A new microstructured catalystsupport. J. Catal., 2006, 239(2): 460-469
    [169] Danilov M O, Melezhyk A V, Kolbasov G Y. Carbon nanofibers as hydrogen adsorbing materials for power sources. J. Power Sources, 2008, 176(1): 320-324
    [170] Ghavanini F A, Poche H L, Berg J, et al. Compatibility assessment of CVD growth of carbon nanofibers on bulk CMOS devices. Nano Lett., 2008, 8(8): 2437- 2441
    [171] Pacheco-Sotel J O, Pacheco M P, Barrientos R V, et al. Carbon nanofibers synthesized by glow-arc high-frequency discharge. IEEE T. Plasma Sci., 2007, 35(2): 460-466
    [172] Mori S, Suzuki M. Characterization of carbon nanofibers synthesized by microwave plasma-enhanced CVD at low-temperature in a CO/Ar/O2 system. Diam. Relat. Mater., 2009, 18(4): 678-681
    [173] Ceragioli H J, Peterlevitz A C, Quispe J C R, et al. Growth and characterization of carbon nanofibers by a technique of polymer doped catalyst and hot-filament chemical vapor deposition. Vacuum, 2008, 83(2): 273-275
    [174] Du F L, Liu J G, Guo Z Y. Shape controlled synthesis of Cu2O and its catalytic application to synthesize amorphous carbon nanofibers. Mater. Res. Bull., 2009, 44(1): 25-29
    [175] Chen X W, Timpe O, Hamid S B A. Direct synthesis of carbon nanofibers on modified biomass-derived activated carbon. Carbon, 2008, 47(1): 313-347
    [176] Hulicova-Jurcakova D, Li X, Zhu Z H, et al. Graphitic carbon nanofibers synthesized by the chemical vapor deposition (CVD) method and their electrochemical performances in supercapacitors. Energ. Fuel., 2008, 22(6): 4139-4145
    [177] Cheng J, Zou X P, Zhang H D, et al. Growth of Y-shaped carbon nanofibers from ethanol flames. Nanoscale Res. Lett., 2008, 3(8): 295-298
    [178] Longtin R, Fauteux C, Carignan L P, et al. Laser-assisted synthesis of carbon nanofibers: From arrays to thin films and coatings. Surf. Coat. Tech., 2008, 202(12): 2661-2669
    [179] Nataraj S K, Kim B H, Curz M D, et al. Free standing thin webs of porous carbon nanofibers of polyacrylonitrile containing iron-oxide by electrospinning. Mater. Lett., 2009, 63(2): 218-220
    [180] Wang B, Ma Y F, Wu Y P, et al. Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties. Carbon, 2009, 47(8): 2112-2115
    [181] Ma X C, Wang E G. CNx/carbon nanotube junctions synthesized by microwave chemical vapor deposition. Appl. Phys. Lett., 2001, 78(7): 978-980
    [182] Puretzky A A, Styers-barnett D J, Rouleau C M, et al. Cumulative and continuous laser vaporization synthesis of single wall carbon nanotubes and nanohorns. Appl. Phys. A-Mater., 2008, 93(4): 849-855
    [183] Xu F, Wharton J E, Martin C R. Template synthesis of carbon nanotubes with diamond-shaped cross sections. Small, 2007, 3(10): 1718-1722
    [184] Yuan D S, Liu Y L, Xiao Y, et al. Preparation and characterization of Z-shaped carbon nanotubes via decomposing magnesium acetate. Mater. Chem. Phys., 2008, 112(1): 27-30
    [185] Javey A, Guo J, Wang, Q, et al. Ballistic carbon nanotube field-effect transistors. Nature, 2003, 424(6949): 654-657
    [186] Buehler M J, Self-assembled CNT-based electronic devices. MRS Bull., 2006, 31(7): 503
    [187] Kam N W S, Dai H J. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc., 2005, 127(16): 6021-6026
    [188] Urones-Garrote E,ávila-Brande D, Ayape-Katcho N, et al. Amorphous carbon nanostructures from chlorination of ferrocene. Carbon, 2005, 43(5): 978-985
    [189] Wei D C, Liu Y Q, Cao L C, et al. A magnetism-assisted chemical vapor deposition method to produce branched or iron-encapsulated carbon nanotubes. J. Am. Chem. Soc., 2007, 129(23): 7364-7368
    [190] Zhu Z P, Su D S, Weinberg G, et al. Supermolecular self-assembly of graphene sheets: formation of tube-in-tube nanostructures. Nano Lett., 2004, 4(11): 2255- 2259
    [191] Hou P X, Bai S, Liu C, et al. Observations of novel carbon nanotubes with multiple hollow cores. Carbon, 2003, 41(13): 2477-2480
