超临界CO_2条件下聚丙烯腈和聚酯的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界CO_2合成技术已逐渐应用到各种聚合物的合成中。它可作为一种连续相的溶剂,代替有机溶剂的使用,减少了对环境的污染。本文选取了丙烯腈和对苯二甲酸乙二醇酯作为研究的对象,分别探索它们在超临界CO_2条件下的合成情况。主要研究结果如下:
     1.以超临界CO_2做溶剂,偶氮二异丁腈AIBN做引发剂,成功地进行了丙烯腈的沉淀聚合反应(下文简称CO_2-PAN),并且反应能得到每批20-40克的聚丙烯腈。此外,对于丙烯腈和丙烯酸甲酯在超临界CO_2下的共聚反应,也做了简单尝试。
     2.采用~(13)C NMR分析技术对CO_2-PAN的立体化学进行了研究。在五单元序列的基础上,对CN碳峰的~(13)C NMR谱用统计方法进行了分析,研究表明CO_2-PAN的链增长过程符合Bernoulli统计模型。
     3.CO_2-PAN在立构规整性上完全是无规的。其二单元组等规立构(m)的含量为0.4,三单元组等规立构(mm)的含量为0.153,而四单元组等规立构(mmm)的含量为0.057,它比常规水相沉淀聚合(简称R-PAN)或水相悬浮聚合(简称S-PAN)分别低出22%,43%,59%。尽管由这三种聚合反应合成的聚丙烯腈在立构规整性上都是无规的,但CO_2-PAN等规立构度偏低的原因可能是由于所采用的溶剂的非极性效应所至。由于CO_2是非极性分子,在超临界CO_2中聚合比在水相中聚合更容易促使氰基之间的排斥作用,减少了在增长链上形成内消旋(m)的机率。
     利用IR光谱对CO_2-PAN三单元组立体规整性做了分析,并且与~(13)C NMR方法做了对比,发现mm含量分别为0.16和0.153,结果是吻合的。
     4.以已知相对分子质量及其分布的聚丙烯腈宽分布共聚物为标样,采用GPC法,得到了有效的标定直线。根据标定直线测定了超临界CO_2中合成的聚丙烯腈均
    
    东华大学博士论
    聚物的相对分子质量及分布。并将CPC法测得的各种平均相对分子质量结果与粘度
    法所测得的粘均相对分子质量做了比较,结果是一致的。测得COZ一PAN的粘均相
    对分子质量大约在1.5火104一1.0火1护创mol,相对分子质量分布人九从冻大部分约在3,o
    左右,而常规工业上水相沉淀法合成的能用于纺丝的聚丙烯睛粘均相对分子质量一
    般在2.0火104一8.0火1049/mol左右,相对分子质量分布左凡从么一般小于2.5。这说明用
    超临界CO:沉淀法合成的PAN相对分子质量能达到与常规水相沉淀法合成的基本
    一样,但相对分子质量分布较宽。
     5.研究了聚合反应条件,如单体和引发剂浓度、反应时间、超临界COZ压
    力、反应温度对C姚一PA人的相对分子质量,相对分子质量分布及转化率的影响。结
    果发现,超临界CO:中丙烯睛的沉淀聚合反应遵循一般的自由基反应规律。此外由
    一于PAN粒子的沉淀效应使反应中产生了自动加速现象。并且在高压下,由于超临界
    CO:的溶解性增加,从而能提高生成的聚合物的相对分子质量,并且相对分子质量分
    布变窄。
     6.超临界CO:中合成的聚丙烯睛完全具有加工性能。将所得产物进行纺丝实
    验得到了具有一定强力的、3dtex左右的单孔纤维。纤维的强力与纤度相近的普通
    睛纶纤维差不多,但断裂伸长较小。此外用液相色谱法测定出由超临界CO:合成的
    聚丙烯睛中微量丙烯睛的含量很小,完全能达到工业上要求的纺丝标准。
     7.对在超临界CO:下合成聚对苯二甲酸乙二醇酷(PET)做了尝试。认为小
    分子缩合物乙二醇能被超临界CO:萃取,且超临界CO:能充当增塑剂,使反应在较
    低温度下进行。
Supercritical CO2 has been broadly applied as a solvent to produce industrial polymers, because it provides intense advantages as an environmentally friendly, inexpensive and nonflammable alternative to the aqueous and organic solvents. In this dissertation, polymerizations of acrylonitrile and ethylene terephthalate in supercritical CO2 were investigated respectively. The main conclusions are as follows:
    (1) Utilizing 2, 2'-azo(bisisobutyronitrile) (AffiN) as the free radical initiator and under the condition of supercritical carbon dioxide, the precipitation polymerization of acrylonitrille (hereafter, referred as CO2-PAN) was successfully carried out in our laboratory. In addition, copolymer of (AN-co-MA) was also tried in supercritical CO2.
    (2) The meso and racemic sequence distribution of the polymer chain is a direct reflection of the characteristic feature of the polymerization reaction by which polymer is synthesized. In order to analyses CO2-PAN polymerization mechanism through sequence distribution of PAN chain, we evaluated the pentad tacticities of CO2-PAN from the intensities of cyano peaks splitting into ten peaks in 13C NMR spectra, all of which are assigned by Kamide et al, and tried to examine these values by statistical methods. It was found that the sequence distributions of CO2-PAN obey Bernoulli statistics.
    (3) The triad and pentad tacticties, (i.e. the content of mmmm, mmmr, rmmr, mmrm, mmrr, rmrm, rmrr, mrrm, mrrr, and rrrr(m, meso; r, racemic)), of the CO2-PAN were analyzed by
    C NMR spectra. It was found that CO2-PAN was completely random in stereoregularity. Compared with the aqueous phase suspension polymerization of AN, using AIBN as initiator, (hereafter, referred as S-PAN) and aqueous phase precipitation polymerization of AN, using redox type initiator, (hereafter, referred as R-PAN), it was found isotacticity of CO2-PAN was lower than those of S-PAN and R-PAN, although the three kinds of PAN were all random in stereoregularity. The (m) content of CO2-PAN was about 0.4, the (mm) content 0.153 and the (mmm) content 0.057, which is lower than those of the S-PAN or R-PAN by aqueous phase radical polymerization methods by 22%, 43%, 59% respectively. The lower isotacticity of CO2-PAN may be due to the non-polar property of CO2. The
    
