铜、锗纳米材料的合成、性能及器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在金属、半导体纳米材料中,铜、锗纳米材料在电子领域应用中有着举足轻重的作用。在平板显示器、触屏感应手机及电脑等电子产品中,铜纳米线因其与银等高导电材料有近似的导电性,但造价仅是银以及用在平板显示器中最广泛的电极材料——ITO的百分之一,被越来越多的研究学者看作是十分有潜力的下一代电极材料,可以制作成柔性(或可拉伸)导电薄膜应用在柔性(或可拉伸)显示器中。而对于锗纳米材料来说,相比于同族元素的硅而言有较高的载流子迁移率、较大的激子波尔半径,使得锗纳米材料在场效应晶体管应用中可以实现更快的开关和更高频率的器件;在锂离子电池应用中,因具备更大的蓄电容量和更高的电流密度,被认为是最具有潜力的、可替代石墨电极的下一代锂离子电极材料。另外,相对较大的波尔半径(24.3m)赋予了锗纳米材料更为显著的量子限制效应,加上相比于硫化铬等量子点来说,锗量子点呈低毒性,被看作是另一种有潜力的、可用在生物领域作生物标记的材料。因此本论文发展了几种简易、批量的合成方法制备了一些铜、锗纳米材料并分别研究了它们在电学、光学等领域的性能以及应用。
     1)超长Cu纳米线作为可拉伸导电薄膜电极
     为了实现一种柔性(或可拉伸),成本低廉的电子器件,我们采用Cu这种地壳存储量多、廉价、易合成的材料来制取可拉伸、透明导电薄膜以构建柔性电子器件。我们用普通还原法,以Cu(NO3)2为原料,水合肼为还原剂,乙二胺为配体,制备出长度为38±11.2μm的超长Cu纳米线,并制成纳米线薄膜——作为可拉伸电极用在透明薄膜致动器中。经研究发现,我们制得的可拉伸Cu纳米线薄膜电极可以使致动器在外加电压下达到220%的形变,透光率增加44%(从起始的10%T增加到54%T),该形变与前人用碳纳米管做薄膜电极时得到的数值相当,但是透光率增加量却是前人所做的3倍;同时,研究表明该透明致动器显示了良好的形变可逆性,在3.2kV外加电压下,对致动器循环开、关电压150次,其形变一直维持在25%左右,没有逐次递减,同时透光率保持在62±2.2%;另外,该透明致动器有非常快的响应速度,计算表明,在外加电压下,致动器从2.2%的形变增加到20%仅需0.5s,当电压撤掉后致动器恢复仅需0.4s。从而得出致动器的驱动速率为32%s-1,恢复速率为36%s-1,该响应速率与用碳油脂作薄膜电极的致动器数值相当;为了形象的演示这种透明致动器透光率的可调性,我们将该致动器设计成一种电压控制型的光调节器,并且实现了广角度的光强度的逐步调节。研究表明,Cu纳米线光调节器相比于传统的液晶显示器能实现更广角度的透光性。最后,我们证明了纳米线薄膜是通过线与线之间的滑移同时又不断开接触来实现可拉伸性和高度导电性。
     2)低温液相法制取抗氧化Ge纳米线及其电学性能
     由于Ge纳米线有较高的载流子迁移率、较大的激子波尔半径,使得锗纳米材料在场效应晶体管、锂离子电池等领域中越来越受到人们的关注。然而,现阶段合成Ge纳米线的方法还是停留在CVD这种能耗高、设备复杂、产率低的传统制备方法上,尽管越来越多的学者开始将目光转移到液相合成法上,所得到的纳米线质量与产率也不尽人意。更为重要的是,用这些方法得到的纳米线表面通常会有一层难以避免的氧化层,这层氧化层对Ge纳米线在电学领域里的应用是不利的。因此,发展一种简易、批量、能耗低且又能抗氧化的Ge纳米线合成方法显得尤为重要。我们采用GeI4作为原料,以油胺为反应媒介,在相对低温(320℃)的液相体系中合成了表面光滑、尺寸均一的Ge纳米线,其长度为8±1.3μm。由于该纳米线在液相中获得,非常容易分散在正已烷、乙醇等有机溶剂中,十分有利于进一步的器件制备。经分析高分辨透射电镜(HRTEM)和X射线衍射图可知,我们制得的Ge纳米线并没有如前人所报道的那样存在明显的氧化层,即使在空气中存放两周也没有出现明显的氧化层;通过探索不同的反应条件和反应时间、温度以及反应物浓度的影响,发现这些条件对能否形成纳米线至关重要:反应时间低于30分钟或温度低于320℃时,没有纳米线生成;而提高反应物浓度时,得到的产物是类似于棒球杆形状的纳米棒。为了得到更好的电学性能和抗氧化性,我们在Ge纳米线表面镀上了一层Au,通过分析单根纳米线的I-V曲线可知,镀Au之后的Ge纳米线其电学性能得到大大的提高,同时又保持着半导体特性,这很可能有助于Ge纳米线在诸如场效应晶体管、锂离子电池等电学领域的应用。
     3)利用透射电镜观察Ge基纳米材料原位结构变化
     锗材料是一种很容易被氧化,或者说对外界环境很敏感的材料,特别是对于纳米尺度而言,该种现象尤为明显,往往在材料表面形成一层氧化层或者其它结构的壳层,这层壳层会大大降低材料在器件中的性质,为了了解Ge基材料受外界环境影响时其结构的变化情况,我们利用透射电镜观察Ge基纳米材料的原位结构变化。我们以金属Ge粉为原料,用热氧化法制备了无定形GeO纳米球并在透射电子显微镜产生的电子束辐照下,观察到所合成的GeO纳米球向GeO/(Ge, GeO2)核壳纳米结构,进一步向Ge空心纳米球原位变化的过程。在开始阶段,GeO纳米球逐渐分解为Ge和Ge02复合结构,形成GeO/(Ge, GeO2)核壳纳米结构,当GeO分解完全后,形成均匀的(Ge, GeO2)复合纳米球;在电子束的进一步辐照下,由于Ge02的沸点相对于Ge的低很多,Ge02便从(Ge, GeO2)复合纳米球中挥发出来,Ge被留在球体中,并在表面形成了许多毛刺,当Ge02完全从(Ge, GeO2)复合纳米球中挥发出来后,形成了Ge多晶空心纳米球。这种Ge材料特殊的原位结构变化是第一次报道,这种现象使我们进一步了解Ge材料受到外界条件影响时的变化过程,对于我们理解如Ge纳米线表面通常都会有许多不规则的氧化层或其它壳层是非常有帮助的。此外,该研究进一步证明了透射电子显微镜中的电子束也是一种可以合成或操纵纳米结构非常有用的工具,特别对于那些不能用传统化学和物理方法合成的复杂结构而言更为有利。
     4)一步法水相条件下制备Ge纳米晶及其光学性能
     Ge因其较大的激子波尔半径有更为显著的量子限制效应,已被证明有荧光性能,适合用作生物标记。又因Ge纳米晶相对于Ⅱ-Ⅵ、Ⅲ-V族量子点呈低毒性,越来越多的研究学者开始关注Ge纳米晶的合成以及其性能的探索。Boyle与他的合作者将Ge纳米晶用二硝基苯基配体功能化,变成水溶性,能显示较弱的荧光,并证明了其用在RBL-2H3细胞中作生物标记显示低毒性。不过现阶段的合成方法中,合成条件均需要高温并且都用到有毒的Ge前驱体,通常这会带来较高的合成成本,另外,实验中用到的高毒性的有机溶剂也非常有害于人体健康,同时还污染环境。因此发展一种安全、简单、成本低廉、高产、通用且副产物少、对环境友好的Ge纳米晶的绿色合成方法迫在眉睫。我们首次利用了一种简单、方便且环境友好的方法在较低的温度下(60℃),以无毒的Ge02为锗源,在水溶液中合成了高产量、尺寸在3nm左右的Ge纳米晶并探索了其生长机理。经研究发现,在整个合成过程中Ge纳米晶表面并没有明显的氧化现象。良好的分散性与结晶度有可能是在透射电镜下,长时间的电子束辐照所致;通过探索PH值、反应时间、反应温度以及表面活性剂对Ge纳米晶形貌的影响,发现当溶液的PH值为5时,不能形成单个的Ge纳米晶;PH为11时,Ge纳米晶的尺寸增大到6-8nm;温度低于60℃时(如,室温条件下),合成过程中没有生成物出现;采用其它表面活性剂如CTAB, SDS, PEO-PPO-PEO时,并没有观察到Ge纳米晶的生成。因此,要获得尺寸均一、分散性较好的Ge纳米晶,其最佳合成条件为:反应温度为60℃,PH为7,反应时间为3小时。分析荧光光谱可知,当用370nm的光激发纳米晶时可以看到该纳米晶在426nm处产生较强的发射峰,这很有可能是由于Ge纳米晶的小尺寸引起的量子限制效应所致。相对于以前的研究而言,这种方法是用无毒前驱体在大气环境中合成,符合绿色化学的理念,即安全,简单、成本低廉,高产,副产品较少,环境友好,低能源消耗。
Copper (Cu) and Germanium (Ge) nanomaterials play important roles in electronic applications among all metal and semiconductor materials. Cu nanowire has been considered as another promissing candidate for transparent electrodes utilized in flat panel displays, touch screens etc. due to its high conductivity and optical transmittance, large earth abundance and low cost (1000times more abundant than indium or silver but100times less expensive). For Ge materials, several advantages, e.g. larger higher intrinsic carriers and larger excitonic Bohr radius over Si materials make it easier to realize on/off current ratio faster switching and higher frequency devices in field effect transistor and a promising candidate for graphite used in Lithium ion battery, which exhibit higher Li storage capacity and high power density. In addition, Ge nanocrystals exhibit more prominent quantum confinement effects derived from its larger Bohr radius, moreover Ge materials are relatively nontoxic compared with Ⅱ-Ⅵ、Ⅲ-Ⅴ quantum dots used as diagnostic and therapeutic agents and would be another promising biologic label.
