二氧化碳的活化及环碳酸酯的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着对碳污染的重视和碳化学的发展,二氧化碳作为碳资源的终态,由于储量丰富、无毒和惰性等特点受到越来越多化学工作者的重视。碳酸酯(包括环碳酸酯和聚碳酸酯)是化学固定二氧化碳成功的例子之一。环碳酸酯被广泛用作精细化工中间体、惰性非质子性极性溶剂、生物医药前体以及聚碳酸酯的原料;聚碳酸酯则广泛应用于工程塑料等领域。
     绿色化学是当今国际化学科学研究的前沿和热门领域,而仿生催化是绿色化学技术和方法学研究的最重要分支之一。主要生物质和酶分子在酶催化作用下的“构-效关系”也可以通过绿色仿生催化进行模拟。利用二氧化碳和环氧化合物通过偶联反应制备环碳酸酯或聚碳酸酯是二氧化碳研究的热点之一,已得到长足的发展;但是利用烯烃、氧气和二氧化碳的串联反应制备环碳酸酯则比较困难。而植物将二氧化碳和水转化成多糖或纤维素所用的催化剂-叶绿素恰恰是卟啉结构。
     本论文从研究二氧化碳的活化以及二氧化碳和环氧化合物为底物合成环碳酸酯的反应过程和机理为基础,进一步研究在仿生卟啉为催化剂条件下,二氧化碳、氧气和烯烃通过氧化羧化合成环碳酸酯。
     (1)设计合成新型的磁性四氧化三铁负载钻卟啉催化的二氧化碳与环氧化合物环加成合成环碳酸酯的反应,分别探讨了不同的助催化剂、助催化剂用量以及循环次数对反应的影响。研究表明当使用MNP-P/PTAT催化体系,在室温下,各种环氧化合物都可以生成较高收率的环碳酸酯;并且新型的磁性四氧化三铁负载钴卟啉催化剂使用磁铁吸引分离后循环16次而没有活性的降低和质量的减少。
     (2)研究了以双功能金属卟啉作为催化剂催化二氧化碳与环氧化合物环加成合成环碳酸酯的反应,分别探讨了不同的中心金属、抗衡离子、反应温度以及循环次数对反应的影响。研究表明当使用Co(TTMAPP)(OAc)I4催化剂,85℃,667 KPa条件下,环丙烯碳酸酯在5小时内产率可达95.4%,其他各种环氧化合物也可以生成较高收率相应的环碳酸酯。
     (3)合成一系列主族金属卟啉催化剂催化二氧化碳与环氧化合物环加成合成环碳酸酯的反应,分别探讨了不同的主族金属、助催化剂、反应温度、二氧化碳压力等对反应的影响。当使用Al(TPP)Cl/2PTAT为催化体系时,25℃,1 atm温和条件下,二氧化碳和环氧氯丙烷可以偶联得到相应较高产率的环碳酸酯;当使用天然产物叶绿素A作为催化剂时,可以得到具有光学活性的手性环碳酸酯。研究表明:主族金属卟啉催化剂的催化活性与主族金属的路易斯酸性有极大关系,即主族金属离子的路易斯酸性越强,则催化剂的催化活性越高;并且主族金属卟啉催化剂催化二氧化碳与环氧化合物环加成合成环碳酸酯的反应机理进行了详细讨论。
     (4)开发了以二氯二茂钛(Cp2TiCl2)为催化剂催化二氧化碳与环氧化合物环加成合成环碳酸酯的反应,分别探讨了不同的反应温度、溶剂以及助催化剂对环加成反应的影响。研究表明当使用Cp2TiCl2/2TBAB催化体系,在150℃,1.2MPa, THF为溶剂条件下,反应15分钟,环丙烯碳酸酯产率高达98.1%,TOF值392.4 h-1。截止目前为止,这是首篇以茂金属为催化剂催化二氧化碳与环氧化合物环加成合成环碳酸酯反应。
     (5)以钌金属卟啉为催化剂催化二氧化碳、氧气与烯烃串联合成环碳酸酯的反应,分别探讨了不同的助催化剂和底物与催化剂比率对三组分串联反应的影响。研究表明当使用Ru(TPP)O2/2TBAB催化体系,在30℃,1.1MPa二氧化碳压力,0.5 MPa氧气压力条件下,反应48小时,苯乙烯环碳酸酯产率可达76%;同时对不同底物的最佳催化条件进行了探讨,并且对反应机理进行了详细讨论。
The chemistry of carbon dioxide has received much attention in decades from both economical and environmental points of view:utilization of the least-expensive carbon source and reduction of global-warming gas. One of the most successful examples is the synthesis of carbonates from CO2 and epoxides, including cyclic carbonates and polycarbonates. The cyclic carbonates have been widely used as synthetic intermediates, aprotic polar solvents, precursors for biomedical applications and raw materials for engineering plastics.
     Now, the frontier of chemical science and popular area is green chemistry, and the biomimetic catalysis is the most important branch of green chemistry. Main biomass and enzyme molecule under the action of the enzyme catalysis constitutive structural-activity relationships can also simulated by green biomimetic catalysis. The hot spot of carbon dioxide inserting to epoxides to synthesis of cyclic carbonates or polycarbonates has been considerable development in the past decades, however, the aerobic oxidative carboxylation of olefins to synthesis of cyclic carbonates from carbon dioxide and dioxygen with metalloporphyrin catalysts is difficult. But, carbon dioxide and water can be transformed to polysaccharides or cellulose in plants used catalyst-chlorophyll A that is exactly porphyrin structure.
     From the study of activation of carbon dioxide and the process and mechanism of the formation of cyclic carbonates via epoxides and carbon dioxide, further research of the synthesis of cyclic carbonate from dioxygen, carbon dioxide and olefins catalyzed by biomimetic porphyrin was detailed documented.
     (1) A magnetic nanoparticle (MNP)-supported biomimetic cobalt porphyrin (MNP-P) as cytochrome P-450 model was designed, prepared and evaluated as an efficient catalyst for coupling reaction of epoxides and carbon dioxide under 1.0 MPa carbon dioxide pressure at ambient temperature to generate relevant cyclic carbonates. The effects of different co-catalysts, the equivalent of co-catalyst and the recycling of catalyst were studied. The phentrimethyl ammonium tribromide (PTAT) combined with the supported porphyrin MNP-P was the best catalytic system to catalyze the cycloaddition of carbon dioxide to epoxides generating relevant cyclic carbonates at room temperature. The MNP-P catalyst could be simply recycled with the assistance of an external magnet and reused for 16 times without significant loss of activity and mass.
     (2) The cycloaddition of carbon dioxide to epoxides catalyzed by bifunctional metalloporphyrin (M(TTEMP)I4(X)) was studied. The reaction conditions of different metal center, counterion, reaction temperature and recycling times were optimized. 95.4% yield of propylene carbonate was formed at 85℃under 667 KPa within 5 hours. The moderate yield of submitted cyclic carbonate was obtained.
     (3) We synthesized a series of main group metalloporphyrins to catalyze the formation of cyclic carbonate from epoxides and carbon dioxide. The effects of different main group metal, co-catalyst, reaction temperature, and carbon dioxide pressure were investigated in detail. The cyclic carbonates was synthesized in high yields catalyzed by Al(TPP)Cl/2 PTAT at 25℃. The chiral cyclic carbonate was formation using chlorophyll A as catalyst. We found that the harder the acid, the stronger the Lewis acidity. The mechanism of this cycloaddition reaction catalyzed by main group metal porphyrin was discussed in detail.
     (4) We have been developed a new catalyst system of titanocene dichloride/Lewis base to catalyze the synthesis of cyclic carbonate from epoxides and carbon dioxide. The reaction conditions affecting the cycloaddition including reaction temperature, solvent and co-catalyst were optimized. The propylene carbonate was obtained with 98.1% yield and 392.1 h-1 TOF at 150℃under 1.2 MPa carbon dioxide pressure within 15 mins when using THF as solvent. To the best of our knowledge, this is the first report about metallocene catalyzed the coupling of epoxides and carbon dioxide to generate useful cyclic carbonates.
     (5) The synthesis of cyclic carbonate from carbon dioxide, dioxygen and olefins based on the previous studies on the cycloaddition of carbon dioxide to epoxides were reported. The styrene carbonate with 76% yield were obtained at 30℃under 1.1 MPa carbon dioxide pressure and 0.5 MPa dioxygen pressure within 48 hours using Ru(TPP)O2/2 TBAB as catalytic system from styrene, carbon dioxide and dioxygen. The scope of olefins was investigated. The aerobic oxidative carboxylation of olefins reaction mechanism was researched in detail.
引文
[1]T.M. Lenton. Climate Change to the end of the Millennium. Clim. Change.,2006,76,7-29.
    [2]British Petroleum BP Statistical Review of World Energy,2010, (http://www.bp.com/statisticalreview); Renewable, Global Status Report, Renewable Energy Policy Network for the 21 st Century,2006.
    [3]Energy InformationAdministration (Official Energy Statistics from the U.S. Government (http://www.eia.doe.gov/iea/)).
    [4]K. Kaygusuz, A. Kaygusuz. Renewable energy and sustainable development in Turkey. Renewable Energy,2002,25,431-453.
    [5]R.W. Bentley. Global oil & gas depletion:an overview. Energy Policy,2002,30,189-205.
    [6]M. Aresta, A. Dibenedetto. Utilisation of CO2 as a chemical feedstock:opportunities and challenges. Dalton Trans.,2007,2975-2992.
    [7]H. Arakawa, M. Aresta, J.N. Armor, M.A. Barteau, E.J.Beckman, A.T. Bell, J.E. Bercaw, C. Creutz, E. Dinjus, D.A.Dixon, K. Domen, D.L. DuBois, J. Eckert, E. Fujita, D.H. Gibson,W.A. Goddard, D.W. Goodman, J. Keller, G.J. Kubas, H.H. Kung, J.E. Lyons, L.E. Manzer, T.J. Marks, K. Morokuma, K.M. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson, W.M.H. Sachtler, L.D. Schmidt, A. Sen, G.A. Somorjai, P.C. Stair, B.R. Stults, W. Tumas. Catalysis Research of Relevance to Carbon Management:Progress, Challenges, and Opportunities. Chem. Rev.,2001, 101,953-996;
    [8]T. Sakakura, J. Choi, H. Yasuda. Transformation of Carbon Dioxide. Chem. Rev.,2007,107, 2365-2387
    [9]M.O. McLinden, E.W. Lemmon, R. T. Jacobsen. Thermodynamic properties for the alternative refrigerants. Int. J. Refrig.,1998,21,322-338.
    [10]S. Fukuda, T. Ohmi, S. Sugawa. Semiconductor Manufacturing,2006,1SSM 2006, IEEE International Symposium on 25-27 September,2006,243-246.
    [11]P.G. Jessop, T. Ikarika, R. Noyori. Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature,1994,368,231-233.
    [12]E. Ramsey, Q. Sun, Z. Zhang, C. Zhang, W. Gou. Green sustainable processes using supercritical fluid carbon dioxide. J. Environ.Sci.,2009,21,720-726.
    [13]A.A. G.Shaikh, S. Sivaram. Organic carbonates. Chem. Rev.,1996,96,951-976
    [14]M. Aresta, A. Dibenedetto. The contribution of the utilization option to reducing the CO2 atmospheric loading:research needed to overcome existing barriers for a full exploitation of the potential of the CO2 use. Catal. Today,2004,98,455-462.
    [15]P. Jessop, T. Ikariya, R. Noyori. Homogeneous catalysis in supercritical fluids:hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides. Chem. Rev.,1995, 95,259-272.
    [16]T. Sakakura, K. Kohno. The synthesis of organic carbonates from carbon dioxide. Chem. Commun.,2009.1312-1330.
    [17]I. Omae. Aspects of carbon dioxide utilization. Catal. Today,2006.115,33-52.
    [18]M. Mikkelsen, M. Jorgensen, F.C. Krebs. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci.,2010,3,43-81.
    [19]US Patent 2,379,2501. E. Muskat, F. Strain. Preparation of Carbonic Acid Esters, assigned to PPG,1945.
    [20]P. Tundo, M. Selva. The Chemistry of Dimethyl Carbonate. Ace. Chem. Res.,2002,35, 706-716.
    [21]M.A. Pacheco, C.L. Marshall. Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive. Energy. Fuels.,1997,11,2-29.
    [22]Process for Production of Ethylene Glycol, Dimethyl Carbonate, J.F. Knifton assigned to Texaco, US Pat.1986,4,734,518.
    [23]J.F. Knifton. Process for co-synthesis of ethylene glycol and DMC, US Pat.,1987,4,661, 609,
    [24]J.F. Knifton. Process for Co-Synthesis of Ethylene Glycol and DMC, US Pat.,1988,4,734, 518.
    [25]Asahi. Process for Co-Synthesis of Ethylene Glycol and DMC. JP Pat.,1991,3,109,358.
    [26]J.C. Choi, K. Kohno, Y. Ohshima, H. Yasuda, T. Sakakura. Tin-or titanium-catalyzed dimethyl carbonate synthesis from carbon dioxide and methanol:large promotion by a small amount of triflate salts. Catal. Commun.,2008,9,1630-1633.
    [27]D. Chaturvedi, N. Mishra, V. Mishra. A high yielding, one-pot synthesis of dialkyl carbonates from alcohols using Mitsunobu's reagent. Tetrahedron Lett.,2007,48,5043-5045.
    [28]S. Inoue, H. Koinuma, T. Tsuruta. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci., Part B:Polym. Lett.,1969,7,287-292.
    [29]S. Inoue, H. Koinuma, T. Tsuruta. Copolymerization of carbondioxide and epoxide with organometallic compounds. Makromol. Chem.,1969,130,210-220.
    [30]M. Kobayashi, S. Inoue, T. Tsuruta. Diethylzinc-Dihydric Phenol System as Catalyst for the Copolymerization of Carbon Dioxide with Propylene Oxide. Macromolecules.,1971,4,658-659.
    [31]K. Soga, E. Imai, I. Hattori. Alternating Copolymerization of CO2 and Propylene Oxide with the Catalysts Prepared from Zn(OH)2 and Various Dicarboxylic Acids. Polym. J.,1981,13, 407-410.
    [32]D.J. Darensbourg, N.W. Stafford, T. Katsurao. Supercritical carbon dioxide as solvent for the copolymerization of carbon dioxide and propylene oxide using a heterogeneous zinc carboxylate catalyst. J. Mol. Catal A:Chem.,1995,104, L1-L4.
    [33]D.J. Darensbourg, M.W. Holtcamp. The Catalytic Activity of Zn(II) Phenoxides Which Possess Readily Accessible Coordination Sites. The Copolymerization and Terpolymerization of Epoxides and Carbon Dioxide. Macromolecules.,1995,28,7577-7579.
    [34]D.J. Darensbourg, J.R. Wildeson, J.C. Yarbrough, J.H. Reibenspies. Catalysts for an Aqueous Catalysis. J. Am. Chem. Soc,2000,122,12487-12496.
    [35]D.J. Darensbourg, J.R. Wildeson, J.C. Yarbrough. Monomer Synthesis and Catalysis. Inorg. Chem.,2002,41,973-980.