    
    polymerization in supercritical CO2 seems helpful to repulsion between cyano groups, which reduce the chance of meso sequence on the propagation chain. The triad isotacticity (i.e. the content of mm) of CO2-PAN was also determined by IR method using Minagawa's equation of the quantitative relationship between intensity of IR bands and isotaticity percentage. The calculated result is accordant with the C NMR method used.
    (4) The effective linear molecular weight calibration curve of polyacrylonitrile was obtained using a copolymer standard with a single broad molecular weight distribution. The molecular weights and molecular weight distributions of PAN obtained from precipitation polymerization of acrylonitrile in supercritical CO2 were quantitated by the calibration curve. The viscosity -average molecular weight has also been determined and the results are accordant with the GPC results. TheMv of CO2-PAN was about 1.5X 104~1
    X 105g/mol and the MWD of PAN were around 3. It seems that the products obtained from precipitation polymerization in supercritical CO2 have slightly broader molecular weight distributions.
    (5) By varying the concentration of monomer and initiator, the total reaction time, the CO2 pressure as well as temperature, the effects on the molecular weight and MWD have been respectively studied. The molecular weight distribution became broad as the monomer concentration increased. There was no appreciable effect of initiator concentration on molecular weight distribution when AIBN concentration ranged from 1.0% to 2.5%. Changing the density of the continuous phase by manipulating the CO2 pressure had a dramatic effect on the reaction. The higher density CO2 at higher pressure has the greater solvency for the gro
引文
[1] 胡英著.近代化工热力学.上海:上海科技文献出版社.1994:133
    [2] Hannay J B, Hogarth J. Proc Roy Soc, 1879, 29:324
    [3] Hannay J B. Proc Roy Soc, 1880, 30:484
    [4] Villard P. J Phys, 1896, 5:455
    [5] Prins A. Acad Sci Amsterdam, I915, 17:1095
    [6] Pilat S, Godlewicz M. U S 2 188 012
    [7] Katz D L, Kurate F. Ind Eng Chem, 1940, 32:817
    [8] 张安定,陆志禹,时钧.南京化工学院学报,1992,14(2):79
    [9] Kohn P M, Savage P R, Mcqueen S. Chem Eng, 1979, 86(6): 41
    [10] Worth W. Chem Eng News, 1981, 59(31):16
    [11] Chem Week, 1983, 132 (1): 33
    
    
    [12] Randolph T W. TIBTECH, 1990, 8: 78
    [13] Basta N, Me Queen S. Chem Eng, 1985, 92 (3) : 14
    [14] Me Hugh M A, Krukonis V J. Supercritical Fluid Extraction Principle and Practice. 2nded Boston. Butterworth, 1994, Ch.1
    [15] Brennecke J F, Eckert C A. AIChE J, 1989, 35: 1409
    [16] 朱自强,高校化学工程学报, 1994, 8(1) : 1
    [17] Tahl E, Schilz Winfreid, Schutz E, Willing E, in Schneider G M eds, Extraction with Supercritical Gases, 1980: 93-114
    [18] Ebeling H, Franck E U. Ber Bunsenges Phys Chem, 1984, 88: 862-865
    [19] Peker H, et al. AIChE J, 1992, 38 (5) : 761-770
    [20] Zosel K. US Patent 1981, 4247570
    [21] RoseliusL, et al. US Patent 1974, 3843824
    [22] Yu Zer-Ran, Singh J, Rizvi Syed S H. J of Supercritical Fluid, 1994, 7: 51-59
    [23] Zosel K. US Patent 1982, 4331695
    [24] Zosel K. US Patent 1976, 3969382
    [25] " Design and Economics". In Supercritical Fluid Science and Technology, 1989, ACS Symp Series 406: 478-498
    [26] Auerbach E B. US Patent 1805751,1931
    [27] Wilson R E, Keith P C, Haylett R E. Ind Eng Chem, 1936, 28:1065
    [28] Dickinson N L, Meyers J M. J Am Oil Chem Soc, 1952, 29: 235
    [29] Nelson S R, et al. Chem. Eng Prog, 1985 (5) : 63-68
    [30] Gearhart J A. US Patent 4239616, 1980
    [31] Leonard R E. US Patent 4290880, 1981
    [32] Leonard R E. US Patent 4305814, 1981
    [33] Krukonis V J, Supercritical Fluid nucleation of difficult-to comminutes solids. Paper presented at the AIChE . Annual Meeting. San Francisco, CA: Nov. 1984
    [34] Krukonis V J, Coffey M P, Gallagher P M. Exploratory Development on A New Process to Produce Improved RDX Crystal: Supercritical Fluid Antisolvent Recrystallization, Phasex
    