     1) Ultra long Cu nanowires as stretchable electrodes
     Ultra long Cu nanowires with length of38±11.2μm were synthesized by using Cu(NO3)2as the Cu precursor, hydrazine as the reductant and EDA as the capping agent through redox method and were made into a transparent stretchable electrode for transparent actuator. Cu nanowires based actuator could be actuated to a maximum area strain of220%and a transmittance of54%. During actuation, the transmittance of the nanowires network increased3.5times, from13%to58%, which could be tuned over a range three times that of carbon nanotube networks. Repetitive cycling of the actuator to an area strain of25%over150times was demonstrated. Moreover, the actuator performs fast response, which took0.5seconds to increase from an area strain of2.2%to20%under an applied voltage, and0.4seconds for the actuator to relax once the voltage was withdrawn. This corresponds to a rate of actuation of32%s-1for increasing strain, and36%s-1for decreasing strain. This response rate is comparable to that of VHB films actuated with carbon grease electrodes. The ability to electrically tune the transmittance of the actuators over a range of up to44%enable the actuator used as a light valve with a widely tunable transmittance across a broader range of optical transmittance. At last we demonstrated that reversible sliding nanowires network allows the actuator with reversible stretchability and high conductivity.
     2) One-step synthesis of oxidation resistant Ge nanowires and electrical property
     Ge nanowires have attracted more and more attentions in terms of field effect transistor and Lithium ion battery due to its higher intrinsic carriers and larger excitonic Bohr radius. Chemical vapor deposition (CVD) based on vapor-liquid-solid (VLS) mechanism has been adopted as an effective way to prepare highly crystalized Ge nanowire. However, low yield and high energy consumption are still its weak points which could not be taken as an idea way for commercial production. Last but not least, usually there is an inevitable layer of oxidate on the surface of CVD synthesized Ge nanowire, which will limit its applications in electronics. Therefore, developing a robust, large-scale and low energy consumption routine to synthesize oxidation resistant Ge nanowires is of fundamental importance. We use GeI4dissolved in oleyamine as the Ge precursor, thermal decomposing at320℃to synthesize Ge nanowires with smooth surface and uniform length (8±1.3μm). Solution synthesized nanowires are easily dispersed in hexane, ethanol etc. organic solvent, which make the fabrication of electronic devices easier. From the observation of HRTEM and X-ray diffraction, there is not obvious oxidate layer even after exploded in the air for two weeks. We explore the reaction parameters and found out that the reaction time, temperature and the concentration of precursor play key roles in the formation of Ge nanowires. No nanowires were observed when the reaction time is lower than30min or the temperature lower than320℃, and low concentration of the precursor will bring baseball club-like nanorods. In order to obtain nanowires with higher conductivity, we coated a layer of Au on the surface of the as-synthesized Ge nanowires. By measuring the conductivity of single nanowire, the Au coated one performs better but remains semiconduct. The Au-coated Ge nanowires would be potentially used in field effect transistor and Lithium ion battery.
     3) In situ structural evolution of Ge based materials under TEM
     Ge materials easily forms unstable oxides on the surfaces and are sensitive to ambitious environment, especially for the materials on nanoscale. Usually there is an inevitable layer of oxidate on the surface of CVD synthesized Ge nanowire, which will limit its applications in electronics. Motivated by this property of Ge materials, we use TEM to study the in situ structural evolution of Ge based materials in hope of unveiling how this material responded to the variation of ambitious environment. We found that Ge based materials are also sensitive to electron beam irradiation (EBI). We synthesized amorphous GeO spherical nanoparticles via a simple thermal oxidation of Ge powder and observe it under the electron beam irradiation derived from TEM. At the beginning stage, the amorphous GeO nanospheres under the EBI undergoes a reduction oxidation (or disproportionation:2GeO→GeO2+Ge) reaction gradually from the surface to the centre of the nanoshpere, producing a Ge and GeO2composite on the surface domain, forming a GeO/(Ge, GeO2) core-shell nanoparticle. With further irradiation, the interface between the GeO core and (Ge, GeO2) shell becomes blurry, forming a homogeneous (Ge, GeO2) composite nanosphere once the GeO decomposed completely. Owing to the lower boiling point of GeO2, GeO2began to evaporate from (Ge, GeO2) composite nanosphere, forming many fine channels or glochids around the surface while leaving Ge in the nanospheres. After the GeO2evaporated thoroughly, there are a large amount of intercrystallite spaces present in these spheres, contained in plenty of Ge nanocrystallites, which would aggregate to be compact under prolonged heating by EB. Correspondingly, the intercrystallite spaces are supposed to combine into a single void. Moreover, based on the Ostwald ripening mechanism, the Ge nanocrystallites located in the inner part of the spheres are likely to diffuse into those in the outer parts, leaving a spacious void in the centre, as a result, polycrystalline hollow Ge nanospheres were formed. This study has further proved that the electron beam inside TEM is a powerfully useful tool for the fabrication and manipulation of nanostructures.
     4) One-step aqueous solution synthesis of Ge nanocrystals
     Germanium (Ge) nanocrystals (NCs) have attracted much attention owing to its larger excitonic Bohr radius than Si, which will exhibit more prominent quantum confinement effects. Free-standing Ge NCs are relatively nontoxic compared with Ⅱ-Ⅵ、Ⅲ-Ⅴ quantum dots. Combined with their photoluminescence properties, Ge NCs with surface-modification have been proven to act as biological labels in biological applications Boyle et al. prepared the carboxyfluorescein (CF)-labeled dinitrophenyl (DNP)-functionalized Ge NCs which shows photoluminescence (PL) property and are proved sufficiently nontoxic to serve as biomarkers for cell signaling in RBL-2H3cells in vitro. So far, considerable efforts have been devoted to synthesis of Ge NCs, but those methods rely on high temperatures and toxic precursors, which will bring greater pollution to our living circumstances. So, a green synthetic route, which is safe, simple, inexpensive, reproducible, with few by-products, and user environment friendly to Ge NCs remains a challenge. We developed a facile, one-step routine useing GeO2as the precursor to synthesize Ge NCs at60℃in aqueous solution under an ambient atmosphere and explored its growth mechanism. The as-synthesized Ge NCs are around3nm in diameter and there is on oxidation observed during the whole process. Good monodispersity with high crystallinity may result from long time electron beam irradiation. By exploring the effect of PH, the reaction time and temperature, we found out that no mono-disperse Ge NCs formed when PH is5but larger diameter (6-8nm) when PH is11. And no Ge NCs were observed when the temperature is lower than60℃or other surfactants used (i.e. CTAB, SDS, PEO-PPO-PEO). It was found that the most suitable reaction conditions for the Ge NCs forming are60℃,3hours and PH=7. The emission spectrum shows a relatively narrow region of intensive luminescence with a peak centered at426nm, with excitation at370nm (dashed curve), which is attributed to the quantum confinement effects of very small sized Ge NCs. Our research meets the growing requirements of green chemistry, i.e., safe, simple, inexpensive, reproducible, few by-products, user environment friendly and low energy consumption.
引文
[1]Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T., A rubberlike stretchable active matrix using elastic conductors. Science 2008,321 (5895),1468-1472.
    [2]Kim, D.-H.; Ahn, J.-H.; Choi, W. M.; Kim, H.-S.; Kim, T.-H.; Song, J.; Huang, Y. Y.; Liu, Z.; Lu, C.; Rogers, J. A., Stretchable and foldable silicon integrated circuits. Science 2008,320 (5875),507-511.
    [3]Kim, D.-H.; Song, J.; Choi, W. M.; Kim, H.-S.; Kim, R.-H.; Liu, Z.; Huang, Y. Y.; Hwang, K.-C.; Zhang, Y.-w.; Rogers, J. A., Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proceedings of the National Academy of Sciences of the United States of America 2008,105 (48),18675-18680.
    [4]Rogers, J. A.; Someya, T.; Huang, Y, Materials and mechanics for stretchable electronics. Science 2010,327 (5973),1603-1607.
    [5]Ko, H. C.; Stoykovich, M. P.; Song, J.; Malyarchuk, V.; Choi, W. M.; Yu, C.-J.; Geddes, J. B.; Xiao, J.; Wang, S.; Huang, Y.; Rogers, J. A., A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008,454 (7205), 748-753.
    [6]Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T., Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proceedings of the National Academy of Sciences of the United States of America 2005,102 (35),12321-12325.
    [7]Aliev, A. E.; Oh, J.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N.; Zhang, M.; Zakhidov, A. A.; Baughman, R. H., Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 2009,323 (5921),1575-1578.
    [8]Wang, X.; Zhi, L.; Muellen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters 2008,8 (1),323-327.
    [9]Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009,457 (7230),706-710.
    [10]Park, S. I.; Xiong, Y J.; Kim, R. H.; Elvikis, P.; Meitl, M.; Kim, D. H.; Wu, J.; Yoon, J.; Yu, C. J.; Liu, Z. J.; Huang, Y. G.; Hwang, K.; Ferreira, P.; Li, X. L.; Choquette, K.; Rogers, J. A., Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009,325 (5943),977-981.
    [11]Rathmell, A. R.; Bergin, S. M.; Hua, Y.-L.; Li, Z.-Y.; Wiley, B. J., The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Advanced Materials 2010,22 (32),3558-3563.
    [12]Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009,457 (7230),706-710.
    [13]Belenkova, T. L.; Rimmerman, D.; Mentovich, E.; Gilon, H.; Hendler, N.; Richter, S.; Markovich, G., UV induced formation of transparent Au-Ag nanowire mesh film for repairable OLED devices. Journal of Materials Chemistry 2012,22 (45),24042-24047.
    [14]Pelrine, R.; Kornbluh, R.; Joseph, J.; Heydt, R.; Pei, Q. B.; Chiba, S., High-field deformation of elastomeric dielectrics for actuators. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2000,11(2),89-100.