    [36]M. Super, E. Berluche, C. Costello, E. Beckman. Copolymerization of 1,2-Epoxycyclohexane and Carbon Dioxide Using Carbon Dioxide as Both Reactant and Solvent. Macromolecules.,1997, 30,368-372.
    [37]M. Cheng, E.B. Lobkovsky, G.W. Coates. Catalytic Reactions Involving C1 Feedstocks:New High-Activity Zn(Ⅱ)-Based Catalysts for the Alternating Copolymerization of Carbon Dioxide and Epoxides. J. Am. Chem. Soc.,1998,120,11018-11019.
    [38]M. Cheng, D. R.Moore, J.J. Reczek, B.M. Chamberlian, E.B. Lobkovsky, G.W. Coates. Single-Site β-Diiminate Zinc Catalysts for the Alternating Copolymerization of CO2 and Epoxides: Catalyst Synthesis and Unprecedented Polymerization Activity. J. Am. Chem. Soc.,2001,123, 8738-8759.
    [39]M. Cheng, D.R. Moore, E.B. Lobkovsky, G.W. Coates. Electronic and Steric Effects on Catalysts for CO2/Epoxide Polymerization:Subtle Modifications Resulting in Superior Activities. Angew. Chem., Int. Ed.,2002,41,2599-2602.
    [40]M. Cheng, D.R. Moore, E.B. Lobkovsky, G.W. Coates. Mechanism of the Alternating Copolymerization of Epoxides and CO2 using beta-Diiminate Zinc Catalysts:Evidence for a Bimetallic Epoxide Enchainment. J. Am. Chem. Soc.,2003,125,11911-11924.
    [41]T. Bok, H. Yun, Y. Lee. Bimetallic Fluorine-Substituted Anilido-Aldimine Zinc Complexes for CO2/(Cyclohexene Oxide) Copolymerization. Inorg. Chem.,2006,45,4228-4237.
    [42]X.H. Zhang, S. Chen, X.M. Wu, X.K. Sun, F. Liu, G.R. Qi. Highly active double metal cyanide complexes:Effect of central metal and ligand on reaction of epoxide/CO2. Chin. Chem. Lett.,2007,18,887-890.
    [43]K. Yu, C.W. Jones. Silica-Immobilized Zinc Diiminate Catalysts for the Copolymerization of Epoxide and Carbon Dioxide. Organometallics.,2003,22,2571-2580.
    [44]J.T. Wang, Q. Zhu, X.L. Lu, Y.Z. Meng. ZnGA-MMT catalyzed the copolymerization of carbon dioxide with propylene oxide. Eur. Polym. J.,2005,41,1108-1114.
    [45]M. Kroger, M. Doring.3-Amino-2-cyano-imidoacrylate ligands and their zinc complexes for the copolymerisation of CO2 and epoxides:Living character and temperature optimization. Catal. Today,2006,115,146-150.
    [46]A. Ion, V. Parvulescu, P. Jacobs, D.de Vos. Sc and Zn-catalyzed synthesis of cyclic carbonates from CO2 and epoxides. Appl. Catal., A:Gen.,2009,363,40-44.
    [47]Z. Shen, J. Wu, G. Wang. Use of rare earth coordination catalyst for ethylene oxide and propylene oxide copolymerization. J. Polym. Sci. Part A:Polym. Chem.,1990,28,1965-1971.
    [48]X. Chen, Z. Shen, Y. Zhang. New catalytic systems for the fixation of carbon dioxide.1. Copolymerization of carbon dioxide and propylene oxide with new rare-earth catalysts-RE(P204)3-Al(i-Bu)3-R(OH)n.Macromolecules.,1991,24,5305-5308.
    [49]T.-J. Hsu, C.-S. Tan. Synthesis of polyethercarbonate from carbon dioxide and cyclohexene oxide by yttrium-metal coordination catalyst. Polymer,2001,42,5143-5150.
    [50]T. Aida, M. Ishikawa, S. Inoue. Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight. Macromolecules.,1986,19, 8-13.
    [51]H. Sugimoto, H. Oshima, S. Inoue. Alternating copolymerization of carbon dioxide and epoxide by manganese porphyrin:The first example of polycarbonate synthesis from 1-atm carbon dioxide (pages 3549-3555). J. Polym. Sci., Part A:Polym. Chem.,2003,41,3549-3555.
    [52]S. Mang, A.I. Cooper, M.E. Colclough, N. Chauhan. A.B. Holmes. Copolymerization of CO2 and 1,2-Cyclohexene Oxide Using a CO2-Soluble Chromium Porphyrin Catalyst. Macromolecules, 2000,33,303-308.
    [53]L.M. Stamp, S.A.Mang, A.B.Holmes, K.A. Knight, Y.R. de Miguel, I.F. McConvey. Polymer supported chromium porphyrin as catalyst for polycarbonate formation in supercritical carbon dioxide. Chem.Commun.,2001,2502-2503.
    [54]D.J. Darensbourg, S.B. Fitch. An Exploration of the Coupling Reactions of Epoxides and Carbon Dioxide Catalyzed by Tetramethyltetraazaannulene Chromium(Ⅲ) Derivatives:Formation of Copolymers versus Cyclic Carbonates. Inorg. Chem.,2008,47,11868-11878.
    [55]D.J. Darensbourg, D.R. Billodeaux. Aluminum Salen Complexes and Tetrabutylammonium Salts:A Binary Catalytic System for Production of Polycarbonates from CO2 and Cyclohexene Oxide. Inorg. Chem.,2005,44,1433-1442.
    [56]D.J. Darensbourg, P. Ganguly, D. Billodeaux. Ring-Opening Polymerization of Trimethylene Carbonate Using Aluminum(Ⅲ) and Tin(Ⅳ) Salen Chloride Catalysts. Macromolecules,2005,38, 5406-5410.
    [57]D.J. Darensbourg, J.C. Yarbrough. Mechanistic Aspects of the Copolymerization Reaction of Carbon Dioxide and Epoxides, Using a Chiral Salen Chromium Chloride Catalyst. J. Am. Chem. Soc,2002,124,6335-6342.
    [58]D.J. Darensbourg, R.M. Macklewicz, J.L. Rodgers, A.L. Phelps. (Salen)CrⅢX Catalysts for the Copolymerization of Carbon Dioxide and Epoxides:Role of the Initiator and Cocatalyst. Inorg. Chem.,2004,43,1831-1833.
    [59]D.J. Darensbourg, R.M. Macklewicz, J.L. Rodgers, C.C. Fang, D.R. Billodeaux, J.H. Reibenspies. Cyclohexene Oxide/CO2 Copolymerization Catalyzed by Chromium(Ⅲ) Salen Complexes and N-Methylimidazole:Effects of Varying Salen Ligand Substituents and Relative Cocatalyst Loading. Inorg. Chem.,2004,43,6024-6034.
    [60]D.J. Darensbourg, A.L. Phelps. Effective, Selective Coupling of Propylene Oxide and Carbon Dioxide to Poly(Propylene Carbonate) Using (Salen)CrN3 Catalysts. Inorg. Chem.,2005,44, 4622-4629.
    [61]D.J. Darensbourg, P. Ganguly, W. Choi. Metal Salen Derivatives as Catalysts for the Alternating Copolymerization of Oxetanes and Carbon Dioxide to Afford Polycarbonates. Inorg. Chem.,2006,45,3831-3833.
    [62]R. Eberhardt, M. Allmendinger, B. Rieger. Center for Catalytic CO2 Activation. Macromol. Rapid. Commun.,2003,24,194-196.
    [63]B. Li, R. Zhang, X.-B. Lu. Stereochemistry Control of the Alternating Copolymerization of CO2 and Propylene Oxide Catalyzed by SalenCrX Complexes. Macromolecules.,2007,40, 2303-2307.
    [64]D.J. Darensbourg, S.B. Fitch. An Exploration of the Coupling Reactions of Epoxides and Carbon Dioxide Catalyzed by Tetramethyltetraazaannulene Chromium(III) Derivatives:Formation of Copolymers versus Cyclic Carbonates. Inorg. Chem.,2008,47,11868-11878.
    [65]E.N. Jacobsen, F. Kakiuchi, R.G. Konsler, J.F. Larrow, M. Tokunaga. Enantioselective catalytic ring opening of epoxides with carboxylic acids. Tetrahedron. Lett.,1997,38,773-776.
    [66]M. Tokunaga, J.F. Larrow, F. Kakiuchi, E.N. Jacobsen. Asymmetric Catalysis with Water: Efficient Kinetic Resolution of Terminal Epoxides by Means of Catalytic Hydrolysis. Science, 1997,277,936-938.
    [67]E.N. Jacobsen. Asymmetric Catalysis of Epoxide Ring-Opening Reactions. Ace. Chem. Res., 2000,33,421-431.
    [68]S.E. Schaus, B.D. Brandes, J.F. Larrow, M. Tokunaga, K.B. Hansen, A.E. Gould, M.E. Furrow, E.N. Jacobsen. Highly Selective Hydrolytic Kinetic Resolution of Terminal Epoxides Catalyzed by Chiral (salen)CoⅢ Complexes. Practical Synthesis of Enantioenriched Terminal Epoxides and 1,2-Diols. J. Am. Chem. Soc.,2002,124,1307-1315.
    [69]Z. Qin, C.M. Thomas, S. Lee, G.W. Coates. Cobalt-Based Complexes for the Copolymerization of Propylene Oxide and CO2:Active and Selective Catalysts for Polycarbonate Synthesis. Angew. Chem., Int. Ed.,2003,42,5484-5487.
    [70]X.-B. Lu, Y. Wang. Highly Active, Binary Catalyst Systems for the Alternating Copolymerization of CO2 and Epoxides under Mild Conditions. Angew. Chem., Int. Ed.,2004,43, 3574-3577.
    [71]X.-B. Lu, L. Shi, Y.-M.Wang, R. Zhang,Y.-J. Zhang, X.-J. Peng, Z.-C. Zhang, Bo Li. Design of Highly Active Binary Catalyst Systems for CO2/Epoxide Copolymerization:Polymer Selectivity, Enantioselectivity, and Stereochemistry Control. J. Am. Chem. Soc.,2006,128, 1664-1674.
    [72]R.L. Paddock, S.T. Nguyen. Alternating Copolymerization of CO2 and Propylene Oxide Catalyzed by CoⅢ(salen)/Lewis Base. Macromolecules,2005,38,6251-6253.
    [73]E.K. Noh, S.J. Na, S.-W. Kim, B.Y. Lee. Two Components in a Molecule:Highly Efficient and Thermally Robust Catalytic System for CO2/Epoxide Copolymerization. J. Am. Chem. Soc., 2007,129,8082-8083.
    [74]S. Zhang, Y. Chen, F. Li, X. Lu, W. Dai, R. Mori. Fixation and conversion of CO2 using ionic liquids. Catal. Today,2006,115,61-69.
    [75]J. Sun, S.-I. Fujita, M. Arai. Development in the Green Synthesis of Cyclic Carbonate from Carbon Dioxide Using Ionic Liquids. J. Organomet. Chem.,2005,690,3490-3497.
    [76]J. Peng, Y. Deng. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J. Chem.,2001,25,639-641.
    [77]H.S. Kim, J.J. Kim, H. Kim, H.G. Jang. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. J. Catal.,2003,220,44-46.
    [78]F. Li, L. Xiao, C. Xia, B. Hu. Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system. Tetrahedron. Lett.,2004,45,8307-8310.
    [79]L.-F. Xiao, F.-W. Li, J.-J. Peng, C.-G. Xia. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Mol. Catal. A:Chem.,2006,253,265-269.
    [80]S.L. Zhang, Y.Z. Huang, H.J. Jing, W.X. Yao, P. Yan. Chiral ionic liquids improved the asymmetric cycloaddition of CO2 to epoxides. Green Chem.,2009,11,935-938.
    [81]J.-Q.Wang, X.-D. Yue, F. Cai, L.-N. He. Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions. Catal.Commun.,2007,8,167-172.
    [82]S. Udayakumar, S.-W. Park, D.-W. Park, B.-S. Choi. Immobilization of ionic liquid on hybrid MCM-41 system for the chemical fixation of carbon dioxide on cyclic carbonate. Catal. Commun., 2008,9,1563-1570.
    [83]S. Udayakumar, M.-K. Lee, H.-L. Shim, S.-W. Park, D.W. Park. Imidazolium derivatives functionalized MCM-41 for catalytic conversion of carbon dioxide to cyclic carbonate. Catal. Commun.,2009,10,659-664.
    [84]S. Udayakumar, V. Raman, H.-L. Shim, D.-W. Park. Cycloaddition of carbon dioxide for commercially-imperative cyclic carbonates using ionic liquid-functionalized porous amorphous silica. Appl. Catal., A, Gen.,2009,368,97-104.
    [85]S. Udayakumar, M.-K. Lee, H.-L. Shim, D.-W. Park. Functionalization of organic ions on hybrid MCM-41 for cycloaddition reaction:The effective conversion of carbon dioxide. Appl. Catal., A, Gen.,2009,365,88-95.
    [86]S. Udayakumar, I. Kim, H.-L. Shim, D.-W. Park, J.-I. Yu. Synthesis of cyclic carbonate from ally] glycidyl ether and carbon dioxide using ionic liquid-functionalized amorphous silica. Catal. Today.,2009,148,350-354.
    [87]L. Han, S.-W. Park, D.-W. Park. Silica grafted imidazolium-based ionic liquids:efficient heterogeneous catalysts for chemical fixation of CO2 to a cyclic carbonate. Energy. Environ. Sci., 2009,2,1286-1292.
    [88]E.-H. Lee, J.-Y. Ahn, M.M. Dharman, D.-W. Park, S.-W. Park, I.L. Kim. Synthesis of cyclic carbonate from vinyl cyclohexene oxide and CO2 using ionic liquids as catalysts. Catal. Today., 2008,131,130-134.
    [89]H. Yang, Y. Gu, Y. Deng, F. Shi. Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chem. Commun.,2002,274-275.
    [90]J. Sun, S. Zhang, W. Cheng, J. Ren. Hydroxyl-functionalized ionic liquid:a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron. Lett.,2008,49,3588-3591.
    [91]X.X. Zheng, S.Z. Luo, L. Zhang, J.-P. Cheng. Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green. Chem.,2009,11,455-458.
    [92]L.P. Guo, C.M. Wang, X.Y. Luo, G.K. Cui, H.L. Li. Probing catalytic activity of halide salts by electrical conductivity in the coupling reaction of CO2 and propylene oxide. Chem. Commun., 2010,46,5960-5962.
    [93]Y. Xie, K. Ding, Z.M. Liu, J.J. Li, G.M. An, R.T. Tao, Z.Y. Sun, Z.Z. Yang. The Immobilization of Glycidyl-Group-Containing Ionic Liquids and Its Application in CO2 Cycloaddition Reactions. Chem. Eur. J.,2010,16,6687-6692.
    [94]L. Han, H.-J Choi, D.-K. Kim, S.-W. Park, B.Y. Liu, D.-W. Park. Porous polymer bead-supported ionic liquids for the synthesis of cyclic carbonate from CO2 and epoxide. J. Mol. Catal. A:Chem.,2011,338,58-64.