    [192] Tang N J, Zhong W, Au C T, et al. Large-scale synthesis, annealing, purification, and magnetic properties of crystalline helical carbon nanotubes with symmetrical structures. Adv. Funct. Mater., 2007, 17(9): 1542-1550
    [193] Zhu Z P, Su D S, Lu Y, et al. Molecular“glass”blowing: from carbon nanotubes to carbon nanotubes. Adv. Mater., 2004, 16(5): 443-447
    [194] Song L, Holleitner A W, Qian H H, et al. A carbon nanofilament-bead necklace. J. Phys. Chem. C, 2008, 112(26): 9644-9649
    [195] Qian W, Chen J F, Wu L S, et al. Synthesis of polygonized carbon nanotubes utilizing inhomogeneous catalyst activity of nonspherical Fe3O4 nanoparticles. J. Phys. Chem. B, 2006; 110(33): 16404-16407
    [196] Pan Z W, Dai S, Beach D B, et al. Gallium-mediated growth of multiwall carbon nanotubes. Appl. Phys. Lett., 2003; 82(12): 1947-1949
    [197] Hung T C, Chen C F, Whang W T. One-step fabrication and field emission properties of petal-like carbon nanotubes. Diam. Relat. Mater., 2009, 18(2-3): 443-447
    [198] Romo-Herrera J M, Sumpter B G, Cullen D A, et al. An atomistic branching mechanism for carbon nanotubes: sulfur as the triggering agent. Angew. Chem. Int. Ed., 2008, 47(16): 2948-2953
    [199] Yanagishita T, Sasaki M, Nishio K, et al. Carbon nanotubes with a triangularcross-section, fabrication using anodic porous alumina as the template. Adv. Mater., 2004, 16(5): 429-432
    [200] Goresy A E, Donnay G. A new allotropic form of carbon from the ries crater. Science, 1968, 161(3839): 363-364
    [201] Hu A, Rybachuk M, Lu Q B, et al. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation. Appl. Phys. Lett., 2007, 91(13): 131906-1-3
    [202] Kudryavtsev Y P, Evsyukov S E, Babaev V G, et al. Oriented carbyne layers. Carbon, 1992, 30(2): 213-221
    [203] Kleiman J, Heimann R B, Hawken D, et al. Shock compression and flash heating of graphite/metal mixtures at temperatures up to 3200 K and pressures up to 25 GPa. J. Appl. Phys., 1984, 56(5): 1440-1454
    [204] Cazzanelli E, Caputi L, Castriota M, et al. Carbon linear chains inside multiwalled nanotubes. Surf. Sci., 2007, 601(18): 3926-3932
    [205] Cataldo F, Capitani D. Preparation and characterization of carbonaceous matter rich in diamond-like carbon and carbyne moieties. Mater. Chem. Phys., 1999, 59(3): 225-231
    [206] Udod I A, Shchurik V I, Bulychev B M, et al. Formation of‘carbyne’in the interaction of polyacetylene with potassium under high quasi-hydrostatic pressure. J. Mater. Chem., 1993, 3: 413-416
    [207] Kavan L, Hlavaty J, Kastner J, et al. Electrochemical carbyne from perfluorinated hydrocarbons: Synthesis and stability studied by Raman scattering. Carbon, 1995, 33(9): 1321-1329
    [208] Shacklette L M, Murthy N S, Baughman R H. New structural phases of polymer battery anode materials: alkali-metal-doped polyacetylene and polyphenylene. Mol. Cryst. Liq. Cryst., 1985, 121: 201-209
    [209] Lagow R J, Kampa J J, Wei H C, et al. Synthesis of linear acetylenic carbon: The "sp" carbon allotrope. Science, 1995, 267(5196): 362-367
    [210] Yasuda A, Kawase N, Matsui T, et al. Carbyne: electrochemical preparation and nanotube formation. Polymers, 1999, 41(1-3): 13-19
    [211] Li J L, Peng Q S, Bai G Z, et al. Carbon scrolls produced by high energy ball milling of graphite. Carbon, 2005, 43(13): 2830-2833
    [212] Savoskin M V, Mochalin V N, Yaroshenko A P, et al. Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon, 2007, 45(14): 2797-2800
    [213] Shioyama H, Akita T. A new route to carbon nanotubes. Carbon, 2003, 41(1): 179-181
    [214] Roy D, Angeles-Tactay E, Brown R J C, et al. Synthesis and Raman spectroscopic characterisation of carbon nanoscrolls. Chem. Phys. Lett., 2008, 465(4-6): 254-257
    [215] Zhang H X, Feng P X. Properties of one-dimensional tilted carbon nanorod arrays synthesized by the catalyst-assisted oblique angle deposition technique. J. Phys. D: Appl. Phys., 2009, 42(2): 025406
    [216] Thiên-Nga L, Hernadi K, ForróL. Catalytic growth of carbon nanorods on a high-T-c substrate. Adv. Mater., 2001, 13(2): 148-150
