Bi_(3.6)Ho_(0.4)Ti_3O_(12)薄膜的脉冲激光沉积及其铁电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土元素掺杂的Bi4Ti3O12铁电薄膜作为一种无铅环保、性能优良的功能材料,可望替代锆钛酸铅(PZT)和钽酸锶铋(SBT)等薄膜材料,在铁电随机存储器等功能器件中得以应用。论文以Ho掺杂Bi4Ti3O12(Bi3.6Ho0.4Ti3O12)薄膜的制备及其铁电性能为研究目标,以固相反应和热压烧结的Ho掺杂Bi4Ti3O12陶瓷为靶材,利用脉冲激光沉积技术制备Bi3.6Ho0.4Ti3O12薄膜,以期望为新一代存储器的应用提供一种环境友好、性能良好的铁电新材料。
     论文首先以Bi2O3、TiO2和Ho2O3微粉为原料,利用固相反应法合成出不同Ho掺杂量的Bi4-xHoxTi3O12粉体,然后采用热压烧结技术将其致密化,研究了合成和烧结工艺参数(合成温度、烧结温度、Bi过量)以及Ho掺杂量对Bi4-xHoxTi3O12粉体和陶瓷的结构及性能的影响,并确定了适宜的制备工艺:先在Bi2O3过量3wt%、合成温度900℃、保温时间8h条件下合成Bi4-xHoxTi3O12粉体;再将粉体在850℃-30MPa下热压烧结2h得到Bi4-xHoxTi3O12陶瓷。在上述条件下得到的Bi3.6Ho0.4Ti3O12陶瓷物相单一,结构致密(致密度99.4%),可作为高质量靶材,进一步制备Bi3.6Ho0.4Ti3O12铁电薄膜。介电和铁电性能测试表明,随着Ho掺杂量的增加,Bi4-xHoxTi3O12陶瓷的晶粒逐渐减小,致密度也略有下降,其介电常数和剩余极化强度均呈现先升高后降低的趋势,而介电损耗则先降低后升高。适宜的Ho掺杂量为0.4,在1MHz测试频率下,Bi3.6Ho0.4Ti3O12陶瓷的介电常数为207.3,介电损耗为0.0066,剩余极化强度为6.96μC/cm2。
     其次,以物相单一、整体致密的Bi3.6Ho0.4Ti3O12陶瓷为靶材,进一步利用脉冲激光沉积技术在Pt(111)/Ti/SiO2/Si衬底上制备Bi3.6Ho0.4Ti3O12铁电薄膜,重点研究了沉积工艺参数(激光能量密度、衬底温度、氧压)对薄膜物相、结晶取向、表面形貌和铁电性能的影响。结果表明,随着衬底温度的升高,薄膜的结晶性变好,600℃和700℃时,均能获得物相单一、结晶良好的Bi3.6Ho0.4Ti3O12薄膜,且薄膜分别呈c轴择优取向和随机取向;随着激光能量密度的提高,沉积薄膜逐渐由Bi2Ti2O7焦绿石相转变为Bi4Ti3O12类钙钛矿相,高于24.53J/cm2时,得到了物相单一的Bi3.6Ho0.4Ti3O12薄膜;提高氧压可获得单一物相的Bi3.6Ho0.4Ti3O12薄膜,且薄膜晶粒先增大后减小,而其结晶取向性无明显变化。适宜的脉冲激光沉积条件为29.3J/cm2-700℃-10Pa,在该条件下Bi3.6Ho0.4Ti3O12铁电薄膜物相单一,表面平整致密,而且具有较大的剩余极化强度(22.74μC/cm2)。
As a ferroelectric functional material, rare earth elements doped bismuth titanate (Bi4Ti3O12) with large remanent polarization and low crystallization temperature is a possible substitute for lead zirconate titanate and bismuth-strontium tantalate in ferroelectric random access memory. The purpose of the present dissertation is to prepare a holmium doped bismuth titanate (Bi3.6Ho0.4Ti3O12) thin film and study its ferroelectric property, expecting to provide a environmentally-friendly ferroelectric material with good performance.