    [15]Yu, Z.; Yuan, W.; Brochu, P.; Chen, B.; Liu, Z.; Pei, Q., Large-strain, rigid-to-rigid deformation of bistable electroactive polymers. Applied Physics Letters 2009,95 (19),192904.
    [16]Shin, M. K.; Oh, J.; Lima, M.; Kozlov, M. E.; Kim, S. J.; Baughman, R. H., Elastomeric conductive composites based on carbon nanotube forests. Advanced Materials 2010,22 (24),2663-2667.
    [17]Zhang, Y; Sheehan, C. J.; Zhai, J.; Zou, G.; Luo, H.; Xiong, J.; Zhu, Y. T.; Jia, Q. X., Polymer-embedded carbon nanotube ribbons for stretchable conductors. Advanced Materials 2010,22 (28),3027-3031.
    [18]Kim, K. H.; Vural, M.; Islam, M. F., Single-walled carbon nanotube aerogel-based elastic conductors. Advanced Materials 2011,23 (25),2865-2869.
    [19]Liu, K.; Sun, Y.; Liu, P.; Lin, X.; Fan, S.; Jiang, K., Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Advanced Functional Materials 2011,21 (14),2721-2728.
    [20]Xu, F.; Wang, X.; Zhu, Y.; Zhu, Y, Wavy ribbons of carbon nanotubes for stretchable conductors. Advanced Functional Materials 2012,22 (6),1279-1283.
    [21]Zhu, Y; Xu, F., Buckling of aligned carbon nanotubes as stretchable conductors: A new manufacturing strategy. Advanced Materials 2012,24 (8),1073-1077.
    [22]Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. R.; Rinzler, A. G., Transparent, conductive carbon nanotube films. Science 2004,305 (5688),1273-1276.
    [23]Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H., Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005,309 (5738),1215-1219.
    [24]Tenent, R. C.; Barnes, T. M.; Bergeson, J. D.; Ferguson, A. J.; To, B.; Gedvilas, L. M.; Heben, M. J.; Blackburn, J. L., Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Advanced Materials 2009,21 (31),3210-3214.
    [25]Blackburn, J. L.; Barnes, T. M.; Beard, M. C.; Kim, Y.-H.; Tenent, R. C.; McDonald, T. J.; To, B.; Coutts, T. J.; Heben, M. J., Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. Acs Nano 2008,2 (6),1266-1274.
    [26]Eda, G.;.Fanchini, G.; Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology 2008,3 (5),270-274.
    [27]Moon, I. K.; Kim, J. I.; Lee, H.; Hur, K.; Kim, W. C.; Lee, H.,2D Graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Scientific Reports 2013,3.
    [28]Yao, H.-B.; Huang, G.; Cui, C.-H.; Wang, X.-H.; Yu, S.-H., Macroscale elastomeric conductors generated from hydrothermally synthesized metal-polymer hybrid nanocable sponges. Advanced Materials 2011,23 (32),3643-3647.
    [29]Lee, J.-Y; Connor, S. T.; Cui, Y; Peumans, P., Solution-processed metal nanowire mesh transparent electrodes. Nano Letters 2008,8 (2),689-692.
    [30]Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology 2011,6 (12),788-792.
    [31]Kim, D. H.; Xiao, J. L.; Song, J. Z.; Huang, Y. G.; Rogers, J. A., Stretchable, curvilinear electronics based on inorganic materials. Advanced Materials 2010,22 (19),2108-2124.
    [32]Jiang, H.; Khang, D.-Y.; Song, J.; Sun, Y.; Huang, Y; Rogers, J. A., Finite deformation mechanics in buckled thin films on compliant supports. Proceedings of the National Academy of Sciences of the United States of America 2007,104 (40), 15607-15612.
    [33]Khang, D. Y.; Xiao, J. L.; Kocabas, C.; MacLaren, S.; Banks, T.; Jiang, H. Q.; Huang, Y. Y. G.; Rogers, J. A., Molecular scale buckling mechanics on individual aligned single-wall carbon nanotubes on elastomeric substrates. Nano Letters 2008,8 (1),124-130.
    [34]Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y., Scalable coating and properties of transparent, flexible, silver nanowire electrodes. Acs Nano 2010,4 (5), 2955-2963.
    [35]Tokuno, T.; Nogi, M.; Jiu, J.; Suganuma, K., Hybrid transparent electrodes of silver nanowires and carbon nanotubes:a low-temperature solution process. Nanoscale Research Letters 2012,7,1-7.
    [36]Gu, G.; Schmid, M.; Chiu, P. W.; Minett, A.; Fraysse, J.; Kim, G. T.; Roth, S.; Kozlov, M.; Munoz, E.; Baughman, R. H., V2O5 nanofibre sheet actuators. Nature Materials 2003,2 (5),316-319.
    [37]Woo, H.-S.; Hwang, I.-S.; Na, C. W.; Kim, S.-J.; Choi, J.-K.; Lee, J.-S.; Choi, J.; Kim, G.-T.; Lee, J.-H., Simple fabrication of transparent flexible devices using SnO2 nanowires and their optoelectronic properties. Materials Letters 2012,68,60-63.
    [38]Wang, W.; Zhao, Q.; Li, H.; Wu, H.; Zou, D.; Yu, D., Transparent, double-sided, ITO-free, flexible dye-sensitized solar cells based on metal wire/ZnO nanowire arrays. Advanced Functional Materials 2012,22 (13),2775-2782.
    [39]Stubhan, T.; Krantz, J.; Li, N.; Guo, F.; Litzov, I.; Steidl, M.; Richter, M.; Matt, G. J.; Brabec, C. J., High fill factor polymer solar cells comprising a transparent, low temperature solution processed doped metal oxide/metal nanowire composite electrode. Solar Energy Materials and Solar Cells 2012,707,248-251.
    [40]Rathmell, A. R.; Minh, N.; Chi, M.; Wiley, B. J., Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Letters 2012,12 (6),3193-3199.
    [41]Sepulveda-Mora, S. B.; Cloutier, S. G., Figures of merit for high-performance transparent electrodes using dip-coated silver nanowire networks. Journal of Nanomaterials 2012,1-7.
    [42]Jiu, J.; Tokuno, T.; Nogi, M.; Suganuma, K., Synthesis and application of Ag nanowires via a trace salt assisted hydrothermal process. Journal of Nanoparticle Research 2012,14 (7),1-11.
    [43]Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Advanced Materials 2012,24 (25),3326-3332.
    [44]Yang, L; Zhang, T.; Zhou, H.; Price, S. C.; Wiley, B. J.; You, W., Solution-processed flexible polymer solar cells with silver nanowire electrodes. Acs Applied Materials & Interfaces 2011,3 (10),4075-4084.
    [45]Yu, Z.; Li, L.; Zhang, Q.; Hu, W.; Pei, Q., Silver Nanowire-Polymer Composite Electrodes for Efficient Polymer Solar Cells. Advanced Materials 2011,23 (38), 4453-4457.
    [46]Lim, J.-W.; Cho, D.-Y.; Jihoon, K.; Na, S.-I.; Kim, H.-K., Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells. Solar Energy Materials and Solar Cells 2012,707,348-354.
    [47]Chen, T.-G.; Huang, B.-Y.; Liu, H.-W.; Huang, Y.-Y.; Pan, H.-T.; Meng, H.-F.; Yu, P., Flexible silver nanowire meshes for high-efficiency microtextured organic-silicon Hybrid Photovoltaics. Acs Applied Materials & Interfaces 2012,4 (12),6856-6863.
    [48]Li, L.; Yu, Z.; Hu, W.; Chang, C.-h.; Chen, Q.; Pei, Q., Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. Advanced Materials 2011,23 (46),5563-5567.
    [49]Celle, C.; Mayousse, C.; Moreau, E.; Basti, H.; Carella, A.; Simonato, J.-P., Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Research 2012,5 (6),427-433.
    [50]Yun, S.; Niu, X.; Yu, Z.; Hu, W.; Brochu, P.; Pei, Q., Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. Advanced Materials 2012,24 (10),1321-1327.
    [51]Xu, F.; Zhu, Y, Highly Conductive and Stretchable silver Nanowire Conductors. Advanced Materials 2012,24 (37),5117-5122.
    [52]Hu, W.; Niu, X.; Li, L.; Yun, S.; Yu, Z.; Pei, Q., Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. Nanotechnology 2012,23 (34),1-9.
    [53]Hu, M.; Gao, J.; Dong, Y.; Li, K.; Shan, G.; Yang, S.; Li, R. K.-Y, Flexible Transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 2012,28 (18),7101-7106.
    [54]Garnett, E. C.; Cai, W.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L., Self-limited plasmonic welding of silver nanowire junctions. Nature Materials 2012,11(3),241-249.
    [55]Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S. S.; Ko, S. H., Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012,4 (20),6408-6414.
    [56]Jiu, J.; Nogi, M.; Sugahara, T.; Tokuno, T.; Araki, T.; Komoda, N.; Suganuma, K.; Uchida, H.; Shinozaki, K., Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. Journal of Materials Chemistry 2012,22 (44),23561-23567.
    [57]Coskun, S.; Ates, E. S.; Unalan, H. E., Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 2013,24 (12),1-9.
    [58]Choi, D. Y.; Kang, H. W.; Sung, H. J.; Kim, S. S., Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 2013,5 (3),977-983.
    [59]Ahn, Y.; Jeong, Y.; Lee, Y., Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced Graphene Oxide. Acs Applied Materials & Interfaces 2012,4(12),6410-6414.
    [60]Zhu, R.; Chung, C.-H.; Cha, K. C.; Yang, W.; Zheng, Y. B.; Zhou, H.; Song, T.-B.; Chen, C.-C.; Weiss, P. S.; Li, G.; Yang, Y., Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. Acs Nano 2011, 5(12),9877-9882.
    [61]Rathmell, A. R.; Wiley, B. J., The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Advanced Materials 2011,23 (41),4798-4803.
    [62]Wu, H.; Hu, L.; Rowell, M. W.; Kong, D.; Cha, J. J.; McDonough, J. R.; Zhu, J.; Yang, Y.; McGehee, M. D.; Cui, Y., Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Letters 2010,10 (10),4242-4248.