    [217] Podgorny?. Features of the growth of carbon microplates during arc discharge in argon. Tech. Phys. Lett., 2006, 32(6): 347-348
    [218] Liu Q, Liu W, Cui Z M, et al. Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods. Carbon, 2007, 45(2): 268-273
    [219] Huang S J, Shimizu T, Sakaue H, et al. Fabrication of carbon nanotube and nanorod arrays using nanoporous templates. Jpn. J. Appl. Phys., 2005, 44(7A): 5289-5291
    [220] Li Y F, Qiu J S, Wang Y P, et al. Novel iron-decorated carbon nanorods from fullerene soot. Chem. Commun., 2004, (6): 656-657
    [221] Lin C T, Chen T H, Chin T S, et al. Quasi two-dimensional carbon nanobelts synthesized using a template method. Carbon, 2008, 46(5): 741-746
    [222] Li Y B, Xie S S, Zhou W Y, et al. Nanographite ribbons grown from a SiC arc-discharge in a hydrogen atmosphere. Carbon, 2001, 39(4): 626-628
    [223] Mahanandia P, Nanda K K, Prasad V, et al. Synthesis and characterization of carbon nanoribbons and single crystal iron filled carbon nanotubes. Mater. Res. Bull., 2008, 43(12): 3252-3262
    [224] Liu J W, Shao M W, Tang Q, et al. Synthesis of carbon nanotubes and nanobelts through a medial-reduction method. J. Phys. Chem. B, 2003, 107(26): 6329-6332
    [225] Xi G C, Zhang M, Ma D K, et al. Controlled synthesis of carbon nanocables and branched-nanobelts. Carbon, 2006, 44(4): 734-741
    [226] Qi Y X, Li M S, Bai Y J. Carbon nanobelts synthesized via chemical metathesis route. Mater. Lett., 2007, 61(4-5): 1122-1124
    [227] Kang Z H, Wang E B, Mao B D, et al. Controllable Fabrication of carbon nanotube and nanobelt with a polyoxometalate-assisted mild hydrothermal process. J. Am. Chem. Soc., 2005, 127 (18), 6534-6535
    [228] Gong J L, Sun L T, Zhu D Z, et al. Diamond nanorods from carbon nanotubes by hydrogen plasma treatment. Int. J. Nanosci., 2006, 5(2-3): 307-313
    [229] Sun L T, Gong J L, Zhu D Z, et al. Diamond nanorods from carbon nanotubes. Adv. Mater., 2004, 16(20): 1849-1853
    [230] Sathish M, Miyazawa K, Sasaki T. Preparation, characterization, and electrochemical application of metal/metal ion loaded fullerene nanowhiskers. J. Solid State Electrochem., 2008, 12(7-8): 835-840
    [231] Miyazawa K, Minato J, Zhou H S, et al. Structure and electrical properties of heat-treated fullerene nanowhiskers as potential energy device materials. J. Eur.Ceram. Soc., 2006, 26(4-5): 429-434
    [232] Wang L, Liu B B, Liu D D, et al. Synthesis of thin, rectangular C60 nanorods using m-xylene as a shape controller. Adv. Mater., 2006, 18(14): 1883-1888
    [233] Hou Y Y, Liu B B, Ma H G, et al. Pressure-induced polymerization of nano- and submicrometer C60 rods into a rhombohedral phase. Chem. Phys. Lett., 2006, 423(1-3): 215-219
    [234] Liu H B, Li Y L, Jiang L, et al. Imaging as-grown [60]fullerene nanotubes by template technique. J. Am. Chem. Soc., 2002, 124(45): 13370-13371
    [235] Minato J, Miyazawa K. Solvated structure of C60 nanowhiskers. Carbon, 2005, 43(14): 2837-2841
    [236] Sathish M, Miyazawa K, Sasaki T. Nanoporous fullerene nanowhiskers. Mater. Lett., 2007, 19(10): 2398-2400
    [237] Tachibana M, Kobayashi K, Uchida T, et al. Photo-assisted growth and polymerization of C60‘nano’whiskers. Chem. Phys. Lett., 2003, 374(3-4): 279-285
    [238] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5296): 666-669
    [239] Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388
    [240] Wang X B, You H J, Liu F M, et al. Large-scale synthesis of few-layered graphene using CVD. Chem. Vapor Depos., 2009, 15(1-3): 53-56
    [241] Wang G X, Yang J, Park J, et al. Facile Synthesis and characterization of graphene nanosheets. J. Phys. Chem. C, 2008, 112(22): 8192-8195
    [242] Si Y C, Samulski E T. Synthesis of water soluble grapheme. Nano Lett., 2008, 8(6): 1679-1682
    [243] Subrahmanyam K S, Panchakarla L S, Govindaraj A, et al. Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C, 2009, 113(11): 4257-4259