     As a ferroelectric functional material, rare earth elements doped bismuth titanate (Bi4Ti3O12) with large remanent polarization and low crystallization temperature is a possible substitute for lead zirconate titanate and bismuth-strontium tantalate in ferroelectric random access memory.
     Firstly, Ho3+doped Bi4Ti3O12 (Bi4-xHoxTi3O12) powders were fabricated by solid state reaction using Bi2O3, TiO2 and HO2O3 micro-powders as the raw materials. Then, Bi4-xHoxTi3O12 ceramic targets were obtained by densifying the synthesized powders using hot-pressed sintering. The influences of process parameters (synthesis temperature, sitering temperature, Bi content and Ho doping content) on the structure and property of the Bi4-xHoxTi3O12 powders and ceramic targets were studied, and the appropriate preparation conditions were achieved. That is, Bi4-xHoxTi3O12 powders were synthesized at 900℃for 8h with 3wt% excessive content of Bi2O3, and the powders were further sintered at 850℃-30MPa for 2h to prepare the Bi4-xHoxTi3O12 ceramics. The appropriate Ho content is 0.4, and Bi3.6Ho0.4Ti3O12 ceramic obtained under the appropriate preparation conditions showed pure phase and dense structure (about 99.4%), whose dielectric constant, dielectric loss and remanent polarization were 207.3,0.0066 and 6.96μC/cm2, respectively.
     Subsequently, we used the dense and pure phase Bi3.6Hoo.4Ti3O12 ceramic as the target to prepare Bi6Ho0.4Ti3O12 thin films on Pt(111)/Ti/SiO2/Si substrates by pulsed laser deposition. The effects of deposited parameters, such as substrate temperature, laser energy density and oxygen pressure, on the phase, orientation, surface morphology and ferroelectric property were mainly investigated. The results showed that the crystallinity of the as-deposited films increased with substrate temperature, and pure phase and well-crystallized Bi3.6Ho0.4Ti3O12 thin films were obtained at 600℃and 700℃with c-axis and random orientations, respectively. As the laser energy density increased, the phases of the films changed from Bi2Ti2O7 to Bi4Ti3O12, and pure Bi3.6Ho0.4Ti3O12 thin films were obtained at laser energy density higher than 24.53J/cm2. The pure Bi3.6Ho0.4Ti3O12 thin films could also be obtained by raising oxygen pressure. The grain sizes increased with oxygen pressure at first and then reduced, while the orientation changed little. The Bi3.6Ho0.4Ti3O12 thin film deposited under the appropriate conditions (29.3J/cm2-700℃-10Pa) exhibited a pure phase, smooth and dense surface, and the maximum remanent polarization was 22.74μC/cm2.
引文
[1]Valask J. Piezo-Electric Activity of Rochelle Salt under Various Conditions. Physical Review.,1922.19:478-491
    [2]Muralt P. Piezoelectric and pyroelectric microsystems based on ferroelectric thin films. Ferroelectrics,1996.1:145-151
    [3]Baginsky I.L., Kostsov E.G., Sterelykhina L.N., et al. Electronic devices based on niobate barium-strontium thin film. IEEE 7th International Symposium on Applications of Ferroelectrics,1990:302-305
    [4]Chen F. Y., Fang Y.K., Shu C. Y., et al. Numerical analysis of a PbTiO3 ferroelectric thin-film infrared optical diode. IEEE Transactions on Electron Devices,1997.44:937-942
    [5]Quaddari M., Delprat S., Vidal F., et al. Microwave characterization of ferroelectric thin film materials. IEEE Transactions on Microwave Theory and Techniques,2005.53: 1390-1397
    [6]Warren W.L., Dimos D., Photo electric effects in BaTiO3 crystals. Integrated Ferroelectrics, 1995.6:237-246