    [63]Zhang, D.; Wang, R.; Wen, M.; Weng, D.; Cui, X.; Sun, J.; Li, H.; Lu, Y., Synthesis of ultralong copper nanowires for high-performance transparent electrodes. Journal of the American Chemical Society 2012,134 (35),14283-14286.
    [64]Zhao, Y.; Zhang, Y.; Li, Y.; He, Z.; Yan, Z., Rapid and large-scale synthesis of Cu nanowires via a continuous flow solvothermal process and its application in dye-sensitized solar cells (DSSCs). Rsc Advances 2012,2 (30),11544-11551.
    [65]Kholmanov, I. N.; Domingues, S. H.; Chou, H.; Wang, X.; Tan, C.; Kim, J.-Y.; Li, H.; Piner, R.; Zarbin, A. J. G.; Ruoff, R. S., Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. Acs Nano 2013,7 (2), 1811-1816.
    [66]Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996,271 (5251),933-937.
    [67]Greytak, A. B.; Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M., Growth and transport properties of complementary germanium nanowire field-effect transistors. Applied Physics Letters 2004,84 (21),4176-4178.
    [68]Pei, L. Z.; Cai, Z. Y., A review on germanium nanowires. Recent Patents on Nanotechnology 2012,6 (1),44-59.
    [69]Musin, I. R.; Filler, M. A., Chemical control of semiconductor nanowire kinking and superstructure. Nano Letters 2012,12 (7),3363-3368.
    [70]Li, X.; Meng, G.; Qin, S.; Xu, Q.; Chu, Z.; Zhu, X.; Kong, M.; Li, A.-P., Nanochannel-Directed Growth of Multi-Segment Nanowire Heterojunctions of Metallic Aul-xGex and Semiconducting Ge. Acs Nano 2012,6 (1),831-836.
    [71]Yang, H.-J.; Tuan, H.-Y, High-yield, high-throughput synthesis of germanium nanowires by metal-organic chemical vapor deposition and their functionalization and applications. Journal of Materials Chemistry 2012,22 (5),2215-2225.
    [72]Wang, D. W.; Dai, H. J., Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition. Angewandte Chemie-International Edition 2002,41 (24),4783-4786.
    [73]Zeiner, C.; Lugstein, A.; Burchhart, T.; Pongratz, P.; Connell, J. G.; Lauhon, L. J.; Bertagnolli, E., Atypical self-activation of Ga dopant for Ge nanowire devices. Nano Letters 2011,11 (8),3108-3112.
    [74]Sierra-Sastre, Y.; Dayeh, S. A.; Picraux, S. T.; Batt, C. A., Epitaxy of Ge nanowires grown from biotemplated Au nanoparticle catalysts. Acs Nano 2010,4 (2), 1209-1217.
    [75]Zhang, S. X.; Hemesath, E. R.; Perea, D. E.; Wijaya, E.; Lensch-Falk, J. L.; Lauhon, L. J., Relative influence of surface states and bulk impurities on the electrical properties of Ge nanowires. Nano Letters 2009,9 (9),3268-3274.
    [76]Chan, C. K.; Zhang, X. F.; Cui, Y, High capacity Li ion battery anodes using Ge nanowires. Nano Letters 2008,8 (1),307-309.
    [77]Li, X.; Meng, G.; Xu, Q.; Kong, M.; Zhu, X.; Chu, Z.; Li, A.-P., Controlled synthesis of germanium nanowires and nanotubes with variable morphologies and sizes. Nano Letters 2011,11 (4),1704-1709.
    [78]Schmidt, V.; Goesele, U., How nanowires grow. Science 2007,316 (5825), 698-699.
    [79]Hanrath, T.; Korgel, B. A., Nucleation and growth of germanium nanowires seeded by organic monolayer-coated Gold nanocrystals. Journal of the American Chemical Society 2002,124(7),1424-1429.
    [80]Song, M. S.; Jung, J. H.; Kim, Y.; Wang, Y.; Zou, J.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C., Vertically standing Ge nanowires on GaAs(110) substrates. Nanotechnology 2008,19(12),1-6.
    [81]Kim, Y.; Song, M. S.; Kim, Y. D.; Jung, J. H.; Gao, Q.; Tan, H. H.; Jagadish, C., Epitaxial germanium nanowires on GaAs grown by chemical vapor deposition. Journal of the Korean Physical Society 2007,51(1),120-124.
    [82]Dailey, J. W.; Taraci, J.; Clement, T.; Smith, D. J.; Drucker, J.; Picraux, S. T., Vapor-liquid-solid growth of germanium nanostructures on silicon. Journal of Applied Physics 2004,96 (12),7556-7567.
    [83]Kang, K.; Kim, D. A.; Lee, H.-S.; Kim, C.-J.; Yang, J.-E.; Jo, M.-H., Low-temperature deterministic growth of Ge nanowires using Cu solid catalysts. Advanced Materials 2008,20 (24),4684-4688.
    [84]Tuan, H.-Y.; Lee, D. C.; Hanrath, T.; Korgel, B. A., germanium nanowire synthesis:An example of solid-phase seeded growth with nickel nanocrystals. Chemistry of Materials 2005,17 (23),5705-5711.
    [85]Morales, A. M.; Lieber, C. M., A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998,279 (5348),208-211.
    [86]Zhang, Y. F.; Tang, Y. H.; Wang, N.; Lee, C. S.; Bello, I.; Lee, S. T., Germanium nanowires sheathed with an oxide layer. Physical Review B 2000,61 (7),4518-4521.
    [87]Audoit, G.; Kulkarni, J. S.; Morris, M. A.; Holmes, J. D., Size dependent thermal properties of embedded crystalline germanium nanowires. Journal of Materials Chemistry 2007,17(16),1608-1613.
    [88]Han, W. Q.; Wu, L. J.; Zhu, Y. M.; Strongin, M., In-situ formation of ultrathin Ge nanobelts bonded with nanotubes. Nano Letters 2005,5 (7),1419-1422.
    [89]Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society 1993,115 (19),8706-8715.
    [90]Heath, J. R.; Legoues, F. K., A liquid solution synthesis of single-crystal germanium quantum wires. Chemical Physics Letters 1993,208 (3-4),263-268.
    [91]Chockla, A. M.; Korgel, B. A., Seeded germanium nanowire synthesis in solution. Journal of Materials Chemistry 2009,19 (7),996-1001.
    [92]Lu, X. M.; Fanfair, D. D.; Johnston, K. P.; Korgel, B. A., High yield solution-liquid-solid synthesis of germanium nanowires. Journal of the American Chemical Society 2005,127(45),15718-15719.
    [93]Ge, M.; Liu, J. F.; Wu, H.; Yao, C.; Zeng, Y.; Fu, Z. D.; Zhang, S. L.; Jiang, J. Z., Synthesis of germanium nanowires. Journal of Physical Chemistry C 2007,111(30), 11157-11160.
    [94]Pei, L. Z.; Zhao, H. S.; Tan, W.; Yu, H. Y.; Chen, Y. W.; Wang, J. P.; Fan, C. G.; Chen, J.; Zhang, Q.-F., Low temperature growth of single crystalline germanium nanowires. Materials Research Bulletin 2010,45 (2),153-158.
    [95]Pei, L. Z.; Zhao, H. S.; Tan, W.; Yu, H. Y.; Chen, Y. W.; Fan, C. G.; Zhang, Q.-F., Smooth germanium nanowires prepared by a hydrothermal deposition process. Materials Characterization 2009,60 (11),1400-1405.
    [96]Lin, L. W.; Tang, Y. H.; Chen, C. S.; Xu, H. F., Self-assembled single crystal germanium nanowires arrays under supercritical hydrothermal conditions. Crystengcomm 2010,12 (10),2975-2981.
    [97]Smith, D. A.; Holmberg, V. C.; Rasch, M. R.; Korgel, B. A., Optical properties of solvent-dispersed and polymer-embedded germanium nanowires. The Journal of Physical Chemistry C 2010,114 (49),20983-20989.
    [98]Drinek, V.; Subrt, J.; Klementova, M.; Fajgar, R., Chemical route for Si/C coated germanium nanowires. Journal of Analytical and Applied Pyrolysis 2010,89(2), 255-260.
    [99]Adhikari, H.; Mclntyre, P. C.; Sun, S. Y.; Pianetta, P.; Chidsey, C. E. D., Photoemission studies of passivation of germanium nanowires. Applied Physics Letters 2005,87 (26),263109.
    [100]Collins, G.; Fleming, P.; O'Dwyer, C.; Morris, M. A.; Holmes, J. D., Organic functionalization of germanium nanowires using arenediazonium salts. Chemistr & of Materials 2011,23 (7),1883-1891.
    [101]Wang, D.; Dai, H., Germanium nanowires:from synthesis, surface chemistry, and assembly to devices. Applied Physics a-Materials Science & Processing 2006,85 (3),217-225.
    [102]Wang, D. W.; Wang, Q.; Javey, A.; Tu, R.; Dai, H. J.; Kim, H.; Mclntyre, P. C.; Krishnamohan, T.; Saraswat, K. C., Germanium nanowire field-effect transistors with SiO2 and high-kappa HfO2 gate dielectrics. Applied Physics Letters 2003,83 (12), 2432-2434.
    [103]Erts, D.; Polyakov, B.; Dalyt, B.; Morris, M. A.; Ellingboe, S.; Boland, J.; Holmes, J. D., High density germanium nanowire assemblies:Contact challenges and electrical characterization. Journal of Physical Chemistry B 2006,110 (2),820-826.
    [104]Ziegler, K. J.; Polyakov, B.; Kulkarni, J. S.; Crowley, T. A.; Ryan, K. M.; Morris, M. A.; Erts, D.; Holmes, J. D., Conductive films of ordered nanowire arrays. Journal of Materials Chemistry 2004,14 (4),585-589.
    [105]Lauhon, L. J.; Gudiksen, M. S.; Wang, C. L.; Lieber, C. M., Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002,420 (6911),57-61.