    [95]L.N. Han, H.-J. Choi, S.-J. Choi, B.Y. Liu, D.-W. Park. Ionic liquids containing carboxyl acid moieties grafted onto silica:Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green. Chem., DOI:10.1039/c0gc00612b.
    [96]M.M. Dharman, H.-J. Choi, D.-W. Kim, D.-W. Park. Synthesis of cyclic carbonate through microwave irradiation using silica-supported ionicliquids:Effect of variation in the silica support. Catal. Today., DOI:10.1016/j.cattod.2010.11.009.
    [97]V. Calo, A. Nacci, A.Monopoli, A. Fanizzi. Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts. Org. Lett.,2002, 4.2561-2563.
    [98]H.-Y. Ju, M.-D. Manju, K.-H. Kim, S.-W. Park and D.-W. Park. Catalytic performance of quaternary ammonium salts in the reaction of butyl glycidyl ether and carbon dioxide. J. Ind. Eng. Chem.,2008,14,157-160.
    [99]A. Baba, T. Nozaki, H. Matsuda. Carbonate Formation from Oxiranes and Carbon Dioxide Catalyzed by Organotin Halide-Tetraalkylphosphonium Halide Complexes. Bull. Chem. Soc. Jpn., 1987,60,1552-1554.
    [100]W. J. Peppel. Preparation and properties of the alkylene carbonates. Ind. Eng. Chem.,1958, 50,767-770.
    [101]A. Behr. Carbon Dioxide Activation by Metal Complexes. VCH, New York,1988.
    [102]N. Kihara, N. Hara, T. Endo. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. J. Org. Chem., 1993,58,6198-6202.
    [103]H. Matsuda, A. Ninagawa, R. Nomura. Reaction of carbon dioxide with epoxides in the presence of pentavalent organoantimony compounds. Chem. Lett.,1979,1261-1262.
    [104]Y. Zhou, S. Hu, X. Ma, S. Liang, T. Jiang, B.Han. Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts. J. Mol. Catal. A:Chem.,2008,284, 52-57.
    [105]J. Sun, J. Ren, S. Zhang, W. Cheng. Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron. Lett.,2009,50,423-426.
    [106]J.-Q. Wang, D.-L. Kong, J.-Y. Chen, F. Cai,, L.-N. He. Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. J. Mol. Catal. A:Chem.,2006,249,143-148.
    [107]T. Sakai, Y. Tsutsumi, T. Ema. Highly active and robust organic-inorganic hybrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Green Chem.,2008,10, 337-341.
    [108]T. Nishikubo, A. Kameyama, J. Yamashita, M. Tomoi, W. Fukuda. Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide. J. Polym. Sci., Part A:Polym. Chem.,1993,31, 939-947.
    [109]T. Nishikubo, A. Kameyama, J. Yamashita, T. Fukumitsu, C. Maejima, M. Tomoi. Soluble polymer-supported catalysts containing pendant quaternary onium salts for the addition reaction of oxiranes with carbon dioxide. J. Polym. Sci., Part A:Polym. Chem.,1995,33,1011-1017.
    [110]Y. Zhao, J.-S. Tian, X.-H. Qi, Z.-N. Han, Y.-Y. Zhuang, L.-N. He. Quaternary ammonium salt-functionalized chitosan:An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal. A:Chem.,2007,271,284-289.
    [111]Y.P. Patil, P.J. Tambade, S.R. Jagtap, B.M. Bhanage. Synthesis of 2-oxazolidinones /2-imidazolidinones from CO2, different epoxides and amino alcohols/alkylene diamines using Br-Ph3+P-PEG600-P+Ph3Br- as homogenous recyclable catalyst. J. Mol. Catal. A:Chem.,2008, 289,14-21.
    [112]K. Motokura, S. Itagaki, Y. Iwasawa. A. Miyaji, T. Baba. Silica-supported aminopyridinium halides for catalytic transformations of epoxides to cyclic carbonates under atmospheric pressure of carbon dioxide. Green Chem.,2009,11,1876-1880.
    [113]B. Ochiai, T. Endo. Polymer-supported pyridinium catalysts for synthesis of cyclic carbonate by reaction of carbon dioxide and oxirane. J. Polym. Sci., Part A:Polym. Chem.,2007,45, 5673-5678.
    [114]S. Inoue, H. Koinuma, T. Tsuruta. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci.,Part B:Polym. Lett.,1969,7,287-292.
    [115]S. Inoue, H. Koinuma, T. Tsuruta. Copolymerization of carbon dioxide and epoxide with organometallic compounds. Makromol. Chem.,1969,130,210-220.
    [116]D.J. Darensbourg, M.W. Holtcamp. Catalysts for the reactions of epoxides and carbon dioxide. Coord. Chem. Rev.,1996,153,155-174.
    [117]M. Ree, J.Y. Bae, J.H. Jung, T.J. Shin. A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide. J. Polym. Sci., Part A:Polym. Chem.,1999,37,1863-1876.
    [118]M. Kobayashi, S. Inoue, T. Tsuruta. Diethylzinc-Dihydric Phenol System as Catalyst for the Copolymerization of Carbon Dioxide with Propylene Oxide. Macromolecules.,1971,4,658-659.
    [119]H. Xie, S. Li, S. Zhang. Highly active, hexabutylguanidinium salt/zinc bromide binary catalyst for the coupling reaction of carbon dioxide and epoxides.J.Mol. Catal. A:Chem.,2006, 250,30-34.
    [120]J. Sun, S.-I. Fujita, F. Zhao, M. Arai. A highly efficient catalyst system of ZnBr2/n-Bu4NI for the synthesis of styrene carbonate from styrene oxide and supercritical carbon dioxide. Appl. Catal., A Gen,2005,287,221-226.
    [121]F. Ono, K. Qiao, D. Tomida, C. Yokoyama. Rapid synthesis of cyclic carbonates from CO2 and epoxides under microwave irradiation with controlled temperature and pressure. J. Mol. Catal. A:Chem.,2007,263,223-226.
    [122]H. Kisch, R. Millini, I.-J. Wang. Bifunktionelle Katalysatoren zur Synthese cyclischer Carbonate aus Oxiranen und Kohlendioxid. Chem. Ber.,1986,119,1090-1094.
    [123]S.-S. Wu, X.-W. Zhang, W.-L. Dai, S.-F. Yin, W.-S. Li, Y.-Q. Ren, C.-T. Au. ZnBr2-Ph4PⅠ as highly efficient catalyst for cyclic carbonates synthesis from terminal epoxides and carbon dioxide. Appl. Catal., A, Gen.,2008,341,106-111.
    [124]J. Sun, L. Wang, S. Zhang, Z. Li, X. Zhang, W. Dai, R. Mori. ZnCl2/phosphonium halide: An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate. J. Mol. Catal. A:Chem., 2006,256,295-300.
    [125]T. Chang, M. Wu, L. L. Jin, H. W. Jing, W. Y. Qiu. ZnBr2-Quaternary Onium Tribromide Salt as a Catalyst for the Coupl ing Reaction of Carbon Dioxide and Epoxides. Chin. J. Catal., 2007,8,404-406.
    [126]H.S. Kim, J.Y. Bae, J.S. Lee, O.-S. Kwon, P. Jelliarko, S.D. Lee, S.-H. Lee. Phosphine-bound zinc halide complexes for the coupling reaction of ethylene oxide and carbon dioxide. J. Catal.,2005,232,80-84.
    [127]H.S. Kim, J.J. Kim, H.N. Kwon, M.J. Chung, B.G. Lee, H.G. Jang. Well-Defined Highly Active Heterogeneous Catalyst System for the Coupling Reactions of Carbon Dioxide and Epoxides. J. Catal.,2002,205,226-229.
    [128]M. Ramin, J.-D. Grunwaldt, A. Baiker. Behavior of homogeneous and immobilized zinc-based catalysts in cycloaddition of CO2 to propylene oxide. J. Catal.,2005,234,256-267.
    [129]A. Ion, V. Parvulescu, P. Jacobs, D.de Vos. Sc and Zn-catalyzed synthesis of cyclic carbonates from CO2 and epoxides. Appl. Catal., A, Gen.,2009,363,40-44.
    [130]G. Rokicki, W. Kuran, B. Pogorzelska-Marciniak. Cyclic carbonates from carbon dioxide and oxiranes. Monatsh. Chem.,1984,115,205-214.
    [131]J.W. Huang, M. Shi. Chemical Fixation of Carbon Dioxide by NaI/PPh3/PhOH. J. Org. Chem.,2003,68,6705-6709.
    [132]K. Kossev, N. Koseva, K. Troev. Calcium chloride as co-catalyst of onium halides in the cycloaddition of carbon dioxide to oxiranes. J. Mol. Catal A:Chem.,2003,194,29-37.
    [133]F. Li, C. Xia, L. Xu, W. Sun, G. Chen. A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides. Chem. Commun.,2003,2042-2043.
    [134]C. R. Gomes, D.M. Ferreir, C.J. L. Costantino, E.R. P. Gonzalez. Selectivity of the cyclic carbonate formation by fixation of carbon dioxide into epoxides catalyzed by Lewis bases. Tetrahedron. Lett.,2008,49,6879-6881.
    [135]H. Yashuda, L.-N. He, T. Sakakura. Cyclic Carbonate Synthesis from Supercritical Carbon Dioxide and Epoxide over Lanthanide Oxychloride. J. Catal.,2002,209,547-550.
    [136]Y. Fukuda, K. Tanabe. Infrared Study of Carbon Dioxide Adsorbed on Magnesium and Calcium Oxides. Bull. Chem. Soc. Jpn.,1973,46,1616-1619.
    [137]D.J.C. Yates. Infrared studies of the surface hydroxyl groups on titanium dioxide, and of the chemisorption of carbon monoxide and carbon dioxide.J. Phys. Chem.,1961,65,746-753.
    [138]S. Matsushita, T. Nakata. Kinetics of solution in high viscosity liqiids:sodium chloride-glycerol. J. Chem. Phys.,1962,36,665-669.
    [139]W.I. Stuart, T.L. Whateley. Adsorption of water and carbon dioxide on beryllium oxide. Trans. Faraday Soc.,1965,61,2763-2771.
    [140]T. Yano, H. Matsui, T. Koike, H. Ishiguro, H. Fujihara, M. Yoshihara, T. Maeshima. Magnesium oxide-catalvsed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chem. Commun.,1997,1129-1130.
    [141]K. Yamaguchi, K. Ebitani, T. Yoshida, H. Yoshida, K. Kaneda. Mg-Al Mixed Oxides as Highly Active Acid-Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides. J. Am. Chem. Soc,1999,121,4526-4527.
    [142]S.-I. Fujita, B. M. Bhanage, Y. Ikushima, M. Shirai, K. Torii, M. Arai. Chemical Fixation of Carbon Dioxide to Propylene Carbonate Using Smectite Catalysts with High Activity and Selectivity. Catal Lett.,2002,79,95-97.
    [143]G.-Q. Yuan, Y.-J. Shan, H.-F. Jiang, C.R. Qi. Mg(OH)Cl/KI as a Highly Active Heterogeneous Catalyst for the Synthesis of Cyclic Carbonates from CO2 and Epoxides under Solvent-Free Conditions. Chin. J. Chem.,2008,26,947-951.
    [144]E.J. Doskocil, S.V. Bordaweakar, B.G. Kaye, R.J. Davis. UV-Vis Spectroscopy of Iodine Adsorbed on Alkali-Metal-Modified Zeolite Catalysts for Addition of Carbon Dioxide to Ethylene Oxide. J. Phys. Chem. B,1999,103,6277-6282.
    [145]E.J. Doskocil. R.J. Davis. Spectroscopic Characterization and Catalytic Activity of Zeolite X Containing Occluded Alkali Species.J.Catal.,1999,188,353-364.
    [146]M. Tu, R.J. Davis. Cycloaddition of CO2 to Epoxides over Solid Base Catalysts. J. Catal., 2001,199,85-91.
    [147]H. Yasuda, L.-N. He, T. Takahashi, T. Sakakura. Non-halogen catalysts for propylene carbonate synthesis from CO2 under supercritical conditions. Appl. Catal., A Gen,2006,298, 177-180.
    [148]R. Srivastava, D. Srinivas, P. Ratnsamy. Synthesis of Polycarbonate Precursors over Titanosilicate Molecular Sieves. Catal. Lett.,2003,91,133-139.
    [149]E.J. Doskocil. Ion-exchanged ETS-10 catalysts for the cycloaddition of carbon dioxide to propylene oxide. Microporous Mesoporous Mater.,2004,76,177-183.
    [150]E.J. Doskocil. Effect of Water and Alkali Modifications on ETS-10 for the Cycloaddition of CO2 to Propylene Oxide. J. Phys. Chem. B,2005,109,2315-2320.
    [151]R. Srivastava, D. Srinivas, P. Ratnasamy. Syntheses of polycarbonate and polyurethane precursors utilizing CO2 over highly efficient, solid as-synthesized MCM-41 catalyst. Tetrahedron. Lett.,2006,47,4213-4217.
    [152]R. Srivastava, D. Srinivas, P. Ratnasamy. Photocatalysis with ZrO2:oxidation of aniline. J. Catal.,2005,233,1-15.
    [153]S.R. Jagtap, V.P. Raje, S.D. Samant, B.M. Bhanage. Silica supported polyvinyl pyridine as a highly active heterogeneous base catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Mol. Catal. A:Chem.,2007,266,69-74.
    [154]K. Mori, Y. Mitani, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda. A single-site hydroxyapatite-bound zinc catalyst for highly efficient chemical fixation of carbon dioxide with epoxides. Chem. Commun.,2005,3331-3333.
    [155]M. Ramin, N.V. Vegten, J.-D. Grunwaldt, A. Baiker. Simple preparation routes towards novel Zn-based catalysts for the solventless synthesis of propylene carbonate using dense carbon dioxide. J. Mol. Catal. A:Chem.,2006,258,165-171.
    [156]W.-L.Dai, S.-F. Yin, R. Guo, S.-L. Luo, X. Du, C.-T. Au. Synthesis of Propylene Carbonate from Carbon Dioxide and Propylene Oxide Using Zn-Mg-Al Composite Oxide as High-efficiency Catalyst. Catal. Lett.,2010,136,35-44.
    [157]D.J. Darensbourg, A.H. Jr, A.I. Moncada. A facile catalytic synthesis of trimethylene carbonate from trimethylene oxide and carbon dioxide. Green. Chem.,2010,12,1376-1379.
    [158]Y.B. Xiong, H. Wang, R.M. Wang, Y.F. Yan, B. Zheng, Y.P. Wang. A facile one-step synthesis to cross-linked polymeric nanoparticles as highly active and selective catalysts for cycloaddition of CO2 to epoxides. Chem. Commun.,2010,46,3399-3401.
    [159]H.C. Cho, H.S. Lee, J. Chun, S.M. Lee, H.J. Kim, S.U. Son. Tubular microporous organic networks bearing imidazolium salts and their catalytic CO2 conversion to cyclic carbonates. Chem. Commun.,2011,47,917-919.