    [244] Banerjee A, Grebel H. Depositing graphene films on solid and perforated substrates. Nanotechnology, 2008, 19(36): 365303
    [245] Dato A, Radmilovic V, Lee Z H, et al. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett., 2008, 8(7): 2012-2016
    [246] Wu Z S, Ren W C, Guo L B, et al. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, 2009, 3(2): 411-417
    [247] Andersson L P. A review of recent work on hard i-C films. Thin Solid Films, 1981, 86(2-3): 193-200
    [248] Robertson J. Diamond-like amorphous carbon. Mater. Sci. Eng. Rep., 2002, 37(4-6): 129-281
    [249] Zhang Z Y, Lu X C, Luo J B, et al. Mechanical properties of La2O3 doped diamond-like carbon films. Surf. Coat. Tech., 2008, 202(9): 1621-1627
    [250] Zhang J S, Huang L N,Yu L G, et al. Synthesis and tribological behaviors of diamond-like carbon films by electrodeposition from solution of acetonitrile and water. Appl. Surf. Sci., 2008, 254(13): 3896-3901
    [251] Tsai P C, Chen K H. Evaluation of microstructures and mechanical properties of diamond like carbon films deposited by filtered cathodic arc plasma. Thin Solid Films, 2008, 516(16): 5440-5444
    [252] Guo C T. Diamond-like carbon films deposited on polycarbonates by plasma- enhanced chemical vapor deposition. Thin Solid Films, 2008, 516(12): 4053- 4058
    [253] Sikora A, Berkesse A, Bourgeois O, et al. Electrical properties of boron-doped diamond-like carbon thin films deposited by femtosecond pulsed laser ablation. Appl. Phys. A-Mater., 2009, 94(1): 105-109
    [254] Zhang Z Y, Lu X C, Guo D M, et al. Microstructure and mechanical properties of CeO2 doped diamond-like carbon films. Diam. Relat. Mater., 2008, 17(3): 396-404
    [255] Manhabosco T M, Muller I L. Electrodeposition of diamond-like carbon (DLC) films on Ti. Appl. Surf. Sci., 2009, 255(7): 4082-4086
    [256] Aryal H R, Adhikari S, Ghimire D C, et al. Preparation of diamond like carbon thin films above room temperature and their properties. Diam. Relat. Mater., 2008, 17(4-5): 680-683
    [257] Xu J Q, Fan H Q, Liu W G, et al. Large-area uniform hydrogen-free diamond-like carbon films prepared by unbalanced magnetron sputtering for infrared anti-reflection coatings. Diam. Relat. Mater., 2008, 17(2): 194-198
    [258] Li R S, Liu B, Zhou M, et al. Effect of deposition voltage on the field emission properties of electrodeposited diamond-like carbon films. Appl. Surf. Sci., 2009, 255(9): 4754-4757
    [259] Wang X C, Wu J Q, Jiang E Y, et al. Structure, optical and electrical properties of facing-target sputtered amorphous CNx films at low N2 partial pressures. J. Phys. D-Appl. Phys., 2007, 40(6): 1801-1806
    [260] Konofaos N, Deligiannakis Y, Evangelou E K, et al. An electrical, optical and electron paramagnetic resonance study of room temperature deposited CNx films on Si. Thin Solid Films, 2005, 482(1-2): 270-274
    [261] Kinoshita H, Ikuta R, Yamaguchi T. Sputter-assisted plasma CVD of wide or narrow optical bandgap amorphous CNx:H films usingi-C4H10/N2 supermagnetron plasma. Thin Solid Films, 2008, 516(13): 4441-4445
    [262] Cheng Y H, Sun Z H, Tay B K, et al. Influence of deposition pressure on the composition and structure of carbon nitride films deposited by direct current plasma assisted pulsed laser ablation. Appl. Surf. Sci., 2001, 182(1-2): 32-39
    [263] Guseva M B, Babaev V G, Babina V V, et al. Shock-wave-induced phase transition in C:N films. Diam. Relat. Mater., 1997, 6(5-7): 640-644
    [264] Kouakou P, Belmahi M, Brien V, et al. Role of silicon on the growthmechanisms of CNx and SiCN thin films by N2/CH4 microwave plasma assisted chemical vapour deposition. Surf. Coat. Tech., 2008, 203(3-4); 277-283
    [265] Tétard F, Djemia P, Besland M P, et al. Characterizations of CNx thin films made by ionized physical vapor deposition. Thin Solid Films, 2005, 482(1-2): 192-196
    [266] Bongiorno G, Blomqvist M, Piseri P, et al. Nanostructured CNx (0 < x < 0.2) films grown by supersonic cluster beam deposition. Carbon, 2005, 43(7): 1460-1469