    [106]Chan, C. K.; Peng, H.; Liu, G.; Mcllwrath, K.; Zhang, X. P.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology 2008,3 (1),31-35.
    [107]Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J., Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy & Environmental Science 2009,2 (8),818-837.
    [108]Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Solution-grown germanium nanowire anodes for lithium-ion batteries. Acs Applied Materials & Interfaces 2012,4 (9),4658-4664.
    [109]Seo, M.-H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J., High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy & Environmental Science 2011,4 (2),425-428.
    [110]Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V., Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews 2010,110 (1),389-458.
    [111]Wang, Y.; Herron, N., Nanometer-sized semiconductor clusters-materials synthesis, quantum size effects, and photophysical properties. Journal of Physical Chemistry 1991,95 (2),525-532.
    [112]Canham, L. T., Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Applied Physics Letters 1990,57 (10),1046-1048.
    [113]Taylor, B. R.; Kauzlarich, S. M.; Lee, H. W. H.; Delgado, G. R., Solution synthesis of germanium nanocrystals demonstrating quantum confinement. Chemistry of Materials 1998,10 (1),22-24.
    [114]Taylor, B. R.; Kauzlarich, S. M.; Delgado, G. R.; Lee, H. W. H., Solution synthesis and characterization of quantum confined Ge nanoparticles. Chemistry of Materials 1999,11 (9),2493-2500.
    [115]Yang, C. S.; Kauzlarich, S. M.; Wang, Y. C., Synthesis and characterization of germanium/Si-alkyl and germanium/silica core-shell quantum dots. Chemistry of Materials 1999,11 (12),3666-3670.
    [116]Ma, X.; Wu, F.; Kauzlarich, S. M., Alkyl-terminated crystalline Ge nanoparticles prepared from NaGe:Synthesis, functionalization and optical properties. Journal of Solid State Chemistry 2008,181 (7),1628-1633.
    [117]Gerung, H.; Bunge, S. D.; Boyle, T. J.; Brinker, C. J.; Han, S. M., Anhydrous solution synthesis of germanium nanocrystals from the germanium(II) precursor Ge (N(SiMe3)2)2. Chemical Communications 2005, (14),1914-1916.
    [118]Wilcoxon, J. P.; Provencio, P. P.; Samara, G. A., Synthesis and optical properties of colloidal germanium nanocrystals. Physical Review B 2001,64 (3),035417.
    [119]Wang, W. Z.; Poudel, B.; Huang, J. Y.; Wang, D. Z.; Kunwar, S.; Ren, Z. P., Synthesis of gram-scale germanium nanocrystals by a low-temperature inverse micelle solvothermal route. Nanotechnology 2005,16 (8),1126-1129.
    [120]Wang, W. Z.; Huang, J. Y.; Ren, Z. F., Synthesis of germanium nanocubes by a low-temperature inverse micelle solvothermal technique. Langmuir 2005,21 (2), 751-754.
    [121]Chiu, H. W.; Chervin, C. N.; Kauzlarich, S. M., Phase changes in Ge nanoparticles. Chemistry of Materials 2005,17 (19),4858-4864.
    [122]Lu, X. M.; Korgel, B. A.; Johnston, K. P., High yield of germanium nanocrystals synthesized from germanium diiodide in solution. Chemistry of Materials 2005,17 (25),6479-6485.
    [123]Jing, C. B.; Zang, X. D.; Bai, W.; Chu, J. H.; Liu, A. Y, Aqueous germanate ion solution promoted synthesis of worm-like crystallized Ge nanostructures under ambient conditions. Nanotechnology 2010,21 (10),1-8.
    [124]Wu, H. P.; Liu, J. P.; Wang, Y W.; Zeng, Y. W.; Jiang, J. Z., Preparation of Ge nanocrystals via ultrasonic solution reduction. Materials Letters 2006,60 (7), 986-989.
    [125]Chou, N. H.; Oyler, K. D.; Motl, N. E.; Schaak, R. E., Colloidal synthesis of germanium nanocrystals using room-temperature benchtop chemistry. Chemistry of Materials 2009,21 (18),4105-4107.
    [126]Lu, X. M.; Ziegler, K. J.; Ghezelbash, A.; Johnston, K. P.; Korgel, B. A., Synthesis of germanium nanocrystals in high temperature supercritical fluid solvents. Nano Letters 2004,4 (5),969-974.
    [127]Zaitseva, N.; Dai, Z. R.; Grant, C. D.; Harper, J.; Saw, C., Germanium nanocrystals synthesized in high-boiling-point organic solvents. Chemistry of Materials 2007,19 (21),5174-5178.
    [128]Wu, H. P.; Ge, M. Y; Yao, C. W.; Wang, Y W.; Zeng, Y W.; Wang, L. N.; Zhang, G. Q.; Jiang, J. Z., Blue emission of Ge nanocrystals prepared by thermal decomposition. Nanotechnology 2006,17 (21),5339-5343.
    [129]Warner, J. H., Solution-phase synthesis of germanium nanoclusters using sulfur. Nanotechnology 2006,17 (22),5613-5619.
    [130]Nogami, M.; Abe, Y, Sol-gel method for synthesizing visible photoluminescent nanosized Ge-crystal-doped silica glasses. Applied Physics Letters 1994,65 (20), 2545-2547.
    [131]Henderson, E. J.; Hessel, C. M.; Veinot, J. G. C., Synthesis and photoluminescent properties of size-controlled germanium nanocrystals from phenyl trichlorogermane-derived polymers. Journal of the American Chemical Society 2008, 130 (11),3624-3632.
    [132]Hanrath, T.; Korgel, B. A., Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Advanced Materials 2003,15 (5),437-440.
    [133]Nirmal, M.; Brus, L., Luminescence photophysics in semiconductor nanocrystals. Accounts of Chemical Research 1999,32 (5),407-414.
    [134]Santavirta, S.; Takagi, M.; Nordsletten, L.; Anttila, A.; Lappalainen, R.; Konttinen, Y. T., Biocompatibility of silicon carbide in colony formation test in vitro-A promising new ceramic THR implant coating material. Archives of Orthopaedic and Trauma Surgery 1998,118 (1-2),89-91.
    [135]Lambert, T. N.; Andrews, N. L.; Gerung, H.; Boyle, T. J.; Oliver, J. M.; Wilson, B. S.; Han, S. M., Water-soluble germanium(0) nanocrystals:Cell recognition and near-infrared photothermal conversion properties. Small 2007,3 (4),691-699.
    [136]Prabakar, S.; Shiohara, A.; Hanada, S.; Fujioka, K.; Yamamoto, K.; Tilley, R. D., Size controlled synthesis of germanium nanocrystals by hydride reducing agents and their biological applications. Chemistry of Materials 2010,22 (2),482-486.
    [137]Dag, O.; Henderson, E. J.; Ozin, G. A., Synthesis of nanoamorphous germanium and its transformation to nanocrystalline germanium. Small 2012,8 (6), 921-929.
    [1]Rathmell, A. R.; Bergin, S. M.; Hua, Y.-L.; Li, Z.-Y.; Wiley, B. J., The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Advanced Materials 2010,22 (32),3558-3563.
    [2]Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009,457 (7230),706-710.
    [3]Belenkova, T. L.; Rimmerman, D.; Mentovich, E.; Gilon, H.; Hendler, N.; Richter, S.; Markovich, G., UV induced formation of transparent Au-Ag nanowire mesh film for repairable OLED devices. Journal of Materials Chemistry 2012,22 (45), 24042-24047.
    [4]Shang, Y. Y.; He, X. D.; Li, Y. B.; Zhang, L. H.; Li, Z.; Ji, C. Y.; Shi, E. Z.; Li, P. X.; Zhu, K.; Peng, Q. Y.; Wang, C.; Zhang, X. J.; Wang, R. G.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H.; Cao, A. Y., Super-stretchable spring-like carbon nanotube ropes. Advanced Materials 2012,24 (21),2896-2900.
    [5]Gu, G.; Schmid, M.; Chiu, P. W.; Minett, A.; Fraysse, J.; Kim, G. T.; Roth, S.; Kozlov, M.; Munoz, E.; Baughman, R. H., V2O5 nanofibre sheet actuators. Nature Materials 2003,2 (5),316-319.
    [6]Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Advanced Materials 2012,24 (25),3326-3332.
    [7]Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T., A rubberlike stretchable active matrix using elastic conductors. Science 2008,321 (5895),1468-1472.
    [8]Yu, Z.; Zhang, Q.; Li, L.; Chen, Q.; Niu, X.; Liu, J.; Pei, Q., Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Advanced Materials 2011,23 (5),664-668.
    [9]Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology 2011,6 (12),788-792.
    [10]Yun, S.; Niu, X.; Yu, Z.; Hu, W.; Brochu, P.; Pei, Q., Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. Advanced Materials 2012,24 (10),1321-1327.
    [11]Wu, H.; Hu, L.; Rowell, M. W.; Kong, D.; Cha, J. J.; McDonough, J. R.; Zhu, J.; Yang, Y.; McGehee, M. D.; Cui, Y., Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Letters 2010,10 (10),4242-4248.
    [12]Pelrine, R.; Kornbluh, R.; Joseph, J.; Heydt, R.; Pei, Q. B.; Chiba, S., High-field deformation of elastomeric dielectrics for actuators. Materials Science& Engineering C-Biomimetic and Supramolecular Systems 2000,11 (2),89-100.
    [13]Yu, Z.; Yuan, W.; Brochu, P.; Chen, B.; Liu, Z.; Pei, Q., Large-strain, rigid-to-rigid deformation of bistable electroactive polymers. Applied Physics Letters 2009,95 (19),192904.
    [14]Eda, G.; Fanchini, G.; Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology 2008,3 (5),270-274.
    [15]Wang, X.; Zhi, L.; Muellen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters 2008,8 (1),323-327.
    [16]Moon, I. K.; Kim, J. I.; Lee, H.; Hur, K.; Kim, W. C.; Lee, H.,2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Scientific Reports 2013,3.