    [160]S.G. Liang, H.Z. Liu, T. Jiang, J.L. Song, G.Y. Yang, B.X. Han. Highly efficient synthesis of cyclic carbonates from CO2 and epoxides over cellulose/KI. Chem. Commun.,2011,47, 2131-2133.
    [161]Y. Ren, C.-H. Guo, J.-F. Jia, H.-S. Wu. A Computational Study on the Chemical Fixation of Carbon Dioxide with Epoxide Catalyzed by LiBr Salt. J. Phys. Chem. A.,2011,115,2258-2267.
    [162]Y. Tsutsumi, K. Yamakawa, M. Yoshida, T. Ema, T. Sakai. Bifunctional Organocatalyst for Activation of Carbon Dioxide and Epoxide To Produce Cyclic Carbonate:Betaine as a New Catalytic Motif. Org. Lett.,2010,12,5728-5731.
    [163]I. Shibata,1. Mitani, A. Imakuni, A. Baba. Highly efficient synthesis of cyclic carbonates from epoxides catalyzed by indium tribromide system. Tetrahedron. Lett.,2011,52,721-723.
    [164]B. Barkakaty, K. Morino, A. Sudo, T. Endo. Amidine-mediated delivery of CO2 from gas phase to reaction system for highly efficient synthesis of cyclic carbonates from epoxides. Green. Chem.,2010,12,42-44.
    [165]R.A. Shiels, C.W. Jones. Homogeneous and heterogeneous 4-(N,N-dialkylamino)pyridines as effective single component catalysts in the synthesis of propylene carbonate. J. Mol. Catal. A: Chem.,2007,261,160-166.
    [166]K.M.K. Yu, I. Kurcic, J. Gabriel, H. Morganstewart, S.C. Tsang. Catalytic Coupling of CO2 with Epoxide over Supported and Unsupported Amines. J. Phys. Chem. A,2010,114,3863-3872.
    [167]H. Kawanami, Yutaka Ikushima. Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts. Chem. Commun.,2000,2089-2090.
    [168]J.-Li Jiang, Ruimao Hua. Efficient DMF-Catalyzed Coupling of Epoxides with CO2 under Solvent-Free Conditions to Afford Cyclic Carbonates. Syn. Commun.,2006,36,3141-3148.
    [169]H. Zhou, Y.-M. Wang, W.-Z. Zhang, J.-P. Qu, X.-B. Lu. N-Heterocyclic carbene functionalized MCM-41 as an efficient catalyst for chemical fixation of carbon dioxide. Green Chem.,2011,13,644-650.
    [170]N. Takeda, S. Inoue. Activition of carbon dioxide by tetraphenylporphinatoaluminium methoxide. reaction with epoxide. Bull. Chem. Soc. Jpn.1978,51,3564-3567.
    [171]N. Takeda, S. Inoue. Reaction of carbon dioxide with tetraphenylporphinatoaluminium ethyl in visible light. Bull. Chem. Soc. Jpn.,1977,50,984-986.
    [172]T. Aidi, S. Inoue. Synthesis of polyether-polycarbonate block copolymer from carbon dioxide and epoxide using a metalloporphyrin catalyst system. Macromolecules.,1982,15, 682-684.
    [173]T. Aida, M. Ishikawa, S. Inoue. Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or-triphenylphosphine system. synthesis of polycarbonate with well-controlled molecular weight. Macromolecules.,1986,19, 8-13.
    [174]T. Aida, S. Inoue. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group. J. Am. Chem. Soc.,1983,105,1304-1309.
    [175]W.J. Kruper, D.V. Dellar. Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metallporphyrinates. J. Org. Chem.,1995,60,725-727.
    [176]L.M. Stamp, S.A. Mang, A.B. Holmes, K.A. Knights, Y.R.de Migule, I.F. McConvey. Polymer supported chromium porphyrin as catalyst for polycarbonate formation in supercritical carbon dioxide. Chem. Commun.,2001,2502-2503.
    [177]R.L. Paddock, Y. Hiyama, J.M. McKay, S.T. Nguyen. Co(Ⅱ)porphyrin/DMAP:an efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron. Lett., 2004,45,2023-2026.
    [178]R. Srivastsva, T.H. Bennur, D. Srinivas. Factors affecting activation and utilization of carbon dioxide in cyclic carbonates synthesis over Cu and Mn peraza macrocyclic complexes. J. Mol. Catal. A:Chem.,2005,226,199-205.
    [179]L.L. Jin, H.W. Jing, T. Chang, X.L. Bu, L. Wang, Z.L. Liu. Metal porphyrin/phenyltrimethylammonium tribromide:High efficient catalysts for coupling reaction of CO2 and epoxides. J. Mol. Catal. A:Chem.,2007,261,262-266.
    [180]L.L. Jin, T. Chang, H.W. Jing. Coupling of epoxides with carbon dioxide catalyzed by ruthenium porphyrin complex. Chin. J. Catal.,2007,28,287-288.
    [181]D.S. Bai, X.X. Wang, Y.Y. Song, B. Li, L.L. Zhang, P. Yan, H.W. Jing. Bifunctional Metalloporphyrins-Catalyzed Coupling Reaction of Epoxides and CO2 to Cyclic Carbonates. Chin. J. Catal.,2010,31,176-180.
    [182]D.S. Bai, Q. Wang, Y.Y. Song, B. Li, H.W. Jing. Synthesis of cyclic carbonate from epoxide and CO2 catalyzed by magnetic nanoparticle-supported porphyrin. Catal. Commun.,2011,12, 684-688.
    [183]R.L. Paddock, S.T. Nguyen. Chemical CO2 Fixation:Cr(Ⅲ) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO2 and Epoxides. J. Am. Chem. Soc.,2001,123, 11498-11499.
    [184]M. Alvaro, C. Baleizao, D. Das, E. Carbonell, H. Garca. CO2 fixation using recoverable chromium salen catalysts:use of ionic liquids as cosolvent or high-surface-area silicates as supports. J. Catal.,2004,228,254-258.
    [185]D.J. Darensbourg. Making Plastics from Carbon Dioxide:Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and CO2. Chem. Rev.,2007,107, 2388-2410.
    [186]D.J. Darensbourg, A.L. Phelps. Effective, Selective Coupling of Propylene Oxide and Carbon Dioxide to Poly(Propylene Carbonate) Using (Salen)CrN3 Catalysts. Inorg. Chem.,2005, 44,4622-4629.
    [187]D.J. Darensbourg, P. Bottarelli, J.R. Andreatta. Inquiry into the Formation of Cyclic Carbonates during the (Salen)CrX Catalyzed CO2/Cyclohexene Oxide Copolymerization Process in the Presence of Ionic Initiators. Macromolecules.,2007,40,7727-7729.
    [188]D.J. Darensbourg, J.C. Yarbrough. Routes to Metallodendrimers of the [Re6(μ3-Se)8]2+ Core-Containing Clusters. J. Am. Chem. Soc.,2002,124,6335-6336.
    [189]D.J. Darensbourg, J.C. Yarbrough, C. Ortiz, C.C. Fang. Comparative Kinetic Studies of the Copolymerization of Cyclohexene Oxide and Propylene Oxide with Carbon Dioxide in the Presence of Chromium Salen Derivatives. In Situ FTIR Measurements of Copolymer vs Cyclic Carbonate Production. J. Am. Chem. Soc.,2003,125,7586-7587.
    [190]X. Zhang, Y.-B. Jia, X.-B. Lu, B. Li, H. Wang, L.-C. Sun. Intramolecularly two-centered cooperation catalysis for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron. Lett.,2008,49,6589-6592.
    [191]A. Barbarini, R. Maggi, A. Mazzacani, G. Mori, G. Sartori, R. Sartorio. Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron. Lett.,2003,44,2931-2934.
    [192]E.R. Prez, M.O.da Silva, V.C. Costa, U.P. Rodrigues-Filho, D.W. Franco. Efficient and clean synthesis of N-alkyl carbamates by transcarboxylation and O-alkylation coupled reactions using a DBU-CO2 zwitterionic carbamic complex in aprotic polar media. Tetrahedron. Lett.,2002,43, 4091-4093.
    [193]E.R. Perez, R.H. A. Santos, M.T.P. Gambardella, L.G. M. de Macedo, U.P. Rodrigues-Filho, J.-C. Launay, D.W. Franco. Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate Schiff-base complexes as catalyst. J. Org. Chem., 2004,69,8005-8011.
    [194]Y. Niu, W. Zhang, H. Li, X. Chen, J. Sun, X. Zhuang, X. Jing. Carbon dioxide/propylene oxide coupling reaction catalyzed by chromium salen complexes. Polymer.,2009,50,441-446.
    [195]X.-B. Lu, R. He, C.-X. Bai. Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst. J. Mol. Catal. A:Chem., 2002,186,1-11.
    [196]X.-B. Lu, X.-J. Feng, R. He. Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate Schiff-base complexes as catalyst. Appl. Catal., A, Gen.,2002,234,25-33.
    [197]X.-B. Lu,Y.-J. Zhang, K. Jin, L.-M. Luo, H. Wang. Highly active electrophile-nucleophile catalyst system for the cycloaddition of CO2 to epoxides at ambient temperature. J. Catal.,2004, 227,537-541.
    [198]X.-B. Lu, Y.-J. Zhang, B. Liang, X. Li, H. Wang. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts. J. Mol. Catal. A:Chem.,2004,210,31-34.
    [199]A.M. Voutchkova, M. Feliz, E. Clot, O. Eisenstein, R.H. Crabtree. Imidazolium Carboxylates as Versatile and Selective N-Heterocyclic Carbene Transfer Agents:Synthesis, Mechanism, and Applications. J. Am. Chem. Soc.,2007,129,12834-12846.
    [200]J. Melendez, M. North, R. Pasquale. Synthesis of cyclic carbonates from atmospheric pressure carbon dioxide using exceptionally active aluminium(salen) complexes as catalysts. Eur. J. Inorg. Chem.,2007,3323-3326.
    [201]W. Clegg, R. Harrington, M. North, R. Pasquale. Cyclic Carbonate Synthesis Catalysed by Bimetallic Aluminium-Salen Complexes. Chem. Eur. J.,2010,16,6828-6843.
    [202]M. North, Riccardo Pasquale. Mechanism of Cyclic Carbonate Synthesis from Epoxides and CO2. Angew. Chem. Int. Ed.,2009,48,2946-2948.
    [203]J. Melendez, M. North, P. Villuendas. One-component catalysts for cyclic carbonate synthesis. Chem. Commun.,2009,2577-2579.
    [204]M. North, P. Villuendas, C. Young. A Gas-Phase Flow Reactor for Ethylene Carbonate Synthesis from Waste Carbon Dioxide. Chem. Eur. J.,2009,15,11454-11457.
    [205]X.-B. Lu, B. Liang, Y.-J. Zhang, Y.-Z. Tian, Y.-M. Wang, C.-X. Bai, H. Wang, R. Zhang. Design of Highly Active Binary Catalyst Systems for CO2/Epoxide Copolymerization:Polymer Selectivity, Enantioselectivity, and Stereochemistry Control. J. Am. Chem. Soc.,2004,126, 3732-3733.
    [206]T. Chang, H.W. Jing, L.L Jin, W.Y. Qiu. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides. J. Mol. Catal. A:Chem.,2007,264, 241-247.
    [207]H.W. Jing, T. Chang, L.L. Jin, M. Wu, W.Y. Qiu. Ruthenium Salen/phenyltrimethyl ammonium tribromide catalyzed coupling reaction of carbon dioxide and epoxides. Catal. Commun.,2007,8,1630-1634.
    [208]X.-B. Lu, J.-H. Xiu, R. He, K. Jin, L.-M. Luo, X.-J. Feng. Chemical fixation of CO2 to ethylene carbonate under supercritical conditions:continuous and selective. Appl. Catal., A, Gen., 2004,275,73-78.
    [209]R.L. Paddock, S.T. Nguyen. Chiral (salen)CoⅢ catalyst for the synthesis of cyclic carbonates. Chem. Commun.,2004,1622.
    [210]A. Berkessel, M. Brandenburg. Catalytic Asymmetric Addition of Carbon Dioxide to Propylene Oxide with Unprecedented Enantioselectivity. Org. Lett.,2006,8,4401-4404.
    [211]L. Jin, Y. Huang, H. Jing, T. Chang, P. Yan. Chiral catalysts for the asymmetric cycloaddition of carbon dioxide with epoxides. Tetrahedron:Asymmetry,2008,19,1947-1953.
    [212]P. Yan, H. Jing. Catalytic Asymmetric Cycloaddition of Carbon Dioxide and Propylene Oxide Using Novel Chiral Polymers of BINOL-Salen-Cobalt Salts. Adv. Synth. Catal.,2009,351, 1325-1332.
    [213]C.-X. Miao, J.-Q. Wang, Y. Wu, Y. Du, L.-N. He. Bifunctional Metal-Salen Complexes as Efficient Catalysts for the Fixation of CO2 with Epoxides under Solvent-Free Conditions. ChemSusChem.,2008,1,236-241.
    [214]S.-W. Chen, R.B. Kawthekar, G.-J. Kim. Efficient catalytic synthesis of optically active cyclic carbonates via coupling reaction of epoxides and carbon dioxide. Tetrahedron. Lett.,2007, 48,297-300.
    [215]S. Zhang, Y. Song, H. Jing, P. Yan, Q. Cai. Cinchona-Derived Quaternary Ammonium Salts-Improved Asymmetric Cycloaddition of CO2 to Epoxides. Chin. J. Catal.,2009,30, 1255-1260.
    [216]T. Chang, L.L. Jin, H.W. Jing. Bifunctional Chiral Catalyst for the Synthesis of Chiral Cyclic Carbonates from Carbon Dioxide and Epoxides. ChemCatChem.,2009,1,379-383.
    [217]F. Jutz, J.-D. Grunwaldt, A. Baiker. Mn(Ⅲ)(salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in "supercritical" CO2. J. Mol. Catal. A:Chem., 2008,279,94-103.
    [218]F. Jutz, J.-D. Grunwaldt, A. Baiker. In situ XAS study of the Mn(Ⅲ)(salen)Br catalyzed synthesis of cyclic organic carbonates from epoxides and CO2. J. Mol. Catal. A:Chem.,2009,297, 63-72.
    [219]X.-B. Lu, Y. Wang. Binary Catalyst Systems for the Alternating Copolymerization of CO2 and Epoxides under Mild Conditions. Angew. Chem., Int. Ed.,2004,43,3574-3577.
    [220]X.-B. Lu, L. Shi, Y.-M. Wang, R. Zhang, Y.-J. Zhang, X.-J. Peng, Z.-C. Zhang, B. Li. Design of Highly Active Binary Catalyst Systems for CO2/Epoxide Copolymerization:Polymer Selectivity, Enantioselectivity, and Stereochemistry Control. J. Am. Chem. Soc.,2006,128, 1664-1674.
    [221]D.J. Darensbourg, R.M. Mackiewicz, J.L. Rodgers, C.C. Fang, D.R. Billodeaux, J.H. Reibenspies. Cyclohexene Oxide/CO2 Copolymerization Catalyzed by Chromium(Ⅲ) Salen Complexes and N-Methylimidazole:Effects of Varying Salen Ligand Substituents and Relative Cocatalyst Loading. Inorg. Chem.,2004,43,6024-6034.