    [7]Li L., Chhiu-Tsu L. Effects of Laser radiation on Photo-conductivity in PZT thin films. Integrated Ferroelectrics,1995.7:33-44
    [8]Yoshikazu F., Naoki L., Takashi N., et al. Development of Low Dielectric Constant Ferroelectric Materials for the Ferroelectric Memory Field Effect Transistor. Japanese Journal of Applied Physics,1997.36:5935-5938
    [9]Takeshi K., Sakiko S., Hironori M., et al., Ultra-Thin Fatigue-Free Bi4Ti3O12 films for Nonvolatile Ferroelectric Memories. Japanese Journal of Applied Physics,1996.35: 1246-1250
    [10]Scott J.F., Araujo C.A. Ferroelectric memories. Science,1989.246:1400-1405
    [11]Ishiwara H., Okuyama M., Arimoto Y. Ferroelectric Random Access Memories (Fundamentals and Applications). Germany Berlin:Springer,2004:233-252
    [12]Evans J.T., Womack R. An experimental 512-bit nonvolatile memory with ferroelectric storage cell. IEEE Solid State Circuits,1988.23:1171-1175
    [13]Messenger G.C., Coppage F.N. Ferroelectric memories:a possible answer to the hardened nonvolatile question. IEEE Transation on Nuclear Science,1988.35:1461-1466
    [14]Bondurant D.W. Ferroeletric memory evaluation and development system. IEEE, 1991:308-309
    [15]Geideman W.A. Progress in ferroelectric memory technology. IEEE Trans Ultrason. Ferroelectric Frequence Control,1991.38:704-711
    [16]Escote M.T., Pontes F.M., Mambrini G.P. Improvement of the ferroelectric properties of ABO3(A=Pb, Ca, Ba; B=Ti, Zr) films. Journal of the European Ceramic Society,2005.25: 2341-2345
    [17]Lee K.B., Desu S.B. Improvement by surface modification of Ir electrode-barrier for Pb(Zr, Ti)O3-based high-density nonvolatile ferroelectric memories. Current Applied Physics,2001, 1:379-384
    [18]Scott J.F., Paz de Araujo C.A., McMillan L.D., et al. Ferroelectric thin films in integrated microeletronic devices. Ferroelectric,1992.133:47-50
    [19]Yu T., Shen Z.X., Toh W.S., et al. Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles. Journal of Applied Physics,2003.94:618-620
    [20]Lettieri J., Jia Y., Fulk S.J., et al. Optimization of the growth of epitaxial SrBi2Ta2O9 thin films by pulsed laser deposition. Thin Solid Films,2000.379:64-71
    [21]Kikuchi T., Watanabe A., Uchida K. A family of mixed-layer type bismuth compounds. Materials Research Bulletin,1977.12:299-304
    [22]Subbarao E.C. Crystal chemistry of mixed bismuth oxides with layer-type structure. Journal of the American Ceramic Society,1962.45:166-169
    [23]Dorrian J.F., Newnham R.E. Smith D.K., et al. Crystal Structure of Bi4Ti3O12. Ferroelectric, 1971.3:17-27
    [24]Glazer A.M. The classification of title octahedral in perovskites. Acta Crystallographica Section B,1972.28:3384-3392
    [25]Aleksandrov K.S., Bartolome J. Structural distortions in families of perovskite-like crystals. Chemistry of Materials,2001.74:255-335
    [26]Cummins S.E., Cross L.E. Electrical and optical properties of ferroelectric Bi4Ti3O12 single crystals. Journal of Applied Physics,1968.39(5):2268-2274
    [27]Newnham R.E., Wolfe R.W., Dorrian J.F. Structural basis of ferroelectricity in the bismuth titanate family. Materials Research Bulletin,1971.6:1029-1040
    [28]苗鸿雁,李永强,夏傲.Bi4Ti3O12粉体的性能、应用及制备,2003.21(3):54-58
    [29]郭冬云.铁电存储器用Bi3.25La0.75Ti3O12薄膜的制备及性能研究:[博士学位论文].武汉:华中科技大学微电子系,2005
    [30]李晨松,徐延献.无机薄膜的制备技术.硅酸盐通报,2003.2:21-25