    [17]Yao, H.-B.; Huang, G.; Cui, C.-H.; Wang, X.-H.; Yu, S.-H., Macroscale elastomeric conductors generated from hydrothermally synthesized metal-polymer hybrid nanocable sponges. Advanced Materials 2011,23 (32),3643-3647.
    [18]Shin, M. K.; Oh, J.; Lima, M.; Kozlov, M. E.; Kim, S. J.; Baughman, R. H., elastomeric conductive composites based on carbon nanotube forests. Advanced Materials 2010,22 (24),2663-2667.
    [19]Zhang, Y.; Sheehan, C. J.; Zhai, J.; Zou, G.; Luo, H.; Xiong, J.; Zhu, Y. T.; Jia, Q. X., Polymer-embedded carbon nanotube ribbons for stretchable conductors. Advanced Materials 2010,22 (28),3027-3031.
    [20]Kim, K. H.; Vural, M.; Islam, M. F., Single-walled carbon nanotube aerogel-based elastic conductors. Advanced Materials 2011,23 (25),2865-2869.
    [21]Liu, K.; Sun, Y.; Liu, P.; Lin, X.; Fan, S.; Jiang, K., Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Advanced Functional Materials 2011,21 (14),2721-2728.
    [22]Xu, F.; Wang, X.; Zhu, Y.; Zhu, Y., Wavy ribbons of carbon nanotubes for stretchable conductors. Advanced Functional Materials 2012,22 (6),1279-1283.
    [23]Zhu, Y.; Xu, F., Buckling of aligned carbon nanotubes as stretchable conductors: A new manufacturing strategy. Advanced Materials 2012,24 (8),1073-1077.
    [24]Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G., Transparent, conductive carbon nanotube films. Science 2004,305 (5688),1273-1276.
    [25]Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H., Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005,309 (5738),1215-1219.
    [26]Tenent, R. C.; Barnes, T. M.; Bergeson, J. D.; Ferguson, A. J.; To, B.; Gedvilas, L. M.; Heben, M. J.; Blackburn, J. L., Ultrasmooth, large-Area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Advanced Materials 2009,21 (31),3210-3214.
    [27]Blackburn, J. L.; Barnes, T. M.; Beard, M. C.; Kim, Y.-H.; Tenent, R. C.; McDonald, T. J.; To, B.; Coutts, T. J.; Heben, M. J., Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. Acs Nano 2008,2 (6),1266-1274.
    [28]Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y., Scalable coating and properties of transparent, flexible, silver nanowire electrodes. Acs Nano 2010,4 (5), 2955-2963.
    [29]Zhang, Y. Y.; Sheehan, C. J.; Zhai, J. Y.; Zou, G. F.; Luo, H. M.; Xiong, J.; Zhu, Y. T.; Jia, Q. X., Polymer-embedded carbon nanotube ribbons for stretchable conductors. Advanced Materials 2010,22 (28),3027-3031.
    [30]Yuan, W.; Hu, L.; Yu, Z.; Lam, T.; Biggs, J.; Ha, S. M.; Xi, D.; Chen, B.; Senesky, M. K.; Gruner, G.; Pei, Q., Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Advanced Materials 2008,20 (3), 621-625.
    [31]Pike, G. E.; Seager, C. H., Percolation and conductivity:A computer study. I. Physical Review B 1974,10 (4),1421-1434.
    [32]Rathmell, A. R.; Bergin, S. M.; Hua, Y. L.; Li, Z. Y.; Wiley, B. J., The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Advanced Materials 2010,22 (32),3558-3563.
    [33]Rathmell, A. R.; Nguyen, M.; Chi, M. F.; Wiley, B. J., Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Letters 2012,12 (6),3193-3199.
    [34]Bergin, S. M.; Chen, Y. H.; Rathmell, A. R.; Charbonneau, P.; Li, Z. Y.; Wiley, B. J., The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012,4 (6),1996-2004.
    [35]Scheffer, T.; Nehring, J., Supertwisted nematic (STN) liquid crystal displays. Annual Review of Materials Science 1997,27,555-583.
    [36]Zhu, Y.; Qin, Q.; Xu, F.; Fan, F.; Ding, Y.; Zhang, T.; Wiley, B. J.; Wang, Z. L., Size effects on elasticity, yielding, and fracture of silver nanowires:In situ experiments. Physical Review B 2012,85 (4),045443.
    [1]Erts, D.; Polyakov, B.; Dalyt, B.; Morris, M. A.; Ellingboe, S.; Boland, J.; Holmes, J. D., High density germanium nanowire assemblies:Contact challenges and electrical characterization. Journal of Physical Chemistry B 2006,110 (2),820-826.
    [2]Cao, L. Y.; White, J. S.; Park, J. S.; Schuller, J. A.; Clemens, B. M.; Brongersma, M. L., Engineering light absorption in semiconductor nanowire devices. Nature Materials 2009,5 (8),643-647.
    [3]Smith, D. A.; Holmberg, V. C.; Lee, D. C.; Korgel, B. A., Young's Modulus and size-dependent mechanical quality factor of nanoelectromechanical germanium nanowire rResonators. The Journal of Physical Chemistry C 2008,112 (29), 10725-10729.
    [4]Zeiner, C.; Lugstein, A.; Burchhart, T.; Pongratz, P.; Connell, J. G.; Lauhon,L. J.; Bertagnolli, E., Atypical self-activation of Ga dopant for Ge nanowire devices. Nano Letters 2011,11 (8),3108-3112.
    [5]Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Solution-grown germanium nanowire anodes for lithium-ion batteries. Acs Applied Materials & Interfaces 2012,4 (9),4658-4664.
    [6]Chan, C. K.; Zhang, X. F.; Cui, Y., High capacity Li ion battery anodes using Ge nanowires. Nano Letters 2008,8 (1),307-309.
    [7]Ko, Y.-D.; Kang, J.-G.; Lee, G.-H.; Park, J.-G.; Park, K.-S.; Jin, Y.-H.; Kim, D.-W., Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity. Nanoscale 2011,3 (8),3371-3375.
    [8]Heath, J. R.; Legoues, F. K., A liquid solution synthesis of single-crystal germanium quantum wires. Chemical Physics Letters 1993,208 (3-4),263-268.
    [9]Musin, I. R.; Filler, M. A., Chemical control of semiconductor nanowire kinking and superstructure. Nano Letters 2012,12 (7),3363-3368.
    [10]Li, X.; Meng, G.; Qin, S.; Xu, Q.; Chu, Z.; Zhu, X.; Kong, M.; Li, A.-P., Nanochannel-directed growth of multi-segment nanowire heterojunctions of metallic Au1-xGex and semiconducting Ge. Acs Nano 2012,6 (1),831-836.
    [11]Yang, H.-J.; Tuan, H.-Y, High-yield, high-throughput synthesis of germanium nanowires by metal-organic chemical vapor deposition and their functionalization and applications. Journal of Materials Chemistry 2012,22 (5),2215-2225.
    [12]Wang, D. W.; Dai, H. J., Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition. Angewandte Chemie-International Edition 2002,41 (24),4783-4786.
    [13]Sierra-Sastre, Y.; Dayeh, S. A.; Picraux, S. T.; Batt, C. A., Epitaxy of Ge nanowires grown from biotemplated Au nanoparticle catalysts. Acs Nano 2010,4 (2), 1209-1217.
    [14]Li, X.; Meng, G.; Xu, Q.; Kong, M.; Zhu, X.; Chu, Z.; Li, A.-P., Controlled synthesis of germanium nanowires and nanotubes with variable morphologies and sizes. Nano Letters 2011,11(4),1704-1709.
    [15]Hanrath, T.; Korgel, B. A., Nucleation and growth of germanium nanowires seeded by organic monolayer-coated Gold nanocrystals. Journal of the American Chemical Society 2002,124 (7),1424-1429.
    [16]Vaughn, D. D.; Bondi, J. P.; Schaak, R. E., Colloidal synthesis of air-stable crystalline germanium nanoparticles with tunable sizes and shapes. Chemistry of Materials 2010,22 (22),6103-6108.
    [17]Xue, D. J.; Wang, J. J.; Wang, Y. Q.; Xin, S.; Guo, Y. G.; Wan, L. J., Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors. Advanced Materials 2011,23 (32),3704-3707.
    [18]Ruddy, D. A.; Johnson, J. C.; Smith, E. R.; Neale, N. R., Size and bandgap control in the solution-phase synthesis of near-infrared-emitting germanium nanocrystals. Acs Nano 4 (12),7459-7466.
    [19]Xue, D. J.; Xin, S.; Yan, Y.; Jiang, K. C.; Yin, Y. X.; Guo, Y. G.; Wan, L. J., Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. Journal of the American Chemical Society 2012,134 (5), 2512-2515.
    [20]Muthuswamy, E.; Iskandar, A. S.; Amador, M. M.; Kauzlarich, S. M., Facile synthesis of germanium nanoparticles with size control:microwave versus conventional heating. Chemistry of Materials 2012,25 (8),1416-1422.
    [21]Tuan, H.-Y.; Lee, D. C.; Hanrath, T.; Korgel, B. A., Germanium nanowire synthesis:An example of solid-phase seeded growth with nickel nanocrystals. Chemistry of Materials 2005,17 (23),5705-5711.
    [22]Liu, Y. Y.; Miao, R.; She, G. W.; Mu, L. X.; Wang, Y.; Shi, W. S., Arrays of one-dimensional germanium cone-like nanostructures:preparation and application as fluorescent pH sensor. Journal of Physical Chemistry C 2011,115 (44),21599-21603.
    [23]Luo, L.-b.; Yang, X.-b.; Liang, F.-x.; Jie, J.-s.; Wu, C.-y.; Wang, L.; Yu, Y.-q.; Zhu, Z.-f., Surface dangling bond-mediated molecules doping of germanium nanowires. Journal of Physical Chemistry C 2011,115 (49),24293-24299.