    [222]H. Jing, S.K. Edulji, J.M. Gibbs, C.L. Stern, H. Zhou, S.T. Nguyen. (Salen)Tin Complexes: Syntheses, Characterization, Crystal Structures, and Catalytic Activity in the Formation of Propylene Carbonate from CO2 and Propylene Oxide. Inorg. Chem.,2004,43,4315-4327.
    [223]H.W. Jing, S.T. Nguyen. SnCl4-organic base:Highly efficient catalyst system for coupling reaction of CO2 and epoxides. J. Mol. Catal. A:Chem.,2007,261,12-15.
    [224]M. Ulusoy, E.C. etinkaya, B.C. etinkaya. Conversion of carbon dioxide to cyclic carbonates using diimine Ru(Ⅱ) complexes as catalysts. Appl. Organomet. Chem.,2009,23,68-74.
    [225]H. Tanaka, Y. Kitaichi, M. Sato, T. Ikeno, T. Yamada. Enantioselective CO2 Fixation Catalyzed by Optically Active Cobalt Complexes. Chem. Lett.,2004,33,676-677.
    [226]W. Yamada, Y. Kitaichi, H. Tanaka, T. Kojima, M. Sato, T. Ikeno, T. Yamada. Enantioselective Incorporation of Carbon Dioxide into Epoxides Catalyzed by Optically Active Cobalt(Ⅱ) Complexes. Bull. Chem. Soc. Jpn.,2007,80,1391-1401.
    [227]A. Sibaouih, P. Ryan, K.V. Axenov, M.R. Sundberg, M. Leskela, T. Repo. Efficient coupling of CO2 and epoxides with bis(phenoxyiminato) cobalt(Ⅲ)/Lewis base catalysts. J. Mol. Catal. A: Chem.,2009,312,87-91.
    [228]J. Melendez, M. North, P. Villuendas, C. Young. One-component bimetallic aluminium (Salen)-based catalysts for cyclic carbonate synthesis and their immobilization. Dalton. Trans., DOI:10.1039/c0dt01196g.
    [229]M. North, C. Young. Bimetallic aluminium (acen) complexes as catalysts for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Catal. Sci. Technol.,2011,1,93-99.
    [230]A. Decortes, M.M. Belmonte, J. Benet-Buchholz, A.W. Kleij. Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen) catalyst. Chem. Commun.,2010,46,4580-4582.
    [231]D.J. Darensbourg, A.I. Moncad, S.-H Wei. Aliphatic Polycarbonates Produced from the Coupling of Carbon Dioxide and Oxetanes and Their Depolymerization via Cyclic Carbonate Formation. Macromolecules., DOI:10.1021/ma2002323.
    [232]Y.-M. Shen, W.-L. Duan, M. Shi. Chemical Fixation of Carbon Dioxide Co-Catalyzed by a Combination of Schiff Bases or Phenols and Organic Bases. Eur. J. Org. Chem.,2004,3080-3089.
    [233]T. Fujinami, T. Suzuki, M. Kamiya. Palladium catalyzed reaction of butadiene monoxide with carbon dioxide. Chem. Lett.,1985,199-200.
    [234]B.M. Trost, S.R. Angle. Thermolysis of bis[2-[(trimethylsilyl)oxy]propyl]furoxan (TOP-furoxan). The first practical method for intermolecular cycloaddition of an in situ generated nitrile oxide with 1,2-di- and trisubstituted olefins. J. Am. Chem. Soc.,1985,107,6123-6124.
    [235]M. Yoshida, M. Fujita, T. Ishii, M. Ihara. A Novel Methodology for the Synthesis of Cyclic Carbonates Based on the Palladium-Catalyzed Cascade Reaction of 4-Methoxycarbonyloxy-2-butyn-1-ols with Phenols, Involving a Novel Carbon Dioxide Elimination-Fixation Process. J. Am. Chem. Soc.,2003,125,4874-4881.
    [236]M. Yoshida, T. Murao, K. Sugimoto, M. Ihara. Palladium-Catalyzed Three-Component Coupling of Propargylic Oxiranes, Phenols and Carbon Dioxide. Synlett.,2007,575-578.
    [237]J.L. Jiang, F. Gao, R. Hua, X. Qiu. Re(CO)5Br-Catalyzed Coupling of Epoxides with CO2 Affording Cyclic Carbonates under Solvent-Free Conditions. J. Org. Chem.,2005,70,381-383.
    [238]W.-L.Wong, K.-C. Cheung, P.-H. Chan, Z.-Y. Zhou, K.-H. Lee, K.-Y. Wong. A tricarbonyl rhenium(Ⅰ) complex with a pendant pyrrolidinium moiety as a robust and recyclable catalyst for chemical fixation of carbon dioxide in ionic liquid. Chem. Commun.,2007,2175-2177.
    [239]S.A. Lermontov, T.N. Velikokhat'ko, V.O. Zavelsiikii. Aluminum 8-Hydroxyquinolate, A New Catalyst for CO2 Reactions with Epoxides. Russ. J. Gen. Chem.,2002,72,1492-1493.
    [240]S.A. Lermontov, T.N. Velikokhat'ko, V.O. Zavelsiikii.8-Hydroxyquinolates of Trivalent Metals as New Catalysts for the Reaction of CO2 with Epoxides. Russ. Chem. Bull.,2002,51, 836-838.
    [241]X. Zhang, W. Dai, S. Yin, S. Luo, C.-T. Au. Cationic organobismuth complex as an effective catalyst for conversion of CO2 into cyclic carbonates. Front. Environ. Sci. Eng. China.,2009,3, 32-37.
    [242]S.F. Yin, S. Shimada. Synthesis and structure of bismuth compounds bearing a sulfur bridged bis(phenolato) ligand and their catalytic application to the solvent-free synthesis of propylene carbonate from CO2 and propylene oxide. Chem. Commun.,2009,1136-1138.
    [243]J. Wang, J. Wu, N. Tang. Synthesis, characterization of a new bicobalt complex [Co2L2(C2H5OH)2Cl2] and application in cyclic carbonate synthesis. Inorg. Chem. Commun.,2007, 10,1493-1495.
    [244]Z. Bu, G. Qin, S. Cao. A ruthenium complex exhibiting high catalytic efficiency for the formation of propylene carbonate from carbon dioxide. J. Mol. Catal. A:Chem.,2007,277, 35-39.
    [245]M.L. Man, K.C. Lam, W.N. Sit, S.M. Ng, Z. Zhou, Z. Lin, C.P. Lau. Synthesis of Heterobimetallic Ru/Mn Complexes and the Coupling Reactions of Epoxides with Carbon Dioxide Catalyzed by these Complexes. Chem. Eur. J.,2006,12,1004-1015.
    [246]P. Tascedda, E. Dunach. Novel electrochemical reactivity of Ni(cyclam)Br2:catalytic carbon dioxide incorporation into epoxides. J. Chem. Soc., Chem. Commun.,1995,43-44.
    [247]P. Tascedda, E. Dunach. Electrosynthesis of Benzolactones by Nickel-Catalyzed Carboxylation of Epoxide-Functionalized Aromatic Halides. Synlett.,2000,245-247.
    [248]Y. Wang, G.-Q. Yuan, Y.-C. Zeng, H.-F. Jiang. Electrochemical synthesis of cyclic carbonate from CO2 with epoxides at room temperature. Chin. J. Org. Chem.,2007,27,1397-1400.
    [249]M.A. Casadei, A. Inesi, L. Rossi. Electrochemical activation of carbon dioxide:Synthesis of organic carbonates. Tetrahedron. Lett.,1997,38,3565-3568.
    [250]M.M. Dharman, J.-I. Yu, J.-Y. Ahn, D.-W. Park. Selective production of cyclic carbonate over polycarbonate using a double metal cyanide-quaternary ammonium salt catalyst system. Green. Chem.,2009,11,1754-1757.
    [251]D.S. Bai, H.W. Jing, Q. Liu, Q.Q. Zhu, X.F. Zhao. Titanocene dichloride-Lewis base:An efficient catalytic system for coupling of epoxides and carbon dioxide. Catal. Commun.,2009,11, 155-157.
    [252]W.J. Kruper, D.V. Dellar. Catalytic Formation of Cyclic Carbonates from Epoxides and CO2 with Chromium Metalloporphyrinates. J. Org. Chem.,1995,60,725-727.
    [253]R. Srivastava, T.H. Bennur, D. Srinivas. Factors affecting activation and utilization of carbon dioxide in cyclic carbonates synthesis over Cu and Mn peraza macrocyclic complexes. J. Mol. Catal. A:Chem.,2005,226,199-205.
    [254]A. Kilic, M. Ulusoy, M. Durgun, Z. Tasci, I. Yilmaz, B. Cetinkaya. Hetero- and homo-leptic Ru(Ⅱ) catalyzed synthesis of cyclic carbonates from CO2:Synthesis, spectroscopic characterization and electrochemical properties. Appl. Organometal. Chem.,2010,24,446-453.
    [255]Z.W. Bua, Z.Q. Wang, L.R. Yang, S.K. Cao. Synthesis of propylene carbonate from carbon dioxide using trans-dichlorotetrapyridineruthenium(II) as catalyst. Appl. Organometal. Chem., 2010,24,813-816.
    [256]J.E. Dengler, M.W. Lehenmeier, S. Klaus, C.E. Anderson, E. Herdtweck, B. Rieger. A One-Component Iron Catalyst for Cyclic Propylene Carbonate Synthesis. Eur. J. Inorg. Chem., 2011,336-343.
    [257]J.S. Sun, L. Liang, J.M. Sun, Y.Q. Jiang, K.F. Lin, X.Z. Xu, R.W. Wang. Direct preparation of styrene carbonates from styrene using an ionic-liquid-based one-pot multistep synthetic process. Catal. Surv. Asia.,2011,15,49-54.
    [258]M. Aresta, E. Quaranta. Direct synthesis of 1,3-benzodioxol-2-one from styrene, dioxygen and carbon dioxide promoted by Rh(I). J. Mol. Catal.,1987,41,355-359.
    [259]M. Aresta, A. Dibenedetto, I. Tommasi. Direct synthesis of organic carbonates by oxidative carboxylation of olefins catalyzed by metal oxides:developing green chemistry based on carbon dioxide. Appl. Organomet. Chem.,2000,14,799-802.
    [260]M. Aresta, A. Dibenedetto. Carbon dioxide as building block for the synthesis of organic carbonates Behavior of homogeneous and heterogeneous catalysts in the oxidative carboxylation of olefins. J. Mol. Catal. A:Chem.,2002,182-183,399-409.
    [261]J.M. Sun, S.-I. Fujita, B.M. Bhanage, M. Arai. Direct oxidative carboxylation of styrene to styrene carbonate in the presence of ionic liquids. Catal. Commun.,2004,5,83-87.
    [262]J.M. Sun, S.-I. Fujita, B.M. Bhanage, M. Arai. One-pot synthesis of styrene carbonate from styrene in tetrabutylammonium bromide. Catal. Today,2004,93-95,383-388.
    [263]J.M. Sun, S.-I. Fujita, F. Zhao, M. Hasegawa, M. Arai. A direct synthesis of styrene carbonate from styrene with the Au/SiO2-ZnBr2/Bu4NBr catalyst system. J. Catal.,2005,230, 398-105.
    [264]Y.L. Wang, J.H. Sun, D. Xiang, L. Wang, J.M. Sun, F.-S. Xiao. A Facile, Direct Synthesis of Styrene Carbonate from Styreneand CO2 Catalyzed by Au/Fe(OH)3-ZnBr2/Bu4NBr System. Catal. Lett.,2009,129,437-443.
    [265]D. Xiang, X.F. Liu, J.S. Sun, F.-S. Xiao, J.M. Sun. A novel route for synthesis of styrene carbonate using styrene and CO2 as substrates over basic resin R201 supported Au catalyst. Catal. Today.,2009,148,383-388.
    [266]N. Eghbali, C.-J. Li. Conversion of carbon dioxide and olefins into cyclic carbonates in water. Green. Chem.,2007,9,213-215.
    [267]F. Ono, K. Qiao, D. Tomida, C. Yokoyama. Direct preparation of styrene carbonates from styrene using an ionic-liquid-based one-pot multistep synthetic process. App. Catal. A:Gen.,2007, 333,107-113.
    [268]J.-L. Wang, J.-Q. Wang, L.-N. He, X.-Y. Dou, F. Wu. A CO2/H2O2-tunable reaction:direet conversion of styrene into styrene carbonate catalyzed by sodium phosphotungstate/n-Bu4NBr. Green. Chem.,2008,10,1218-1223.
    [269]D. S. Bai, H. W. Jing. Aerobic oxidative carboxylation of olefins with metalloporphyrin catalysts. Green. Chem.,2010,12,39-41.
    [270]H.F. Jiang, A.-Z.Wang, H.-L. Liu, C.-R. Qi. Reusable Polymer-Supported Amine-Copper Catalyst for the Formation of α-Alkylidene Cyclic Carbonates in Supercritical Carbon Dioxide. Eur. J. Org. Chem.,2008,2309-2312.
    [271]Q. Li, W. Zhang, N. Zhao, W. Wei, Y. Sun. Synthesis of cyclic carbonates from urea and diols over metal oxides. Catal. Today.,2006,115,111-116.
    [272]S.-Y. Huang, S.-G. Liu, J.-P. Li, N. Zhang, W. Wei, Y.-H. Sun. Synthesis of cyclic carbonate from carbon dioxide and diols over metal acetates. J. Fuel. Chem. Technol.,2007,35,701-705.
    [273]Y. Du, D.-L. Kong, H.-Y. Yang, F. Cai, J.-S. Tian, J.-Q. Wang, L.-N. He. Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. J. Mol. Catal. A:Chem.,2005,241,233-237.
    [274]P. Yan, X.Q. Tan, H.W. Jing, S.H. Duan, X.X. Wang, Z.L. Liu. One Approach to Cyclic Carbonates via a Three-Component Cyclization of Phenacyl Bromide, CO2, and Aldehyd. J. Org. Chem.,DOI:10.1021/jo1020294.
    [1]D.J. Darensbourg, R.M. Mackiewicz, A.L. Phelps, D.R. Billodeaux. Copolymerization of CO2 and Epoxides Catalyzed by Metal Salen Complexes. Acc. Chem. Res.,2004,37,836-844.
    [2]W. Yamada, Y. Kitaichi, H. Tanaka, T. Kojima, M. Sato, T. Ikeno, T. Yamada. Enantioselective Incorporation of Carbon Dioxide into Epoxides Catalyzed by Optically Active Cobalt(Ⅱ) Complexes. Bull. Chem. Soc. Jpn.,2007,80,1391-1401.
    [3]R.L. Paddock, S.T. Nguyen. Chemical CO2 Fixation:Cr(Ⅲ) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO2 and Epoxides. J. Am. Chem. Soc.,2001,123, 11498-11499.
    [4]M. Aresta, A. Dibenedetto, L. Gianfrate, C. Pastore. Nb(Ⅴ) compounds as epoxides carboxylation catalysts:the role of the solvent. J. Mol, Catal. A Chem.,2003,204-205,245-252.