    [267] Champi A, Barbieri P F, Marques F C. Influence of hydrogen on the thermo- mechanical properties of a-CNx:H and a-CNx films deposited by glow discharge and ion beam assisted deposition. J. Non-Cryst. Solids, 2006, 352(21-22): 2264-2266
    [268] Franco L M, Pérez J A, Riascos H. Chemical analysis of CNx thin films produced by pulsed laser ablation. Microelectron. J., 2008, 39(11): 1363-1365
    [269] Kushwaha A, Mohanta A, Thareja R K. C2 and CN dynamics and pulsed laser deposition of CNx films. J. Appl. Phys., 2009, 105(4): 044902
    [270] Ni J, Wu W D, Ju X, et al. Bonding structure of a-CNx:H films obtained in methane-nitrogen system and its influence on hardness. Thin Solid Films, 2008, 516(21): 7422-7426
    [271] Taniasso-Martinhon P, Cachet H, Debiemme-Chouvy C, et al. Thin films of amorphous nitrogenated carbon a-CNx: electron transfer and surface reactivity. Electrochim. Acta, 2008, 53(19): 5752-5759
    [272] Park Y S, Hong B. Structural and tribological properties of nitrogen doped amorphous carbon thin films synthesized by CFUBM sputtering method for protective coatings. Appl. Surf. Sci., 2009, 255(7): 3913-3917
    [273] Cho J, Konopka K, Rozniatowski K, et al. Characterisation of carbon nanotube films deposited by electrophoretic deposition. Carbon, 2009, 47(1): 58-67
    [274] Shi B, Jin Q L, Chen L H, et al. Fundamentals of ultrananocrystalline diamond (UNCD) thin films as biomaterials for developmental biology: Embryonic fibroblasts growth on the surface of (UNCD) films. Diam. Relat. Mater., 2009, 18(2-3): 596-600
    [275] Chen R S, Lin Y J, Su Y C, et al. Surface morphology of C60 polycrystalline films from physical vapor deposition. Thin Solid Films, 2001, 396(1-2): 103-108
    [276] Adelhelm C, Balden M, Rinke M, et al. Influence of doping (Ti, V, Zr, W) and annealing on the sp(2) carbon structure of amorphous carbon films. J. Appl. Phys., 2009, 105(3): 033522
    [277] Kumari L, Subramanyam S V. Structural, optical and electrical properties of sulfur-incorporated amorphous carbon films. Appl. Phys. A, 2009, 95(2): 343-349
    [278] Zhang W, Xu B S, Tanaka A, et al. Frictional behaviour of vertically aligned carbon nanotube films. Carbon, 2009, 47(3): 926-929
    [279] Pint C L, Xu Y Q, Pasquali M, et al. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. ACS Nano, 2008, 2(9): 1871-1878
    [280] Hsieh Y P, Hofmann M, Son H, et al. Direct deposition of single-walled carbon nanotube thin films via electrostatic spray assisted chemical vapor deposition. Nanotechnology, 2009, 20(6): 065601
    [281] Halonen N, Kordás K, Tóth G, et al. Controlled CCVD synthesis of robust multiwalled carbon nanotube films. J. Phys. Chem. C, 2008, 112(17): 6723-6728
    [282] Zou Y S, Yang Y, Chong Y M, et al. Chemical vapor deposition of diamond films on patterned GaN substrates via a thin silicon nitride protective layer. Cryst. Growth Des., 2008, 8(5): 1770-1773
    [283] Zhu J Q, Dai B, Meng S H, et al. Interfacial evaluation of filtered arc-deposited amorphous diamond films on germanium. Scripta Mater., 2008, 58(6): 437-440
    [284] Rakha S A, Yang S M, He Z T, et al. Synthesis of thin diamond films from faceted nanosized crystallites. Curr. Appl. Phys., 2009, 9(3): 698-702
    [285] Liu T, Raabe D. Influence of nitrogen doping on growth rate and texture evolution of chemical vapor deposition diamond films. Appl. Phys. Lett., 2009, 94(2): 021119-1-3
    [286] Li D S, Zuo D W, Lu W Z, et al. Effects of methane concentration on diamond spherical shell films prepared by DC-plasma jet CVD. Solid State Ionics, 2008, 179(21-26): 1263-1267
    [287] Morales J, Apátiga, Casta?o V M. Synthesis of diamond films from organic compounds by pulsed liquid injection CVD. Surf. Coat. Tech., 2008, 203(5-7): 610-613
    [288] Chen W C, Wang W L, Tiwari R N, et al. Growth and characterization of diamond films on TiN/Si(100) by microwave plasma chemical vapor deposition. Diam. Relat. Mater., 2009, 18(2-3): 124-127