    [24]Henderson, E. J.; Hessel, C. M.; Veinot, J. G. C., Synthesis and photoluminescent properties of size-controlled germanium nanocrystals from phenyl trichlorogermane-derived polymers. Journal of the American Chemical Society 2008, 130 (11),3624-3632.
    [25]Lee, D. C.; Pietryga, J. M.; Robel, I.; Werder, D. J.; Schaller, R. D.; Klimov, V. I., Colloidal synthesis of infrared-emitting germanium nanocrystals. Journal of the American Chemical Society 2009,131 (10),3436-3437.
    [26]Wang, D. W.; Chang, Y. L.; Liu, Z.; Dai, H. J., Oxidation resistant germanium nanowires:Bulk synthesis, long chain alkanethiol functionalization, and Langmuir-Blodgett assembly. Journal of the American Chemical Society 2005,127 (33),11871-11875.
    [27]Lu, X. M.; Fanfair, D. D.; Johnston, K. P.; Korgel, B. A., High yield solution-liquid-solid synthesis of germanium nanowires. Journal of the American Chemical Society 2005,127(45),15718-15719.
    [28]Song, M. S.; Jung, J. H.; Kim, Y.; Wang, Y.; Zou, J.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C., Vertically standing Ge nanowires on GaAs(110) substrates. Nanotechnology 2008,19 (12),1-6.
    [29]Kim, Y.; Song, M. S.; Kim, Y D.; Jung, J. H.; Gao, Q.; Tan, H. H.; Jagadish, C., Epitaxial germanium nanowires on GaAs grown by chemical vapor deposition. Journal of the Korean Physical Society 2007,51 (1),120-124.
    [30]Dailey, J. W.; Taraci, J.; Clement, T.; Smith, D. J.; Drucker, J.; Picraux, S. T., Vapor-liquid-solid growth of germanium nanostructures on silicon. Journal of Applied Physics 2004,96 (12),7556-7567.
    [1]Liu, H.; Winkenwerder, W.; Liu, Y.; Ferrer, D.; Shahrjerdi, D.; Stanley, S. K.; Ekerdt, J. G.; Banerjee, S. K., Core-shell germanium-Silicon nanocrystal floating gate for nonvolatile memory applications. Ieee Transactions on Electron Devices 2008,55 (12),3610-3614.
    [2]Gerung, H.; Boyle, T. J.; Tribby, L. J.; Bunge, S. D.; Brinker, C. J.; Han, S. M., Solution synthesis of germanium nanowires using a Ge2+ alkoxide precursor. Journal of the American Chemical Society 2006,128 (15),5244-5250.
    [3]Hanrath, T.; Korgel, B. A., Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Advanced Materials 2003, 15 (5),437-440.
    [4]Lu, X. M.; Fanfair, D. D.; Johnston, K. P.; Korgel, B. A., High yield solution-liquid-solid synthesis of germanium nanowires. Journal of the American Chemical Society 2005,127(45),15718-15719.
    [5]Wang, D.; Dai, H., Germanium nanowires:from synthesis, surface chemistry, and assembly to devices. Applied Physics a-Materials Science & Processing 2006,85 (3), 217-225.
    [6]Chockla, A. M.; Korgel, B. A., Seeded germanium nanowire synthesis in solution. Journal of Materials Chemistry 2009,19 (7),996-1001.
    [7]Collins, G.; Kolesnik, M.; Krstic, V.; Holmes, J. D., Germanium nanowire synthesis from fluorothiolate-capped gold nanoparticles in supercritical carbon dioxide. Chemistry of Materials 2010,22 (18),5235-5243.
    [8]Pei, L. Z.; Cai, Z. Y., A review on germanium nanowires. Recent Patents on Nanotechnology 2012,6 (1),44-59.
    [9]Lotty, O.; Hobbs, R.; O'Regan, C.; Hlina, J.; Marschner, C.; O'Dwyer, C.; Petkov, N.; Holmes, J. D., Self-Seeded growth of germanium nanowires:coalescence and ostwald ripening. Chemistry of Materials 2013,25 (2),215-222.
    [10]Wang, W. Z.; Huang, J. Y.; Ren, Z. F., Synthesis of germanium nanocubes by a low-temperature inverse micelle solvothermal technique. Langmuir 2005,21 (2), 751-754.
    [11]Lu, X. M.; Ziegler, K. J.; Ghezelbash, A.; Johnston, K. P.; Korgel, B. A., Synthesis of germanium nanocrystals in high temperature supercritical fluid solvents. Nano Letters 2004,4 (5),969-974.
    [12]Gerion, D.; Zaitseva, N.; Saw, C.; Casula, M. F.; Fakra, S.; Van Buuren, T.; Galli, G., Solution synthesis of germanium nanocrystals:Success and open challenges. Nano Letters 2004,4 (4),597-602.
    [13]Zaitseva, N.; Dai, Z. R.; Grant, C. D.; Harper, J.; Saw, C., Germanium nanocrystals synthesized in high-boiling-point organic solvents. Chemistry of Materials 2007,19 (21),5174-5178.
    [14]Henderson, E. J.; Hessel, C. M.; Veinot, J. G. C., Synthesis and photoluminescent properties of size-controlled germanium nanocrystals from phenyl trichlorogermane-derived polymers. Journal of the American Chemical Society 2008, 130 (11),3624-3632.
    [15]Vaughn, D. D.; Schaak, R. E., Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials. Chemical Society Reviews 2013,42 (7),2861-2879.
    [16]Yuan, C. L.; Cai, H.; Lee, P. S.; Guo, J.; He, J., Tuning photoluminescence of Ge/GeO2 Core/Shell nanoparticles by strain. Journal of Physical Chemisttfy C 2009, 113 (46),19863-19866.
    [17]Mathur, S.; Shen, H.; Sivakov, V.; Werner, U., Germanium nanowires and core-shell nanostructures by chemical vapor deposition of Ge(CsHs)2. Chemistry of Materials 2004,16 (12),2449-2456.
    [18]Erts, D.; Polyakov, B.; Dalyt, B.; Morris, M. A.; Ellingboe, S.; Boland, J.; Holmes, J. D., High density germanium nanowire assemblies:Contact challenges and electrical characterization. Journal of Physical Chemistry B 2006,110 (2),820-826.
    [19]Ziegler, K. J.; Polyakov, B.; Kulkarni, J. S.; Crowley, T. A.; Ryan, K. M.; Morris, M. A.; Erts, D.; Holmes, J. D., Conductive films of ordered nanowire arrays. Journal of Materials Chemistry 2004,14 (4),585-589.
    [20]Wang, D. W.; Wang, Q.; Javey, A.; Tu, R.; Dai, H. J.; Kim, H.; Mclntyre, P. C.; Krishnamohan, T.; Saraswat, K. C., Germanium nanowire field-effect transistors with SiO2 and high-kappa HfO2 gate dielectrics. Applied Physics Letters 2003,83 (12), 2432-2434.
    [21]Greytak, A. B.; Lauhon, L. J.; Gudiksen, M. S.; Lieber, C. M., Growth and transport properties of complementary germanium nanowire field-effect transistors. Applied Physics Letters 2004,84 (21),4176-4178.
    [22]Fan, P. Y.; Huang, K. C. Y.; Cao, L. Y.; Brongersma, M. L., Redesigning photodetector electrodes as an optical antenna. Nano Letters 2013,13 (2),392-396.
    [23]Xue, D. J.; Wang, J. J.; Wang, Y Q.; Xin, S.; Guo, Y G.; Wan, L. J., Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors. Advanced Materials 2011,23 (32),3704-3707.
    [24]Seo, M.-H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J., High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy & Environmental Science 2011,4 (2),425-428.
    [25]Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Solution-grown germanium nanowire anodes for lithium-Ion batteries. Acs Applied Materials& Interfaces 2012,4 (9),4658-4664.
    [26]Chan, C. K.; Zhang, X. F.; Cui, Y., High capacity Li ion battery anodes using Ge nanowires. Nano Letters 2008,8 (1),307-309.
    [27]Prabakar, S.; Shiohara, A.; Hanada, S.; Fujioka, K.; Yamamoto, K.; Tilley, R. D., Size controlled synthesis of germanium nanocrystals by hydride reducing agents and their biological applications. Chemistry of Materials 2010,22 (2),482-486.
    [28]Dag, O.; Henderson, E. J.; Ozin, G. A., Synthesis of nanoamorphous germanium and its transformation to nanocrystalline germanium. Small 2012,8 (6),921-929.
    [29]Liu, Y.; Chu, Y.; Zhuo, Y.; Dong, L.; Li, L.; Li, M., Controlled synthesis of various hollow Cu nano/microStructures via a novel reduction route. Advanced Functional Materials 2007,17(6),933-938.
    [30]Zhan, J.; Bando, Y.; Hu, J.; Golberg, D.; Nakanishi, H., Liquid gallium columns sheathed with carbon:Bulk synthesis and manipulation. Journal of Physical Chemistry B 2005,109 (23),11580-11584.
    [31]Wang, Z. L.; Kong, X. Y.; Wen, X. G.; Yang, S. H., In situ structure evolution from Cu(OH)2 nanobelts to copper nanowires. Journal of Physical Chemistry B 2003, 107 (33),8275-8280.
    [32]Hu, J. Q.; Li, Q.; Meng, X. M.; Lee, C. S.; Lee, S. T., Synthesis and nanostructuring of patterned wires of alpha-GeO2 by thermal oxidation. Advanced Materials 2002,14 (19),1396-1399.
    [33]Hu, J.; Sun, Y.; Chen, Z., Rapid fabrication of nanocrystals through in situ electron beam irradiation in a transmission electron microscope. Journal of Physical Chemistry C 2009,113 (13),5201-5205.
    [34]Banhart, F.; Ajayan, P. M., Carbon onions as nanoscopic pressure cells for diamond formation. Nature 1996,382 (6590),433-435.
    [35]Banhart, F., Irradiation effects in carbon nanostructures. Reports on Progress in Physics 1999,62 (8),1181-1221.