    [5]W.N. Sit, S.M. Ng, K.Y. Kwong, C.P. Lau. Coupling Reactions of CO2 with Neat Epoxides Catalyzed by PPN Salts To Yield Cyclic Carbonates. J. Org. Chem.,2005,70,8583-8586.
    [6]A. Berkessel, M. Brandenburg. Catalytic Asymmetric Addition of Carbon Dioxide to Propylene Oxide with Unprecedented Enantioselectivity. Org. Lett.,2006,8,4401-4404.
    [7]H.S. Kim, J.J. Kim, S.D. Lee, M.S. Lah, D. Moon, H.G. Jang. New Mechanistic Insight into the Coupling Reactions of CO2 and Epoxides in the Presence of Zinc Complexes. Eur. Chem. J., 2003,9,678-686.
    [8]K.C. Nicolaou, Z. Yang, J.J. Liu, H. Ueno, P.G. Nantermet, R.K. Guy, C.F. Claiborne, J. Renaud, E.A. Couladouros, K. Paulvannan, E.J. Sorensen. Total synthesis of taxol. Nature.,1994, 367,630-634.
    [9]T. Takata, Y. Furusho, K.-I. Murakawa, T. Endo, H. Matsuoka, T. Hirasa, J. Matsuo, M. Sisido. Optically Active Poly(aryl carbonates) Consisting of Axially Chiral Units. Chiral Binaphthyl Group Induced Helical Polymer. J. Am. Chem. Soc.,1998,120,4530-4531.
    [10]H.T. Chang, K.B. Sharpless. A practical route to enantiopure 1,2-aminoalcohols. Tetrahedron Lett.,1996,37,3219-3222.
    [11]H. Jing, S.T. Nguyen. SnCl4-organic base:Highly efficient catalyst system for coupling reaction of CO2 and epoxides. J. Mol. Catal. A Chem.,2007,261,12-15.
    [12]J.M. Sun, S.I. Fujita, F.Y. Zhao. M. Arai, Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions. Green Chem.,2004,6,613-616.
    [13]X.-B. Lu, B. Liang, Y.J. Zhang, Y.Z. Tian, Y.M. Wang, C.X. Bai, H. Wang, R. Zhang. Asymmetric Catalysis with CO2:Direct Synthesis of Optically Active Propylene Carbonate from Racemic Epoxides. J. Am. Chem. Soc.,2004,126,3732-3733.
    [14]Y. Xie, Z.F. Zhang, T. Jiang, J.H. He, B.X. Han, T.B. Wu, K.L. Ding. CO2 Cycloaddition Reactions Catalyzed by an Ionic Liquid Grafted onto a Highly Cross-Linked Polymer Matrix. Angew. Chem. Int. Ed.,2007,46,7255-7258.
    [15]S.L. Zhang, Y.Z. Huang, H.W. Jing, W.X. Yao, P. Yan. Chiral ionic liquids improved the asymmetric cycloaddition of CO2 to epoxides. Green Chem.,2009,11,935-938.
    [16]T. Chang, L.L. Jin, H.W. Jing. Bifunctional Chiral Catalyst for the Synthesis of Chiral Cyclic Carbonates from Carbon Dioxide and Epoxides. ChemCatChem.,2009,1,379-783.
    [17]P. Yan, H.W. Jing. Catalytic Asymmetric Cycloaddition of Carbon Dioxide and Propylene Oxide Using Novel Chiral Polymers of BINOL-Salen-Cobalt(Ⅲ) Salts. Adv. Synth. Catal.,2009, 351,1325-1332.
    [18]W.J. Kruper, D.V. Dellar. Catalytic Formation of Cyclic Carbonates from Epoxides and CO2 with Chromium Metalloporphyrinates. J. Org. Chem.,1995,60,725-727.
    [19]H. Sugimoto, T. Kimura, S. Inoue. Photoresponsive Molecular Switch to Control Chemical Fixation of CO2. J. Am. Chem. Soc.,1999,121,2325-2326.
    [20]R.L. Paddock, Y. Hiyama, J.M. McKay, S.T. Nguyen. Co(Ⅲ) porphyrin/DMAP:an efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett., 2004,45,2023-2026.
    [21]R. Srivastava, T.H. Bennur, D. Srinivas. Factors affecting activation and utilization of carbon dioxide in cyclic carbonates synthesis over Cu and Mn peraza macrocyclic complexes. J. Mol, Catal. A Chem.,2005,226,199-205.
    [22]V. Calo, A. Nacci, A. Monopoli, A. Fanizzi. Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts. Org. Lett.,2002, 4,2561-2563.
    [23]A. Hu, G.T. Yee, W. Lin. Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones. J. Am. Chem. Soc., 2005,127,12486-12487.
    [24]S. Ko, J. Jang. A Highly Efficient Palladium Nanocatalyst Anchored on a Magnetically Functionalized Polymer-Nanotube Support. Angew. Chem. Int. Ed.,2006,45,7564-7567.
    [25]M. Kawamura, K. Sato. Magnetically separable phase-transfer catalysts. Chem. Commun., 2006,4718-4719.
    [26]G. Chouhan, D. Wang, H. Alper. Magnetic nanoparticle-supported proline as a recyclable and recoverable ligand for the Cul catalyzed arylation of nitrogen nucleophiles. Chem. Commun.,2007, 4809-4811.
    [27]M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang, T. Hyeon. A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation. Angew. Chem. Int. Ed.,2007,46,7039-7043.
    [28]R. Abu-Reziq, D. Wang, M.L. Post, H. Alper. Separable Catalysts in One-Pot Syntheses for Greener Chemistry. Chem. Mater.,2008,20,2544-2550.
    [29]V. Polshettiwar, R.S. Varma. Nanoparticle-Supported and Magnetically Recoverable Ruthenium Hydroxide Catalyst:Efficient Hydration of Nitriles to Amides in Aqueous Medium. Chem. Eur. J.,2009,15,1582-1586.
    [30]X.X. Zheng, S.Z. Luo, L. Zhang, J.-P. Cheng. Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green Chem.,2009,11,455-458.
    [31]W.J. Kruper, D.V. Dellar. Catalytic Formation of Cyclic Carbonates from Epoxides and CO2 with Chromium Metalloporphyrinates. J. Org. Chem.,1995,60.725-727.
    [32]R. Srivastsva, T. H. Bennur, D. Srinivas. Factors affecting activation and utilization of carbon dioxide in cyclic carbonates synthesis over Cu and Mn peraza macrocyclic complexes. J. Mol. Catal. A:Chem.,2005,226,199-205.
    [33]L.L. Jin, H.W. Jing, T. Chang, X.L. Bu, L. Wang, Z.L. Liu. Metal porphyrin/phenyltrimethyl ammonium tribromide:High efficient catalysts for coupling reaction of CO2 and epoxides. J. Mol, Catal. A Chem.,2007,261,262-266.
    [34]D.S. Bai, X.X. Wang, Y.Y. Song, B. Li, L.L. Zhang, P. Yan, H.W. Jing. Bifunctional Metalloporphyrins-Catalyzed Coupling Reaction of Epoxides and CO2 to Cyclic Carbonates. Chin. J. Catal.,2010,31,51-59.
    [35]J.P. Collman. Picket fence porphyrins. Synthetic models for oxygen binding hemoproteins. J. Am. Chem. Soc.,1975,97,1427-1439.
    [36]J.P. Collman, Z. Wang, A. Straumanis, M. Quelquejeu, E. Rose. An Efficient Catalyst for Asymmetric Epoxidation of Terminal Olefins. J. Am. Chem. Soc.,1999,121,460-461.
    [37]Z.C. Xu, CM. Shen, Y.L. Hou, H.J. Gao, S.H. Sun. Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chem. Mater.,2009,21,1778-1780.
    [38]Y.S. Niu, W.X. Zhang, H.C. Li, X.S. Chen, J.R. Sun, X.L. Zhuang, X.B. Jing. Carbon dioxide/propylene oxide coupling reaction catalyzed by chromium salen complexes. Polymer., 2009,50,441-446.
    [1]D.J. Darensbourg, M.W. Holtcamp. Catalysts for the reactions of epoxides and carbon dioxide. Coord. Chem. Rev.,1996,153,155-174.
    [2]T. Sakakura, J.C. Choi, H. Yasuda. Transformation of Carbon Dioxide. Chem. Rev.,2007,107, 2365-2387.
    [3]T. Aida, S. Inoue. Synthesis of polyether-polycarbonate block copolymer from carbon dioxide and epoxide using a metalloporphyrin catalyst system. Macromolecules.,1982,15,682-684.
    [4]T. Aida, M. Ishikawa, S. Inoue. Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or-triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight. Macromolecules,1986,19, 8-13.
    [5]J.H. Jung, M. Ree, T. Chang. Copolymerization of carbon dioxide and propylene oxide using an aluminum porphyrin system and its components. J. Polym. Sci. Part. A,1999,37,3329-3336.
    [6]T. Aida, S. Inoue. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group.J.Am. Chem. Soc.,1983,105,1304-1309.
    [7]S. Mang, A.I. Cooper, M.E. Colclough, N. Chauhan, A.B. Holmes. Copolymerization of CO2 and 1,2-Cyclohexene Oxide Using a CO2-Soluble Chromium Porphyrin Catalyst. Macromolecules.,2000,33,303-308.
    [8]L.M. Stamp, S.A. Mang, A.B. Holmes, K.A. Kinghts, Y.R. de Miguel, I.F. Mcconve. Polymer supported chromium porphyrin as catalyst for polycarbonate formation in supercritical carbon dioxide. Chem. Commun.,2001,2502-2503.
    [9]A. Baba, T. Nozaki, H. Matsuda. Carbonate Formation from Oxiranes and Carbon Dioxide Catalyzed by Organotin Halide-Tetraalkylphosphonium Halide Complexes. Bull. Chem. Soc. Jpn., 1987,60.1552-1554.
    [10]T. Sakakura, K. Kohno. The synthesis of organic carbonates from carbon dioxide. Chem. Commun.,2009,1312-1330.
    [11]F.W. Li, C.G. Xia, L.W. Xu, W. Sun, G.X. Chen. A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides. Chem. Commun.,2003, 2042-2043.
    [12]R.L. Paddock, S.T. Nguyen. Chemical CO2 Fixation:Cr(Ⅲ) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO2 and Epoxides. J. Am. Chem. Soc.,2001,123, 11498-11499.
    [13]J.J. Peng, Y.Q. Deng. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic Liquids. New. J. Chem.,2001,25,639-641.
    [14]V. Calo, A. Nacci, A. Monopoli, A. Fanizzi. Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts. Org. Lett.,2002, 4,2561-2563.
    [15]X.B. Lu, XJ. Feng, R. He. Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate Schiff-base complexes as catalyst. Appl. Catal. A:Gen.,2002,234,25-33.
    [16]W.N. Sit, S.M. Ng, K.Y. Kwong, C.P. Lau. Coupling Reactions of CO2 with Neat Epoxides Catalyzed by PPN Salts To Yield Cyclic Carbonates. J. Org. Chem.,2005,70,8583-8586.
    [17]J.L. Jiang, F.X. Gao, R.M. Hua, X.Q. Qiu. Re(CO)5Br-Catalyzed Coupling of Epoxides with CO2 Affording Cyclic Carbonates under Solvent-Free Conditions. J. Org. Chem.,2005,70, 381-383.
    [18]H.B. Xie, S.H. Li, S.B. Zhang. Highly active, hexabutylguanidinium salt/zinc bromide binary catalyst for the coupling reaction of carbon dioxide and epoxides. J. Mol. Catal. A:Chem.,2006, 250,30-34.
    [19]L.L. Jin, H.W. Jing, T.Chang, X.L. Bu, L. Wang, Z.L. Liu. Metal porphyrin/ phenyltrimethylammonium tribromide:High efficient catalysts for coupling reaction of CO2 and epoxides. J. Mol. Catal. A:Chem.,2007,261,262-266.
    [20]T.Chang, H.W. Jing, L.L. Jin, W.Y. Qiu. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides. J. Mol. Catal. A:Chem.,2007,264, 241-247.
    [21]H.W. Jing, T. Chang, L.L. Jin, M. Wu, W.Y. Qiu. Ruthenium Salen/phenyltrimethylammonium tribromide catalyzed coupling reaction of carbon dioxide and epoxides. Catal. Commun.,2007,8,1630-1634.
    [22]L.L. Jin, T. Chang, H.W. Jing. Coupl ing of Epoxides with Carbon Dioxide Catalyzed by Ruthenium Porphyrin Complex. Chin. J. Catal.,2007,28,287-289.
    [23]T. Chang, M. Wu, L.L. Jin, H.W. Jing, W.Y. Qiu. ZnBr2/2Quaternary Onium Tribromide Salt as a Catalyst for the Coupling Reaction of Carbon Dioxide and Epoxides. Chin. J. Catal.,2007,28, 404-406.
    [24]P. Yan, H.W. Jing. Catalytic Asymmetric Cycloaddition of Carbon Dioxide and Propylene Oxide Using Novel Chiral Polymers of BINOL-Salen-Cobalt (Ⅲ) Salts. Adv. Synth. Catal.,2009, 351,1325-1332.
    [25]D.S. Bai, H.W. Jing, Q. Liu, Q.Q. Zhu, X.F. Zhao. Titanocene dichloride-Lewis base:An efficient catalytic system for coupling of epoxides and carbon dioxide. Catal. Commun.,2009,11, 155-157.
    [26]E.K. Noh, S.J. Na, S. Sujith, S.W. Kim, B.Y. Lee. Two Components in a Molecule:Highly Efficient and Thermally Robust Catalytic System for CO2/Epoxide Copolymerization. J. Am. Chem. Soc.,2007,129,8082-8083.
    [27]X.B. Lu, R. He, C.X. Bai. Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst. J. Mol. Catal. A:Chem., 2002,186,1-11.
    [28]X.B. Lu, Y.J. Zhang, B. Liang, X. Li, H. Wang. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts. J. Mol. Catal. A:chem.,2004,210,31-34.
    [29]X. Zhang, Y.B. Jia, X.B Lu, B. Li, H. Wang, L.C. Sun. Intramolecularly two-centered cooperation catalysis for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron. Lett.,2008,49,6589-6592.
    [30]X.B. Lu, B. Liang, Y.J. Zhang, Y.Z. Tian, Y.M. Wang, C.X. Bai, H. Wang, R. Zhang. Asymmetric Catalysis with CO2:Direct Synthesis of Optically Active Propylene Carbonate from Racemic Epoxides. J. Am. Chem. Soc.,2004.126.3732-3733.
    [31]W.M. Ren, Z.W. Liu, Y.Q. Wen, R. Zhang, X.B. Lu. Mechanistic Aspects of the Copolymerization of CO2 with Epoxides Using a Thermally Stable Single-Site Cobalt(III) Catalyst. J. Am. Chem. Soc.,2009,31,11509-11518.
    [32]C.X. Miao, J.Q. Wang, Y.Wu, Y. Du, L.N. He. Bifunctional Metal-Salen Complexes as Efficient Catalysts for the Fixation of CO2 with Epoxides under Solvent-Free Conditions. ChemSusChem.,2008,1,236-241.