    [31]Schumacher M., Lindner J., Baumann P.K., et al. MOCVD for complex multicomponent thin films-a leading edge technology for next generation devices. Materials Science in Semiconductor Processing,2003.5:85-91
    [32]Schmidt C., Burte E.P. MOCVD of ferroelectric thin films. Microelectronics Reliability, 1999.39:257-260
    [33]Thompson A.G. MOCVD technology for semiconductors. Materials Letters,1997.30: 255-263
    [34]苏学军,李岩.用MOCVD和快速热处理工艺制备钛酸铋铁电薄膜.微电子技术,2002.30(1):16-19
    [35]王学华,薛亦渝.薄膜制备新技术及其应用研究.真空电子技术,2003,5:65-70
    [36]Wang S.M., Wang J.H., Zhou T.S., et al. Effect of substrates and bottom electrodes on the formation of KTN thin film. Ferroelectrics,1996,154:289-294
    [37]L.B. Jonsson, Experiments and modeling of thin film processes. Comprehensive Summaries of Uppsala Dissertations from the Facalty of Science and Technology 445. Uppsala:Acta Universitatis Upsaliensis,1999
    [38]Chia W.K., Yang C.F., Chen Y.C. The effect of Bi2O3 compensation during thermal treatment on the crystalline and electrical characteristics of bismuth titanate thin films. Ceramics International,2008.34:379-384
    [39]Chia W.K., Chen Y.C., Yang C.F. Improved characteristics of Bi4Ti3012 thin film on ITO glass by using excess Bi2O3-added Bi4Ti3O12 ceramic as source target. Journal of Physical Chemistry,2008.69:465-469
    [40]Kuo D.H., Chiang K.C. Ferroelectric In3+-added Bi4Ti3O12 films obtained by magnetron sputtering with two series of In3+-and Bi3+-varied targets. Thin Solid Films,2008 516: 5985-5990
    [41]毛昕辉,陈国平,蔡炳初.反应磁控溅射的进展.真空,2001,8(4):1-7
    [42]Lettieri J., Jia Y, Fulk S.J. et al. Optimization of the growth of epitaxial SrBi2Ta209 thin films by pulsed laser deposition. Thin Solid Films,2000.379:64-71
    [43]Husmann A., Wesner D.A., Schmidt J., et al. Pulsed laser deposition of crystalline PZT thin films. Surface and Coatings Technology,1997,97:420-425
    [44]Biegel W., Klarmann R., Stritzker B., et al. Pulsed laser deposition and characterization of perovskite thin films on various substrates. Applied Surface Science,2000,168:227-233
    [45]Park B.H., Kang B.S., Bu S.D., et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature,1999,401:682-684
    [46]Lee H.N., Hesse D., Zakharov N., et al. Films of Uniform a-Axis Orientation on Silicon Substrates. Science,2002.296:2006-2009
    [47]Takenaka T, Sakata K., Grain orientation effects on electrical Properties of Bismuth layer-structured ferroelectric Pb(1-x)(NaCe)x/2Bi4Ti4O15 solid solution. Journal of Applied Physics,1984.55:1092-1099
    [48]Takenaka T., Sakata K., Grain orientation and electrical Properties of hot-forged Bi4Ti3O12 ceramics. Japanese Journal of Applied Physics,1980.19:31-39
    [49]Wu D., Li A.D., Tao L., et al. Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition. Journal of Applied Physics,2000,88(10): 5941-5945
    [50]Lee J.K., Kim C.H., Suh H.S et al. Correlation between internal stress and ferroelectric fatigue in Bi4-xLaxTi3O12 thin films. Applied Physics Letters,2002,80:3593
    [51]Hardy A., Mondelaers D., D'Haen J., et al., Synthesis of (Bi, La)4Ti3O12 by a new aqueous solution-gel route, Journal of the European Ceramic Society,2004,24:905-909
    [52]Hu G.D., Fan S.H., Cheng X., et al. Anisotropy of ferroelectric and piezoelectric properties of Bi3.15Pr0.85Ti3O12 thin films on Pt(100)/Ti/SiO2/Si substrates. Journal of Applied Physics, 2007.101:054111
    [53]Kim K.T., Kim C.I., Effect of lanthanides-substituted on ferroelectric properties of bismuth titanate thin films prepared by metalorganic decomposition. Materials Science and Engineering:B,2005.118:229-233