    [289] Nakai T, Maida O, Ito T. Characterization of phosphorus-doped homoepitaxial (100) diamond films grown using high-power-density MWPCVD method with a conventional quartz-tube chamber. Appl. Surf. Sci., 2008, 254(19): 6281-6284
    [290] You M S, Hong F C N, Jeng Y R, et al. Low temperature growth of highly transparent nanocrystalline diamond films on quartz glass by hot filament chemical vapor deposition. Diam. Relat. Mater., 2009, 18(2-3): 155-159
    [291] Vinu A, Anandan S, Anand C, et al. Fabrication of partially graphitic three- dimensional nitrogen-doped mesoporous carbon using polyaniline nanocomposite through nanotemplating method. Micropor. Mesopor. Mat., 2008, 109(1-3): 398-404
    [292] Kaur S, Ajayan P M, Kane R S. Design and characterization ofthree-dimensional carbon nanotube foams. J. Phys. Chem. B, 2006, 110(42): 21377-21380
    [293] Mukhopadhyay K, Lal D, Ram K, et al. An easy and novel way to get 2D/3D architecture of carbon nanotube bundles. Synthetic Met., 2006, 156(14-15): 963-965
    [294] Ting J M, Li T P, Chang C C. Carbon nanotubes with 2D and 3D multiple junctions. Carbon, 2004, 42(14): 2997-3002
    [295] Gutiérrez M C, Hortigüela M J, Amarilla J M, et al. Macroporous 3D architectures of self-assembled MWCNT surface decorated with Pt nanoparticles as anodes for a direct methanol fuel cell. J. Phys. Chem. C, 2007, 111(15): 5557-5560
    [296]任大成,聚乙烯醇氧化脱水脱氢制备线型碳研究,硕士学位论文,四川大学,2004
    [297] Choi H W, Gage D M, Dauskardt R H, et al. Effects of thermal annealing and Si incorporation on bonding structure and fracture properties of diamond-like carbon films. Diam. Relat. Mater., 2009, 18(4): 615-619
    [298] Lee K R, Kim M G, Cho S J, et al. Structural dependence of mechanical properties of Si incorporated diamond-like carbon films deposited by RF plasma-assisted chemical vapor deposition. Thin Solid Films, 1997, 308-309: 263-267
    [299] Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388
    [300] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3): 902-907
    [301] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706-710
    [302]陈巧玲,基于碳纳米管和碳原子线的超级电容器,硕士学位论文,南京师范大学,2003
    [303] Ji L W, Zhang X W. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology, 2009, 20(15): 155705
    [304] Vivekchand S R C, Chandra S R, Subrahmanyam K S, et a1. Graphene-based electrochemical supercapacitors. J. Chem. Sci., 2008, 120(1): 9-13
    [305] Wang H L, Hao Q L, Yang X J, et al. Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun., 2009, 11(6): 1158-l161
    [306] Wu Z X, Yang Y X, Gu D, et al. Synthesis of ordered mesoporous carbon materials with semi-graphitized walls via direct in-situ silica-confined thermal decomposition of CH4 and their hydrogen storage properties. Top Catal., 2009, 52(1-2): 12-26
    [307]王荣明,朱兴华,杨福湖,储氢材料及其载能系统,重庆,重庆大学出版社,1998,1-16
    [308] Lee S H, Mathews M, Toghiani H, et al. Fabrication of carbon-encapsulated mono- and bimetallic (Sn and Sn/Sb alloy) nanorods. potential lithium-ion battery anode materials. Chem. Mater., 2009, 21(11): 2306-2314
    [309] Huang L, Cai J S, He Y. et al. Structure and electrochemical performance of nanostructured Sn-Co alloy/carbon nanotube composites as anodes for lithium ion batteries. Electrochem. Commun., 2009, 11(5): 950-953
    [310] Yoon S, Lee J M, Kim H et al. An Sn-Fe/carbon nanocomposite as an alternative anode material for rechargeable lithium batteries. Electrochim. Acta, 2009, 54(10): 2699-2705
    [311] Wang Q, Li H, Chen L Q, et al. Novel spherical microporous carbon as anode material for Li-ion batteries. Solid State Ionics, 2002, 152-153: 43-50
    [312] Lee K T, Jung Y S, Oh S M. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc., 2003, 125(19): 5652-5653
    [313] Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors. Nano Lett., 2008, 8(10): 3498-3502