    [33]S. Sujith, J. K. Min, J.E. Seong, S.J. Na, B.Y. Lee. A Highly Active and Recyclable Catalytic System for CO2/Propylene Oxide Copolymerization. Angew. Chem. Int. Ed.,2008,47,7306-7309.
    [34]T. Chang, L.L. Jin, H.W. Jing. Bifunctional Chiral Catalyst for the Synthesis of Chiral Cyclic Carbonates from Carbon Dioxide and Epoxides. ChemCatChem.,2009,1,379-383.
    [35]M.J. Gunter, B.C. Robinson. Unusual Spectral Properties of meso-(N, N-Dialkylaminophenyl) Porphyrins. Aust. J. Chem.,1989,42,1897-1905.
    [36]Y.Q. Liu, S.T. Han, J.Q. Zhou, H. Xie. A new approach to the synthesis of tetra (4-dimethylaminophenyl) porphyrin. Chem. Reag.,1995,17,252,225.
    [37]J. Liu, D.H.Xu, W.J. Mei, H.L. Pu, J.W. Huang, L.N. Ji. Synthesis, Anticancer Activity and Mechanism of Water-soluble Porphyrin and Metalloporphyins. Chem. J. Chin. Univ.,2001,22, 1446-1449.
    [38]M. Krishnamurthy. Synthesis and characterization of a new water-soluble porphyrin. Indian. J. Chem. Sec B:Org Chem Including Med Chem.,1977,15B,964-966.
    [1]D.J. Darensbourg, R.M. Mackiewicz, A.L. Phelps, D.R. Billodeaux. Copolymerization of CO2 and Epoxides Catalyzed by Metal Salen Complexes. Acc. Chem. Res.,2004,37,836-844.
    [2]K.C. Nicolaou, Z. Yang, J.J. Liu, H. Ueno, P.G. Nantermet, R.K. Guy, C.F. Claiborne, J. Renaud, E.A. Couladouros, K. Paulvannan, E.J. Sorensen. Total synthesis of taxol. Nature.,1994, 367,630-634.
    [3]T. Sakakura, J.C. Choi, H. Yasuda. Transformation of Carbon Dioxide. Chem. Rev.,2007,107, 2365-2387.
    [4]A.G. Shaikh, S. Sivaram. Organic Carbonates. Chem. Rev.,1996,96,951-976.
    [5]D.R. Moore, M. Cheng, E.B. Lobkovsky, G.W. Coates. Electronic and Steric Effects on Catalysts for CO2/Epoxide Polymerization:Subtle Modifications Resulting in Superior Activities. Angew. Chem. Int. Ed.,2002,41,2599-2602.
    [6]B. Schaffner, J. Holz, S.P. Verevkin, A. Borner. Organic Carbonates as Alternative Solvents for Palladium-Catalyzed Substitution Reactions. ChemSusChem.,2008,1,249-253.
    [7]P. Tundo, M. Selva. The Chemistry of Dimethyl Carbonate. Acc. Chem. Res.,2002,35, 706-716.
    [8]H. Sugimoto, K. Kuroda. The Cobalt Porphyrin-Lewis Base System:A Highly Selective Catalyst for Alternating Copolymerization of CO2 and Epoxide under Mild Conditions. Macromolecules.,2008,41,312-317.
    [9]J. Bayardon, J. Holz, B. Schaffner, V. Andrushko, S. Verevkin, A. Preetz, A. Borner. Propylene Carbonate as a Solvent for Asymmetric Hydrogenations. Angew. Chem. Int. Ed.,2007, 46,5971-5974.
    [10]S. Mang, A.I. Cooper, M.E. Colclough, N. Chauhan, A.B. Holmes. Copolymerization of CO2 and 1,2-Cyclohexene Oxide Using a CO2-Soluble Chromium Porphyrin Catalyst. Macromolecules.,2000,33,303-308.
    [11]L.M. Stamp, S.A. Mang, A.B. Holmes, K..A. Kinghts, Y.R. de Miguel, I.F. McConvey. Polymer supported chromium porphyrin as catalyst for polycarbonate formation in supercritical carbon dioxide. Chem. Commun.,2001,37,2502-2503.
    [12]J.W. Huang, M. Shi. Chemical Fixation of Carbon Dioxide by NaI/PPh3/PhOH. J. Org. Chem.,2003,68,6705-6709.
    [13]J.L. Song, Z.F. Zhang, B.X. Han, S.Q. Hu, W.J. Li, Y. Xie. Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of β-cyclodextrin. Green. Chem.,2008,10,1337-1341.
    [14]T. Yano, H. Matsui, T. Koike, H. Ishiguro, H. Fujihara, M. Yoshihara, T. Maeshima. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chem. Commun.,1997,33,1129-1130.
    [15]K. Yamaguchi, K. Ebitani, T. Yoshida, H. Yoshida, K. Kaneda. Mg-Al Mixed Oxides as Highly Active Acid-Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides. J. Am. Chem. Soc.,1999,121,4526-4527.
    [16]X.B. Lu, B. Liang, Y.J. Zhang, Y.Z. Tian, Y.M. Wang, C.X. Bai, H. Wang, R. Zhang. Asymmetric Catalysis with CO2:Direct Synthesis of Optically Active Propylene Carbonate from Racemic Epoxides. J. Am. Chem. Soc.,2004,126,3732-3733.
    [17]F. Jutz, J.D. Grunwaldt, A. Baiker. Mn(Ⅲ)(salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in "supercritical" CO2. J. Mol. Catal. A:Chem., 2008,279,94-103.
    [18]F.W. Li, C.G. Xia, L.W. Xu, W. Sun, G.X. Chen. A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides. Chem. Commun.,2003,39, 2042-2043.
    [19]L.L. Jin, H.W. Jing, T. Chang, X.L. Bu, L. Wang, Z.L. Liu. Metal porphyrin/phenyltrimethyl ammonium tribromide:High efficient catalysts for coupling reaction of CO2 and epoxides. J. Mol. Catal. A:Chem.,2007,261,262-266.
    [20]T. Chang, H.W. Jing, L.L. Jin, W.Y. Qiu. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides. J. Mol. Catal. A:Chem.,2007,264, 241-247.
    [21]H.W. Jing, S.K. Edulji, J.M. Gibbs, C.L. Stern, H.Y. Zhou, S.T. Nguyen. (Salen)Tin Complexes:Syntheses, Characterization, Crystal Structures, and Catalytic Activity in the Formation of Propylene Carbonate from CO2 and Propylene Oxide. Inorg. Chem.,2004,43, 4315-4327.
    [22]H.W. Jing, S.T. Nguyen. SnCl4-organic base:Highly efficient catalyst system for coupling reaction of CO2 and epoxides. J. Mol. Catal. A:Chem.,2007,261,12-15.
    [23]D.S. Bai, H.W. Jing, Q. Liu, Q.Q. Zhu, X.F. Zhao. Titanocene dichloride-Lewis base:An efficient catalytic system for coupling of epoxides and carbon dioxide. Catal. Commun.,2009,11, 155-157.
    [24]T. Chang, L.L. Jin, H.W. Jing. Bifunctional Chiral Catalyst for the Synthesis of Chiral Cyclic Carbonates from Carbon Dioxide and Epoxides. ChemCatChem.,2009,1,379-383.
    [25]D.S. Bai, X.X. Wang, Y.Y. Song, L. Bo, L.L. Zhang, P. Yan, H.W. Jing. Bifunctional Metalloporphyrins-Catalyzed Coupling Reaction of Epoxides and CO2 to Cyclic Carbonates. Chin. J. Catal.,2010,31,176-180.
    [26]H. Kawanami, A. Sasaki, K. Matsui, Y. Ikushima. A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system. Chem. Commun.,2003,39, 896-897.
    [27]X.X. Zheng, S.Z. Luo, L. Zhang, J.P. Cheng. Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green. Chem.,2009,11,455-458.
    [28]S.L. Zhang, Y.Z. Huang, H.W. Jing, W.X. Yao, P. Yan. Chiral ionic liquids improved the asymmetric cycloaddition of CO2 to epoxides. Green. Chem.,2009,11,935-938.
    [29]Z.Z. Yang, L.N. He, C.X. Miao, S. Chanfreau. Lewis Basic Ionic Liquids-Catalyzed Conversion of Carbon Dioxide to Cyclic Carbonates. Adv. Synth. Catal.,2010,352,2233-2240.
    [30]D.F. Ji, X.B. Lu, R. He. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst. Appl. Catal. A. Gen.,2000,203,329-333.
    [31]A. Decortes, A.M. Castilla, A.W. Kleij. Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew. Chem. Int. Ed.,2010,49,9822-9837.
    [32]M. North, R. Pasquale. Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew. Chem. Int. Ed.,2009,48,2946-2948.
    [33]R.L. Paddock, ST. Nguyen. Chemical CO2 Fixation:Cr(Ⅲ) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO2 and Epoxides.J. Am. Chem. Soc.,2001,123, 11498-11499.
    [34]L.L. Jin, Y.Z. Huang, H.W. Jing, T. Chang, P. Yan. Chiral catalysts for the asymmetric cycloaddition of carbon dioxide with epoxides. Tetrahedron:Asymmetry.,2008,19,1947-1953.
    [35]V. Calo, A. Nacci, A. Monopoli, A. Fanizzi. Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts. Org. Lett.,2002, 4,2561-2563.
    [36]M. Aresta, A. Dibenedetto, L. Gianfrate, C. Pastore. Nb(Ⅴ) compounds as epoxides carboxylation catalysts:the role of the solvent. J. Mol. Catal. A Chem.,2003,204,245-252.
    [37]A. Berkessel, M. Brandenburg. Catalytic Asymmetric Addition of Carbon Dioxide to Propylene Oxide with Unprecedented Enantioselectivity. Org. Lett.,2006,8,4401-4404.
    [38]H.S. Kim, J.J. Kim, S.D. Lee, M.S. Lah, D. Moon, H.G. Jang. New Mechanistic Insight into the Coupling Reactions of CO2 and Epoxides in the Presence of Zinc Complexes. Eur. Chem. J., 2003,9,678-686.
    [39]T. Aida, S. Inoue. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group. J. Am. Chem. Soc.,1983,105,1304-1309.
    [40]P. Chen, M.H. Chisholm, J.C. Gallucci, X.Y. Zhang, Z.P. Zhou. Binding of Propylene Oxide to Porphyrin-and Salen-M(Ⅲ) Cations, Where M) Al, Ga, Cr, and Co. Inorg. Chem.,2005,44, 2588-2595.
    [41]A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assoup, L. Korsakoff. A Simplified Synthesis for msso-Tetraphenylporphinl. J. Org. Chem.,1967,32,476.
    [42]E. Tsuchida, T. Komatsu, E. Hasegawa, H. Nishide. Synthesis, characterization, and oxygenation of bis-fenced porphyrinato iron(Ⅱ) and cobalt(Ⅱ) complexes. J. Chem. Soc. Dalton Trans.,1990,9,2713-2718.
    [43]J.P. Collman, R.R. Gagne. C. Reed, T.R. Halbert, G. Lang, W.T. Robinson. "Picket Fence Porphyrins." Synthetic Models for Oxygen Binding Hemoproteins. J. Am. Chem. Soc.,1975,97, 1427-1439.
    [44]L. Jayashankar, B.S. Sundar, R. Vijayaraghavan, K.S. Betanabhatla, AJM. Christina, J. Athimoolam, K.S. Saravanan. Evaluation of photodynamic activity of metalloporphyrins on human neuroblastoma cell line. Pharmacology Online.,2008,1,66-77.
    [45]J.C. Hawley, N. Bampos, J.K.M. Sanders. Synthesis and Characterization of Carboxylate Complexes of SnIV Porphyrin Monomers and Oligomers. Chem. Eur. J.,2003,9,5211-5222.
    [46]M. Moghadam, S. Tangestaninejad, V. Mirkhanib, R. Shaibani. Rapid and efficient ring opening of epoxides catalyzed by a new electron deficient tin(IV) porphyrin. Tetrahedron.,2004, 60,6105-6111.
    [47]A.D. Adler, F.R. Longo, F. Kampas, J. Kim. On the preparation of metailoporphyrins. J. Inorg. Nucl. Chem.,1970,32,2443-2445.
    [48]T. Aida, K. Wada, S. Inoue. Copolymerization of Epoxides by Aluminum Porphyrin. Reactivity of (Porphinato)aluminum Alkoxide as Growing Species. Macromolecules.,1987,20, 237-241.
    [49]S.M. Zhang. Basic Inorganic Chemistry. Lanzhou University Press (Second edition),1995, p42.
    [50]W.N. Sit, S.M. Ng, K.Y. Kwong, C.P. Lau. Coupling Reactions of CO2 with Neat Epoxides Catalyzed by PPN Salts To Yield Cyclic Carbonates. J. Org. Chem.,2005,70,8583-8586.
    [1]D.J. Darensbourg, R.M. Mackiewicz, A.L. Phelps, D.R. Billodeaux. Copolymerization of CO2 and Epoxides Catalyzed by Metal Salen Complexes. Acc. Chem. Res..2004,37,836-844.
    [2]P. Braunstein, D. Matt, D. Nobel. Reactions of carbon dioxide with carbon-carbon bond formation catalyzed by transition-metal complexes. Chem. Rev.,1988,88,747-764.
    [3]K.C. Nicolaou, Z. Yang, J.J. Liu, H. Ueno, P.G. Nantermet, R.K. Guy, C.F. Claiborne, J. Renaud, E.A. Couladouros, K. Paulvannanand, E.J. Sorensen. Total synthesis of taxol. Nature., 1994,367,630-634.
    [4]A.A.G. Shaikh, S. Sivaram. Organic Carbonates. Chem. Rev.,1996,96,951-976.
    [5]D.J. Darensbourg, M.W. Holtcamp. Catalysts for the reactions of epoxides and carbon dioxide. Coord. Chem. Rev.,1996,153,155-174.
    [6]H.T. Chang, K.B. Sharpless. A practical route to enantiopure 1,2-aminoalcohols. Tetrahedron Lett.,1996,37,3219-3222.
    [7]D.R. Moore, M. Cheng, E.B. Lobkovsky, G.W. Coates. Electronic and Steric Effects on Catalysts for CO2/Epoxide Polymerization:Subtle Modifications Resulting in Superior Activities. Angew. Chem., Int. Ed.,2002,41,2599-2609.
    [8]T. Takata, Y. Furusho, K.-I. Murakawa, T. Endo, H. Matsuoka, T. Hirasa, J. Matsuo, M. Sisido. Optically Active Poly(aryl carbonates) Consisting of Axially Chiral Units. Chiral Binaphthyl Group Induced Helical Polymer. J. Am. Chem. Soc.,1998,120,4530-4531.
    [9]N. Takeda, S. Inoue. Activation of Carbon Dioxide by Tetraphenylporphinatoaluminium Methoxide. Reaction with Epoxide. Bull. Chem. Soc. Jpn.,1978,51,3564-3567.
    [10]N. Takeda, S. Inoue. Polymerization of 1,2-Epoxypropane and Copolymerization Catalyzed by Metalloporphyrins. Macromol. Chem.,1978,179,1377-1381.