    [36]Li, J. X.; Banhart, F., The engineering of hot carbon nanotubes with a focused electron beam. Nano Letters 2004,4 (6),1143-1146.
    F[37] Terrones, M.; Terrones, H.; Banhart, F.; Charlier, J. C.; Ajayan, P. M., Coalescence of single-walled carbon nanotubes. Science 2000,255 (5469), 1226-1229.
    [38]Chopra, N. G.; Ross, F. M.; Zettle, A., Collapsing carbon nanotubes with an electron beam. Chemical Physics Letters 1996,256 (3),241-245.
    [39]Crespi, V. H.; Chopra, N. G.; Cohen, M. L.; Zettl, A.; Radmilovic, V., Site-selective radiation damage of collapsed carbon nanotubes. Applied Physics Letters 1998,73 (17),2435-2437.
    [40]Kim, B. J.; Wen, C. Y.; Tersoff, J.; Reuter, M. C.; Stach, E. A.; Ross, F. M., Growth pathways in ultralow temperature Ge nucleation from Au. Nano Letters 2012, 12 (11),5867-5872.
    [41]Dayeh, S. A.; Mack, N. H.; Huang, J. Y.; Picraux, S. T., Advanced core/multishell germanium/silicon nanowire heterostructures:The Au-diffusion bottleneck. Applied Physics Letters 2011,99 (2),035417.
    [42]Gamalski, A. D.; Tersoff, J.; Sharma, R.; Ducati, C.; Hofmann, S., Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires. Nano Letters 2010,10 (8),2972-2976.
    [43]Wolf, P. J.; Christensen, T. M.; Coit, N. G.; Swinford, R. W., Thin-film properties of germanium oxide synthesized by pulsed-laser sputtering in vacuum and oxygen environments. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 1993,11 (5),2725-2732.
    [44]Zhang, Y.F.; Tang, Y. H.; Wang, N.; Lee, C. S.; Bello, L.; Lee, S. T., Germanium nanowires sheathed with an oxide layer. Physical Review B 2000,61 (7),4518-4521.
    [45]Liu, Z.; Jing, X.; Wang, L., Effects of O2 partial pressure and Ga atmosphere on the luminescence of native defects in beta-Ga2O3 phosphor. Journal of the Electrochemical Society 2007,154 (6), H440-H443.
    [46]Hu, J.; Li, Q.; Zhan, J.; Jiao, Y; Liu, Z.; Ringer, S. P.; Bando, Y.; Golberg, D., Unconventional ribbon-shaped beta-Ga2O3 tubes with mobile Sn nanowire fillings. Acs Nano 2008,2 (1),107-112.
    [47]Hu, J.; Bando, Y; Zhan, J.; Li, C.; Golberg, D., Mg3N2-Ga:Nanoscale semiconductor-liquid metal heterojunctions inside graphitic carbon nanotubes. Advanced Materials 2007,19 (10),1342-1344.
    [48]Liu, L. C.; Risbud, S. H., Real-time hot-stage high-voltage transmission electron-microscopy precipitation of CDS nanocrystals in glasses-experiment and theoretical-analysis. Journal of Applied Physics 1994,76 (8),4576-4580.
    [49]Liu, J.; Barbero, C. J.; Corbett, J. W.; Rajan, K.; Leary, H., An in situ transmission electron-microscopy study of electron-beam-induced amorphous-to-crystalline transformation of Al2O3 films on silicon. Journal of Applied Physics 1993,73 (10),5272-5273.
    [50]Gao, Y. H.; Bando, Y., Carbon nanothermometer containing gallium-Gallium's macroscopic properties are retained on a miniature scale in this nanodevice. Nature 2002,415 (6872),599-599.
    [51]Yokota, T.; Murayama, M.; Howe, J. M., In situ transmission-electron-microscopy investigation of melting in submicron Al-Si alloy particles under electron-beam irradiation. Physical Review Letters 2003,91 (26), 263953.
    [52]Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P., Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science 2004,304 (5671),711-714.
    [53]Teo, J. J.; Chang, Y.; Zeng, H. C., Fabrications of hollow nanocubes of CU2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 2006,22 (17), 7369-7377.
    [1]Lu, X. M.; Ziegler, K. J.; Ghezelbash, A.; Johnston, K. P.; Korgel, B. A., Synthesis of germanium nanocrystals in high temperature supercritical fluid solvents. Nano Letters 2004,4 (5),969-974.
    [2]Henderson, E. J.; Hessel, C. M.; Veinot, J. G. C., Synthesis and photoluminescent properties of size-controlled germanium nanocrystals from phenyl trichlorogermane-derived polymers. Journal of the American Chemical Society 2008, 130 (11),3624-3632.
    [3]Heath, J. R.; Shiang, J. J.; Alivisatos, A. P., Germanium quantum dots-optical-properties and synthesis. Journal of Chemical Physics 1994,101 (2), 1607-1615.
    [4]Wilcoxon, J. P.; Provencio, P. P.; Samara, G. A., Synthesis and optical properties of colloidal germanium nanocrystals. Physical Review B 2001,64 (3).2498652.
    [5]Fok, E.; Shih, M. L.; Meldrum, A.; Veinot, J. G. C., Preparation of alkyl-surface functionalized germanium quantum dots via thermally initiated hydrogermylation. Chemical Communications 2004, (4),386-387.
    [6]Lambert, T. N.; Andrews, N. L.; Gerung, H.; Boyle, T. J.; Oliver, J. M.; Wilson, B. S.; Han, S. M., Water-soluble germanium(0) nanocrystals:Cell recognition and near-infrared photothermal conversion properties. Small 2007,3 (4),691-699.
    [7]Gerion, D.; Zaitseva, N.; Saw, C.; Casula, M. F.; Fakra, S.; Van Buuren, T.; Galli, G., Solution synthesis of germanium nanocrystals:Success and open challenges. Nano Letters 2004,4 (4),597-602.
    [8]Zaitseva, N.; Dai, Z. R.; Grant, C. D.; Harper, J.; Saw, C., Germanium nanocrystals synthesized in high-boiling-point organic solvents. Chemistry of Materials 2007,19 (21),5174-5178.
    [9]Lu, X. M.; Korgel, B. A.; Johnston, K. P., High yield of germanium nanocrystals synthesized from germanium diiodide in solution. Chemistry of Materials 2005,17 (25),6479-6485.
    [10]Lee, D. C.; Pietryga, J. M.; Robel, I.; Werder, D. J.; Schaller, R. D.; Klimov, V. I., Colloidal synthesis of infrared-emitting germanium nanocrystals. Journal of the American Chemical Society 2009,131 (10),3436-3437.
    [11]Chou, N. H.; Oyler, K. D.; Motl, N. E.; Schaak, R. E., Colloidal synthesis of germanium nanocrystals using room-temperature benchtop chemistry. Chemistry of Materials 2009,21 (18),4105-4107.
    [12]Taylor, B. R.; Kauzlarich, S. M.; Lee, H. W. H.; Delgado, G. R., Solution synthesis of germanium nanocrystals demonstrating quantum confinement. Chemistry of Materials 1998,10 (1),22-24.
    [13]Taylor, B. R.; Kauzlarich, S. M.; Delgado, G. R.; Lee, H. W. H., Solution synthesis and characterization of quantum confined Ge nanoparticles. Chemistry of Materials 1999,11 (9),2493-2500.
    [14]Holman, Z. C.; Kortshagen, U. R., Solution-processed germanium nanocrystal thin films as materials for low-cost optical and electronic devices. Langmuir 2009,25 (19),11883-11889.
    [15]Gerung, H.; Bunge, S. D.; Boyle, T. J.; Brinker, C. J.; Han, S. M., Anhydrous solution synthesis of germanium nanocrystals from the germanium(II) precursor Ge (N(SiMe3)2) 2. Chemical Communications 2005, (14),1914-1916.
    [16]Prabakar, S.; Shiohara, A.; Hanada, S.; Fujioka, K.; Yamamoto, K.; Tilley, R. D., Size controlled synthesis of germanium nanocrystals by hydride reducing agents and their biological applications. Chemistry of Materials 2010,22 (2),482-486.
    [17]Jing, C. B.; Zang, X. D.; Bai, W.; Chu, J. H.; Liu, A. Y., Aqueous germanate ion solution promoted synthesis of worm-like crystallized Ge nanostructures under ambient conditions. Nanotechnology 2010,21 (10),1-8.
    [18]Peng, X. G., Green chemical approaches toward high-quality semiconductor nanocrystals. Chemistry-a European Journal 2002,8 (2),335-339.
    [19]Mekis, I.; Talapin, D. V.; Kornowski, A.; Haase, M.; Weller, H., One-pot synthesis of highly luminescent CdSe/CdS core-shell nanocrystals via organometallic and "greener" chemical approaches. Journal of Physical Chemistry B 2003,107 (30), 7454-7462.
    [20]Neiner, D.; Chiu, H. W.; Kauzlarich, S. M., Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles. Journal of the American Chemical Society 2006,128 (34),11016-11017.
    [21]Zhang, X.; Brynda, M.; Britt, R. D.; Carroll, E. C.; Larsen, D. S.; Louie, A. Y.; Kauzlarich, S. M, Synthesis and characterization of manganese-doped silicon nanoparticles:Bifunctional paramagnetic-optical nanomaterial. Journal of the American Chemical Society 2007,129 (35),10668-10672.
    [22]Neiner, D.; Kauzlarich, S. M., Hydrogen-capped silicon nanoparticles as a potential hydrogen storage material:synthesis, characterization, and hydrogen release. Chemistry of Materials 2010,22 (2),487-493.
    [23]Hu, J. Q.; Meng, X. M.; Jiang, Y.; Lee, C. S.; Lee, S. T., Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers. Advanced Materials 2003,15 (1),70-73.
    [24]Wu, Y. Y.; Yang, P. D., Germanium nanowire growth via simple vapor transport. Chemistry of Materials 2000,12 (3),605-610.
    [25]Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996,271 (5251),933-937.
    [26]Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E., Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics? Angewandte Chemie-International Edition 2009,48 (1),60-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700