    [54]Ni Z., Tadashi S. C-axis-oriented Bi3.25La0.75Ti3O12 ferroelectric thin film fabricated by chemical solution deposition. Materials Letters,2007.61:2935-2938
    [55]Chon U., Jang H.M., Kim M.G., et al. Layered Perovskites with Giant Spontaneous Polarizations for Nonvolatile Memories. Physical Review Letters,2002.89:087601
    [56]Hou F., Shen M.R., Cao W.W. Ferroelectric properties of neodymium-doped Bi4Ti3O12 thin films crystallized in different environments. Thin Solid Films,2005.471:35-39
    [57]Garg A., Barbr Z.H., Dawber M., et al. Orientation dependence of ferroelectric properties of pulsed-laser-ablated Bi4-xNdxTi3O12 films. Applied Physics Letters,2003.83:2414
    [58]Chon U., Shim J.S., Jang H.M. Ferroelectric properties and crystal structure of praseodymium-modified bismuth titanate. Journal of Applied Physics,2003.93:4769
    [59]Hen M., Liu Z.L., Wang Y., et al. Ferroelectric properties of Pr6O11-doped Bi4Ti3O12. Solid State Communications,2004.130:735-739
    [60]Kim K.T. South Korea:IEEE International Conference on Plasma Science,2003,403
    [61]Chon U., Kim K. B., Jang H. M., et al. Fatigue-free Samarium-modified Bismuth Titanate (Bi4-xSmxTi3O12) Film Capacitors Having Large Spontaneous Polarizations. Applied Physics Letters,2001.79:3137
    [62]Kim S.S., Bae C.J., Kim W.J., Fabrication and ferroelectric studies of (Bi, Gd)4Ti3O12 thin films grown on Pt/Ti/SiO2/Si and p-type Si substrates. Journal of Crystal Growth,2005.274: 394-401
    [63]Cheng C.P., Tang M.H., Ye Z., et al. Microstructure and ferroelectric properties of dysprosium-doped bismuth titanate thin films. Materials Letters,2007.61:4117-4120
    [64]Cheng C.P., Tang M.H., Ye. Z., et al. Structure evolution and ferroelectric properties of Bi3.4Yb0.6Ti3O12 thin films crystallized under a moderate temperature. Materials Letters, 2007.61:3563-3566
    [65]Guo D.Y., Li M.Y., Wang J., et al. Ferroelectric properties of Bi3.6Ho0.4Ti3O12 Thin films prepared by sol-gel method. Applied Physics Letters,2007.91:232905
    [66]Chen X.Q.,. Qi H.Y, Qi Y.J., et al. Ferroelectric and dielectric properties of bismuth neodymium titante ceramics prepared using sol-gel derived fine powders. Physics Letters A, 2005.346:204-208
    [67]Kim J.K., Kim J., Song T.K., et al. Ferroelectric properties of tungsten-doped bismuth titanate thin film prepared by sol-gel route. Materials Letters,2002.57:964-968
    [68]Noguchi Y, Miyayama M. Large remanent polarization of vanadium-doped Bi4Ti3O12. Applied Physics Letters,2001.78:1903-1905
    [69]唐庆圆.钒掺杂及钕/钒复合掺杂钛酸铋陶瓷的制备和性能的研究:[硕士学位论文].上海:东华大学材料科学与工程,2007
    [70]Kim J.K., Lee H.S., Kim J. Fabrication of Nb-doped bismuth titanate thin films using nonionic block copolymer Enhanced ferroelectric properties. Materials Letters,2006.60: 2090-2093
    [71]Bao Z.H., Yao Y.Y., Zhu J.S., et al. Study on ferroelectric and dielectric properties of niobium doped Bi4Ti3O12 ceramics and thin films prepared by PLD method. Materials Letters,2002.56:861-866
    [72]Shulman H.S., Damjanovic D., Setter N. Niobium doping and dielectric anomalies in bismuth titanate. Journal of the American Ceramic Society,2000.83:528-532
    [73]Watanabe T, Osada M., Noguchi Y, et al. Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on the low-temperature deposition. Applied Physics Letters,2002.80:100-102