    [11]T. Aida. Synthesis of polyether-polycarbonate block copolymer from carbon dioxide and epoxide using a metalloporphyrin catalyst system. Macromolecules.,1982,15,682-684.
    [12]T. Aida, M. Ishikawa, S. Inoue. Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight. Macromolecules.,1986,19, 8-13.
    [13]J.H. Jung, M. REE, T. Chang. Copolymerization of carbon dioxide and propylene oxide using an aluminum porphyrin system and its components. J. Polym. Sci., Part A:Polym. Chem.,1999, 37,3329-3336.
    [14]T. Aida, S. Inoue. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group. J. Am. Chem. Soc.,1983,105,1304-1309.
    [15]S. Mang, A.I. Cooper, M.E. Colclough, N. Chauhan, A.B. Holmes. Copolymerization of CO2 and 1,2-Cyclohexene Oxide Using a CO2-Soluble Chromium Porphyrin Catalyst. Macromolecules.,2000,33,303-308.
    [16]L.M. Stamp, S.A. Mang, A.B. Holmes, K.A. Kinghts, Y.R. de Miguel, I.F. Mcconve. Polymer supported chromium porphyrin as catalyst for polycarbonate formation in supercritical carbon dioxide. Chem. Commun.,2001,2502-2503.
    [17]A. Baba, T. Nozaki, H. Matsuda. Carbonate Formation from Oxiranes and Carbon Dioxide Catalyzed by Organotin Halide-Tetraalkylphosphonium Halide Complexes. Bull. Chem. Soc. Jpn., 1987,60.1552-1554.
    [18]F.W. Li, C.G. Xia, L.W. Xu, W. Sun, G.X. Chen. A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides. Chem. Commun.,2003, 2042-2043.
    [19]R.L. Paddock, S.T. Nguyen. Chemical CO2 Fixation:Cr(Ⅲ) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO2 and Epoxides. J. Am. Chem. Soc.,2001,123, 11498-11499.
    [20]J.L. Jiang, F.X. Gao, R.M. Hua, X.Q. Qiu. Re(CO)5Br-Catalyzed Coupling of Epoxides with CO2 Affording Cyclic Carbonates under Solvent-Free Conditions. J. Org. Chem.,2005,70, 381-383.
    [21]H.B. Xie, S.H. Li, S.B. Zhang. Highly active, hexabutylguanidinium salt/zinc bromide binary catalyst for the coupling reaction of carbon dioxide and epoxides. J. Mol. Catal. A:Chem.,2006, 250,30-34.
    [22]X.B. Lu, B. Liang, Y.J. Zhang, Y.Z. Tian, Y.M. Wang, C.X. Bai, H. Wang, R. Zhang. Asymmetric Catalysis with CO2:Direct Synthesis of Optically Active Propylene Carbonate from Racemic Epoxides. J. Am. Chem. Soc.,2004,126,3732-3733.
    [23]R. Srivastsva, T.H. Bennur, D. Srinivas. Factors affecting activation and utilization of carbon dioxide in cyclic carbonates synthesis over Cu and Mn peraza macrocyclic complexes. J. Mol. Catal. A:Chem.,2005,226,199-205.
    [24]J.J. Peng, Y.Q. Deng. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic Liquids. New. J. Chem.,2001,25,639-641.
    [25]V. Calo, A. Nacci, A. Monopoli, A. Fanizzi. Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts. Org. Lett.,2002, 4,2561-2563.
    [26]X.B. Lu, X.J. Feng, R. He. Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate Schiff-base complexes as catalyst. Appl. Catal. A:Gen.,2002,234,25-33.
    [27]W.N. Sit, S.M. Ng, K.Y. Kwong, C.P. Lau. Coupling Reactions of CO2 with Neat Epoxides Catalyzed by PPN Salts To Yield Cyclic Carbonates. J. Org. Chem.,2005,70,8583-8586.
    [28]H.W. Jing, S.K. Edulji, J.M. Gibbs, C.L. Stern, H.Y Zhou, S.T. Nguyen. (Salen)Tin Complexes:Syntheses, Characterization, Crystal Structures, and Catalytic Activity in the Formation of Propylene Carbonate from CO2 and Propylene Oxide. Inorg. Chem.,2004,43, 4315-4327
    [29]H.W. Jing, S.T. Nguyen. SnCl4-organic base:Highly efficient catalyst system for coupling reaction of CO2 and epoxides. J. Mol. Catal. A:Chem.,2007,261,12-15.
    [30]T. Chang, H.W. Jing, L.L. Jin, W.Y. Qiu. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides. J. Mol. Catal. A:Chem.,2007,264, 241-247.
    [31]L.L. Jin, Y.Z. Huang, H.W Jing, T. Chang, P. Yan. Chiral catalysts for the asymmetric cycloaddition of carbon dioxide with epoxides. Tetrahedron:Asymmetry.,2008,19,1947-1953.
    [32]A.V. Nikitinskii, L.N. Bochkarev, R.V. Voronin, S.Ya. Khorshev, Yu.A. Kurskii, M.N. Bochkarev. Synthesis of heterobimetallic zinc complexes and their catalytic properties in reactions of CO2 with cyclohexene oxide. Russ. J. Gen. Chem.,2004,74,1194-1196.
    [33]M. North, R. Pasquale. Mechanism of Cyclic Carbonate Synthesis from Epoxides and CO2. Angew. Chem. Int. Ed.,2009,48,2946-2948.
    [34]WJ. Kruper, D.V. Dellar. Catalytic Formation of Cyclic Carbonates from Epoxides and CO2 with Chromium Metalloporphyrinates. J. Org. Chem.,1995,60,725-727.
    [1]W. P, Liang, J. Tang. Green Chemistry-One of the Important Frontier in Chemistry. Progress in chemistry.,2000,12,121-232.
    [2]Y. Yuan, H.B. Ji, Y.X. Chen, Y. Han, X.F. Song, Y.B. She, R.G. Zhong. Oxidation of Cyclohexane to Adipic Acid Using Fe-Porphyrin as a Biomimetic Catalyst. Org. Process Res, Dev.,2004,8,418-420.
    [3]M.M. Halmann, M. Sreinberg. Green House Gas Carbon Dioxide Mitigation:Science and Technology,1999, Boca Taton, FL.
    [4]A. Berkesset, M. Brandenburg. Catalytic Asymmetric Addition of Carbon Dioxide to Propylene Oxide with Unprecedented Enantioselectivity. Org. Lett.,2006,8,4401-4404.
    [5]X.B. Lu, B. Liang, Y.J. Zhang, Y.Z. Tian, Y.M. Wang, C.X. Bai, H. Wang, R. Zhang. Asymmetric Catalysis with CO2:Direct Synthesis of Optically Active Propylene Carbonate from Racemic Epoxides. J. Am. Chem. Soc.,2004,126,3732-3733.
    [6]H.S. Kim, J.J. Kim, H.N. Kwon, M.J. Chung, B.G. Lee, H.G. Jang. Well-Defined Highly Active Heterogeneous Catalyst System for the Coupling Reactions of Carbon Dioxide and Epoxides. J. Catal.,2002,205,226-229.
    [7]F.W. Li, C.G. Xia, L.W. Xu, W. Sun, G.X. Chen. A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides. Chem. Comm.,2003, 2042-2043.
    [8]A. Sudo, K. Kataoka, F. Sanda, T. Endo. Controlled Depolymerization of Poly(5-ethyl-5-phenyl-1,3-dioxan-2-one):Selective Liberation of Cyclic Carbonate Monomer from Polymer Chain End. Macromolecules.,2004,37,251-253.
    [9]D.J. Darensbourg, R.M. Mackiewicz, A.L. Phelps, D.R. Billodeaux. Copolymerization of CO2 and Epoxides Catalyzed by Metal Salen Complexes. Ace. Chem. Res..2004,37,836-844.
    [10]X.B. Lu, X.J. Feng, R. He. Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate Schiff-base complexes as catalyst. Appl. Catal. A:Gen.,2002,234,25-33.
    [11]B. Li, R. Zhang, X.-B. Lu. Stereochemistry Control of the Alternating Copolymerization of CO2 and Propylene Oxide Catalyzed by SalenCrX Complexes. Macromolecules.,2007,40, 2303-2307.
    [12]S. Sujith, J.K. Min, J.E. Seong, S.J. Na, B.Y. Lee. A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization. Angew. Chem. Int. Ed.,2008,47,7306-7609.
    [13]WM. Ren, Z.-W. Liu, Y.-Q. Wen, R. Zhang, X.-B. Lu. Mechanistic Aspects of the Copolymerization of CO2 with Epoxides Using a Thermally Stable Single-Site Cobalt(III) Catalyst. J.Am. Chem. Soc.,2009,131,11509-11518.
    [14]C.-H. Guo, H.-S. Wu, X.-M. Zhang, J.-Y. Song, X. Zhang. A Comprehensive Theoretical Study on the Coupling Reaction Mechanism of Propylene Oxide with Carbon Dioxide Catalyzed by Copper(Ⅰ) Cyanomethyl. J. Phys. Chem. A.,2009,113,6710-6723.
    [15]D.J. Darensbourg, A.I. Moncada. (Salen)Co( Ⅱ)/n-Bu4NX Catalysts for the Coupling of CO2 and Oxetane:Selectivity for Cyclic Carbonate Formation in the Production of Poly-(trimethylene carbonate). Macromolecules.,2009,42,4063-4070.
    [16]J. Melendez, M. North, P. Villuendas. One-component catalysts for cyclic carbonate synthesis. Chem Comm,2009,2577-2579.
    [17]M. North, R. Pasquale. Mechanism of Cyclic Carbonate Synthesis from Epoxides and CO2. Angew. Chem. Int. Ed.,2009,48,2946-2948.
    [18]E.K. Noh, S.J. Na, S. Sujith, S.-W. Kim, B. Y. Two Components in a Molecule:Highly Efficient and Thermally Robust Catalytic System for CO2/Epoxide Copolymerization. Lee. J. Am. Chem. Soc.,2007,129,8082-8083.
    [19]J. S. Sun, L. Liang, J. M. Sun, Y. Q. Jiang, K. F. Lin, X. Z.Xu, R. W. Wang. Direct preparation of styrene carbonates from styrene using an ionic-liquid-based one-pot multistep synthetic process. Catal. Surv. Asia.,2011,15,49-54.
    [20]M. Aresta, E. Quaranta. Direct synthesis of 1,3-benzodioxol-2-one from styrene, dioxygen and carbon dioxide promoted by Rh(Ⅰ). J. Mol. Catal.,1987,41,355-359.
    [21]M. Aresta, A. Dibenedetto, I. Tommasi. Direct synthesis of organic carbonates by oxidative carboxylation of olefins catalyzed by metal oxides:developing green chemistry based on carbon dioxide. Appl. Organomet. Chem.,2000,14,799-802.
    [22]M. Aresta, A. Dibenedetto. Carbon dioxide as building block for the synthesis of organic carbonates Behavior of homogeneous and heterogeneous catalysts in the oxidative carboxylation of olefins. J. Mol. Catal. A:Chem.,2002,182-183,399-409.
    [23]J. M. Sun, S.-I. Fujita, B. M. Bhanage, M. Arai. Direct oxidative carboxylation of styrene to styrene carbonate in the presence of ionic liquids. Catal. Commun.,2004,5,83-87.
    [24]J. M. Sun, S.-I. Fujita, B. M. Bhanage, M. Arai. One-pot synthesis of styrene carbonate from styrene in tetrabutylammonium bromide. Catal. Today.,2004,93-95,383-388.
    [25]J. M. Sun, S.-I. Fujita, F. Zhao, M. Hasegawa, M. Arai. A direct synthesis of styrene carbonate from styrene with the Au/SiO2-ZnBr2/Bu4NBr catalyst system. J. Catal.,2005,230, 398-405.
    [26]Y. L. Wang, J. H. Sun, D. Xiang, L. Wang, J. M. Sun, F.-S. Xiao. A Facile, Direct Synthesis of Styrene Carbonate from Styreneand CO2 Catalyzed by Au/Fe(OH)3-ZnBr2/Bu4NBr System. Catal. Lett.,2009,129,437-443.
    [27]D. Xiang, X. F. Liu, J. S. Sun, F.-S. Xiao, J. M. Sun. A novel route for synthesis of styrene carbonate using styrene and CO2 as substrates over basic resin R201 supported Au catalyst. Catal. Today.,2009,148,383-388.
    [28]N. Eghbali, C.-J. Li. Conversion of carbon dioxide and olefins into cyclic carbonates in water. Green Chem.,2007,9,213-215.
    [29]F. Ono, K. Qiao, D. Tomida, C. Yokoyama. Direct preparation of styrene carbonates from styrene using an ionic-liquid-based one-pot multistep synthetic process. App. Catal. A:Gen.,2007, 333,107-113.
    [30]J.-L. Wang, J.-Q. Wang, L.-N. He, X.-Y. Dou, F. Wu. A CO2/H2O2-tunable reaction:direct conversion of styrene into styrene carbonate catalyzed by sodium phosphotungstate/n-Bu4NBr. Green Chem.,2008,10,1218-1223.
    [31]J. T. Groves, R. Quinn. Aerobic epoxidation of olefins with ruthenium porphyrin catalysts. J. Am, Chem. Soc.,1985,107,5790-5792.
    [32]J. L. Zhang, J. S. Huang, C. M. Che. Oxidation Chemistry of Poly(ethylene glycol)-Supported Carbonylruthenium(Ⅱ) and Dioxoruthenium(Ⅵ) meso-Tetrakis(pentafluorophenyl)porphyrin. Chem. Eur. J.,2006,12,3020-3031.
    [33]T.-S. Lai, R. Zhang, K.-K. Cheung, H.-L. Kwong, C.-M. Che. Aerobic enantioselective alkene epoxidation by a chiral trans-dioxo(D4-porphyrinato)ruthenium(Ⅵ) complex. Chem. Commun.,1998,1583-1584.
    [34]V. Calo, A. Nacci, A.Monopoli, A. Fanizzi. Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts. Org. Lett.,2002, 4,2561-2563.
    [35]A.D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour, L. Korsakoff. A simplified synthesis for meso-tetraphenylporphine. J. Org. Chem.,1967,32,476.
    [36]G. Emma, C. Alessandro, R. Fabio, F. Simone, M. Norberto, S. Angelo, C. Sergio. Structural Determination of Ruthenium-Porphyrin Complexes Relevant to Catalytic Epoxidation of Olefins. Inorg. Chem.,2005,44,2039-2049.
    [37]D. P. Rillema, J. K. Nagle, L. F., Jr. Barringer, T. J. Meyer. Rectifying interfaces using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of ruthenium and iron on electrodes. J. Am. Chem. Soc.,1981,103,56-62.
    [38]C. Ho, W.H. Leung, C. M. Che. Kinetics of C-H Bond and Alkene Oxidation by trans-Dioxoruthenium(ⅵ) Porphyrins. J. Chem. Soc., Dalton Trans.,1991,12,2933-2939.
    [39]Y.S. Niu, W.X. Zhang, H.C. Li, X.S. Chen, J.R. Sun, X.L. Zhuang, X.B. Jing. Carbon dioxide/propylene oxide coupling reaction catalyzed by chromium salen complexes. Polymer., 2009,50,441-446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700