    [314] Guo H L, Gao Q M. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J. Powder Sources, 2009, 186(2): 551-556
    [315] Hauert R. A review of modified DLC coatings for biological applications. Diam. Relat. Mater., 2003, 12(3-7): 583-589
    [316] Li D J, Gu H Q. Cell attachment on diamond-like carbon coating. Bull. Mater. Sci., 2002, 25(1): 7-13
    [317] Stafiej A, Pyrzynska K. Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol., 2007, 58(1): 49-52
    [318] Peng X J, Li Y H, Luan Z K, et al. Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett., 2003, 376(1-2): 154-158
    [319] Li Y H, Wang S G, Wei J Q, et al. Lead adsorption on carbon nanotubes. Chem. Phys. Lett., 2002, 357(3-4): 263- 266
    [320] Li Y H, Wang S G, Luan Z K, et al. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon, 2003, 41(5): 1057- 1062
    [321] Kim J H, Fang B, Kim M, et al. Hollow spherical carbon with mesoporous shell as a superb anode catalyst support in proton exchange membrane fuel cell. Catal. Today, 2009, 146(1-2): 25-30
    [322] Kim K H, Oh H S, Kim H. Use of a carbon nanocage as a catalyst support in polymer electrolyte membrane fuel cells. Electrochem. Commun., 2009, 11(6): 1131-1134
    [323] Joo J B, Kim Y J, Kim W, et al. Simple synthesis of graphitic porous carbon by hydrothermal method for use as a catalyst support in methanol electro-oxidation. Catal. Commun., 2008, 10(3): 267-271
    [324] Fang B, Kim M, Yu J S. Hollow core/mesoporous shell carbon as a highly efficient catalyst support in direct formic acid fuel cell. Appl. Catal. B-Environ., 2008, 84(1-2): 100-105
    [325] Shanahan P V, Xu L B, Liang C D, et al. Graphitic mesoporous carbon as a durable fuel cell catalyst support. J. Power Source, 2008, 185(1): 423-427
    [326] Kim D B, Lim D H, Chun H J, et al. Nitrogen-containing graphitized carbon support for methanol oxidation Pt catalyst. Carbon, 2010, 48(3): 673-679
    [327] Di Bartolomeo A, Sarno M, Giubileo F, et al. Multiwalled carbon nanotube films as small-sized temperature sensors. J. Appl. Phys., 2009, 105(6): 064518
    [328] Hu C T, Liu C K, Huang M W, et al. Plasma-enhanced chemical vapor deposition carbon nanotubes for ethanol gas sensors. Diam. Relat. Mater., 2009, 18(2-3): 472-477
    [329] Hoa N D, Van Quy N, Cho Y, et al. Porous single-wall carbon nanotube films formed by in situ arc-discharge deposition for gas sensors application. Sen. Actuat. B-Chem., 2009, 135(2): 656-663
    [330] Yun J H, Kim J, Park Y C, et al. Highly sensitive carbon nanotube-embedding gas sensors operating at atmospheric pressure. Nanotechnology, 2009, 20(5): 055503
    [331] Wang Y Y, Zhou Z H, Yang Z, et al. Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection. Nanotechnology, 2009, 20(34): 345502
    [332] Penza M, Rossi R, Alvisi M, et al. Pt- and Pd-nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors. Sen. Actuat. B-Chem., 2008, 135(1): 289-297
    [333] Zhao Q Z, Ciobanu F, Wang L J. Self-organized regular arrays of carbon nanocones induced by ultrashort laser pulses and their field emission properties. J. Appl. Phys., 2009, 105(8): 083103
    [334] Mahanandia P, Arya V, Bhotla P V, et al. Excellent field emission from semialigned carbon nanofibers grown on cylindrical copper surface. Appl. Phys. Lett., 2009, 95(8): 083108
    [335] Liu W J, Guo X J, Chang C L, et al. Field emission characteristics of fast grown nanocrystalline diamond/amorphous carbon composite films by microwave plasma- enhanced chemical deposition method. Thin Solid Films, 2009, 517(14): 4031-4034
    [336] Banerjee D, Jha A, Chattopadhyay K K. Low-temperature synthesis of amorphous carbon nanoneedle and study on its field emission property. Phys. E, 2009, 41(7): 1174-1178
    [337] Yu J, Sow C H, Wee A T S, et al. Enhanced field emission of vertically aligned core-shelled carbon nanotubes with molybdenum oxide encapsulation. J. Appl. Phys., 2009, 105(11): 114320
    [338] Shimoi N, Tanaka S I. Enhancement of electron field emission from carbonnanofiber bundles separately grown on Ni catalyst in Ni-Cr alloy. Carbon, 2009, 47(5): 1258-1263