    [74]Watanabe T., Osada M., Noguchi Y, et al. Large remanent polarization of Bi4Ti3O12-base thin films modified by the site engineering technique, Journal of Applied Physics,2002.92: 1518-1521
    [75]Uchida H., Matsuda H., Watanabe T. Approach for enhanced polarization of polycrystalline bismuth titanate films by Nd3+/V5+cosubstitution. Applied Physics Letters,2002.81: 2229-2231
    [76]Cheng Z.X., Wang X.L., Dou S.X. et al. Ferroelectric properties of Bi3.25Sm0.75V0.02T2.98O12 thin film at elevated temperature. Applied Physics Letters,2007.90:222902
    [77]Singh S.K., Ishiwara H. Site engineering in chemical-solution-deposited Bi3.25La0.75Ti3O12 thin films using Ce, Zr, Mn and Si atoms. Journal of Sol-Gel Science and Technology,2007. 42:231-238
    [78]Li W., Yin Y., Su D., et al. Ferroelectric properties of polycrystalline bismuth titanate films by Nd3+/W6+ cosubstitution. Journal of Applied Physics,2005.97:84102
    [79]Yu H.F., Zeng H.R., R.Q. Chu. In situ characterization of domain structure and local elasticity in Nb-doped Bi4Ti3O12 ceramics by Scanning Probe Microscopy. Materials Letters, 2005.59:1538-1541
    [80]Santos V.B., M'Peko J.C., Mir M., ei al. Microstructural, structural and electrical properties of La3+-modified Bi4Ti3O12 ferroelectric ceramics. Journal of the European Ceramic Society, 2009,29:751-756
    [81]Stojanovic B.D., Simoes A.Z., Paiva-Santos C.O., et al. Effect of processing route on the phase formation and properties of Bi4Ti3O12 ceramics. Ceramics International,2006,32: 707-712
    [82]张联盟,黄学辉,宋晓岚.材料科学基础.武汉:武汉理工大学出版社,2003.527
    [83]Idink H., Srikanth V., William B., et al. Raman study of low temperature phase transition in bismuth titanate Bi4Ti3O12. Journal of Applied Physics,1994.76:1819-1823
    [84]Dua Y.L., Chen G, Zhang M.S. Grain size effects in Bi4Ti3O12 nanocrystals investigated by Raman spectroscopy. Solid State Communications,2004.132:175-179
    [85]Osada M., Tada M., Kakihana M., et al. Observation of ferroelectric domains in bismuth-layer-structured ferroelectrics using Raman spectroscopy. Materials Science and Engineering:B,2005.120:95-99
    [86]Watanabe T., Kimura T., Yamaguchi T. Sintering of Platelike Bismuth Titanate Powder Compacts with Preferred Orientation. Journal of the American Ceramic Society,1991.74: 139-147
    [87]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,1992.327-328
    [88]Guo D.Y., Zhang L.M., Li M.Y., et al. Effect of Ho Content on Microstrcture and Ferroelectric Properties of Bi4-xHoxTi3O12 Thin Films Prepared by Sol-Gel Method. Journal of the American Ceramic Society,2008.91:3280-3284
    [89]吴云翼.钛酸铋系铁电薄膜材料改性研究:[博士学位论文].武汉:华中科技大学凝聚态物理,2008
    [90]Chmielowski R., Madigou V., Ferrandis P., et al. Ferroelectric Bi3.25La0.75Ti3O12 thin films on a conductive Sr4Ru2O9 electrode obtained by pulsed laser deposition. Thin Solid Films, 2007.515:6314-6318
    [91]张端明,赵修建,李智华等.脉冲激光沉积动力学与玻璃基薄膜.武汉:湖北科学技术出版社,2006
    [92]Desu S.B., Peng C.H., Kammerdinner L., et al. Characterization of Ferroelectric Thin Films by ESCA. Materials Research Society Symposium Proceedings,1990.200:319-323
    [93]Dudkevith V.P., Bukreev V.A., Mukhortov V.M., et al. Internal size effect in condensed BaTiO3 ferroelectric films. Physical Statues Solid,1981. A65:463-467
    [94]Ren S.B., Lu C.J., Liu J.S., et al. Size-related ferroelectric-domain-structure transition in a polycrystalline PbTiO3 thin film. Physical Review,1996. B54:R14337-R14340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700