    [339] Li R S, Liu B, Zhou M, et al. Effect of deposition voltage on the field emission properties of electrodeposited diamond-like carbon films. Appl. Surf. Sci., 2009, 255(9): 4754-4757
    [340] Wang D W, Li F, Zhao J P, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano, 2009, 3(7): 1745-1752
    [341] Zheng W T, Ho Y M, Tian H W, et al. Field emission from a composite of graphene sheets and ZnO nanowires. J. Phys. Chem. C, 2009, 113(21): 9164-9168
    [342] Liu H, Xie J Y. Synthesis and characterization of LiFe0.9Mg0.1PO4/nano-carbon webs composite cathode. J. Mater. Precess. Tech., 2009, 209(1): 477-481
    [343] Cui S, Scharff P, Siegmund C, et al. Investigation on preparation of multiwalled carbon nanotubes by DC arc discharge under N2 atmosphere. Carbon, 2004, 42(5-6): 931-939
    [344] Shen G Z, Bando Y, Zhi C Y, et al. Tubular carbon nano-/microstructures synthesized from graphite powders by an in situ template process. J. Phys. Chem. B, 2006, 110(22): 10714-10719
    [345] Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science, 1997, 277(5330): 1287-1289
    [346] Cui S, Scharff P, Siegmund C, et al. Preparation of multiwalled carbon nanotubes by DC arc discharge under a nitrogen atmosphere. Carbon, 2003, 41(8): 1648-1651
    [347]王艳艳.直流电弧放电法制备新型纳米碳材料.硕士学位论文,天津大学理学院,2007
    [348]刘文西,黄孝瑛,陈玉如.材料结构电子显微分析,天津:天津大学出版社,1989:167-171
    [349] Mitchell D R, Brown Jr. R M, Spires T L, et al. The synthesis of megatubes: new dimensions in carbon materials. Inorg. Chem., 2001, 40(12): 2751-2755
    [350] Si Y C, Samulski E T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater., 2008, 20(21): 6792-6797
    [351] Warner J H, Rümmeli M H, Gemming T, et al. Direct imaging of rotational stacking faults in few layer graphene. Nano Lett., 2009, 9(1): 102-106
    [352] Hass J, Varchon F, Millán-Otoya J E, et al. Why multilayer graphene on 4H-SiC(0001) behaves like a single sheet of graphene. Phys. Rev. Lett., 2008, 100(12): 125504
    [353] Gu W T, Zhang W, Li X M, et al. Graphene sheets from worm-like exfoliated graphite. J. Mater. Chem., 2009, 19: 3367-3369
    [354] Yuan G D, Zhang W J, Yang Y, et al. Graphene sheets via microwave chemicalvapor deposition. Chem. Phys. Lett., 2009, 467(4-6): 361-364
    [355] Karmakar S, Kulkarni N V, Nawale A B, et al. A novel approach towards selective bulk synthesis of few-layer graphenes in an electric arc. J. Phys. D: Appl. Phys., 2009, 42(11): 115201
    [356]周公度,段连运,结构化学基础,北京,北京大学出版社,2002,42-47
    [357] Lai H J, Lin M C C, Yang M H, et al. Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge. Mater. Sci. Eng. C, 2001, 16(1-2): 23-26
    [358] Teng M H, Tsai S W, Hsiao C L, et al. Using diamond as a metastable phase carbon source to facilitate the synthesis of graphite encapsulated metal (GEM) nanoparticles by an arc-discharge method. J. Alloys Compd., 2007, 434: 678-681
    [359] Gamaly E G, Ebbesen T W. Mechanism of carbon nanotube formation in the arc discharge. Phys. Rev. B, 1995, 52(3): 2083-2089
    [360]王艳艳,崔屾,崔兰,等.电弧放电制备氮和金属元素掺杂的碳纳米颗粒.材料科学与工程学报,2008, 26(1): 86-89
    [361] Keidar M. Factors affecting synthesis of single wall carbon nanotubes in arc discharge. J. Phys. D: Appl. Phys., 2007, 40(8): 2388-2393
    [362] Alexandrou I, Kiely C J, Papworth A J, et al. Formation and subsequent inclusion of fullerene-like nanoparticles in nanocomposite carbon thin films. Carbon, 2004, 42(8-9): 1651-1656
    [363] Keidar M, Waas A M. On the conditions of carbon nanotube growth in the arc discharge. Nanotechnol., 2004, 15(11): 1571-1575
    [364] Murooka Y, Maede Y, Ozaki M, et al. Self-assembling of hot carbon nanoparticles observed by short pulse-arc-discharge. Chem. Phys. Lett., 2001, 341(5-6): 455-460
    [365] Huang F Y, Kushner M J. Shapes of agglomerates in plasma etching reactors. J. Appl. Phys., 1997, 81(9): 5960-5965

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700