    Corporation Final Report to U.S. Army Ballistics Research Laboratory, Contr, DAAA15-86-C-007, 1988
    [35] Chang C J, Randolph A D. AIChE J, 1990, 36:939
    [36] Shishkura A, Takahashi H, Hisohama S, Arai K. J Supercritical Fluids, 1992, 5:303
    [37] 蔡建国,杨中文,周展云.华东理工大学学报,1994,20:317
    [38] Sand M L. US 4598006. 1986
    [39] Nakamura K, Chi Y M., Yamada Y, Yano T. Chem Eng Common, 1986, 45:207
    [40] Chi Y M, Nakamura K, Yano T. Agric Biol Chem, 1988, 52(6): 1541
    [41] Randolph T W, Clark D S, Blanch H W, Prausnitz J M. Science, 1988, 239:387
    [42] Van Eijs A M, de Jong J P, Doddema H J, Lindeboom D R. In: Perrut, Ed, Proceedings of International Symp On Supercritical Fluids. Paris: Societe Francaise de Chimie, 1988. 933
    [43] Miller D A, Blanch HW, Prausnitz J M. Ind Eng Chem Res, 1991, 30:939
    [44] 相宏伟,钟炳,彭少逸,吴东,范文浩.物理化学学报,1995,11:46
    [45] Modell M. U S 4338199. 1982
    [46] Sawicki J E, Casas B. Environ Prog, 1993, 12:275
    [47] 王涛,何胜悦,刘崇义,沈忠耀.化工学报,1996,47:381
    [48] Technol. Japan, 1994, 27:106
    [49] Scholsky K M, J of Supercritical Fluid, 1993, 6:103-127
    [50] Canelas D A, DeSimone J M. Polymerization in liquid and supercritical carbon dioxide. Adv Polym Sci, 1997, 133:103
    [51] Kendall J L, Canelas D A, Young J L, et al. Polymerization in supercritical carbon dioxide. Chem Rev, 1999, 99:543-563
    [52] 何中琴.超临界流体的萃取/色层分析法的应用.印染译丛,1997,(2):96
    [53] 陈维枢.超临界流体萃取的原理和应用.北京:化学工业出版社,1998:3~6
    [54] Saus W, Knittel D, Schollmeyer E. Dying of Textiles in Supercritical Carbon Dioxide Textile Research Journal, 1993, 63(3): 135-142
    [55] Chemical reviews, 1999, 99(2): 477
    
    
    [56] Tuminello W H, et al. Dissolving Perfluoropolymers in Supercritical Carbon Dioxide. Macromolecular, 1995, 28:1506
    [57] Guan Zhibin, Combes J R, Menceloglr Y Z, DeSimone J M. Homogeneous Free Radical Polymerizations in Supercritical Carbon Dioxide: 2. Thermal Decomposition of 2, 2'-Azobis(isobutyronitrile). Macromolecules, 1993, 26(11) : 2663-2669
    [58] Brennecke J F, Tomasko D L, Eckert C A. Fluorescence Spectroscopy Studies of Dilute Supercritical Solutions. Ind Eng Chem Res, 1990, 29: 1682-1690
    [59] 胡红旗,陈鸣才,黄玉惠,丛广民.超临界CO2流体的性质及其在高分子科学中的应用.化学通报, 1997, (12) :20
    [60] Chaudhary A K, Beckman E J, Russell A J. Rational Control of Polymer Molecular and Dispersity during Enzyme-Catalyzed polyester Synthesis in Supercritical Fluids. J Am Soc, 1995, 117: 3728-3733
    [61] Kumar S K, Chhabria S P, Suter U W et al. Solubility of Polystyrene in Supercritical Fluids. Macromolecule, 1987, 20: 2550-2557
    [62] Mawson S, Johnston K P, DeSimone J M et al. Formation of Poly (1,1,2,2-tetrahydroperfluorodecyl acrylate) submicron fibers and particles from supercritical carbon dioxide solutions. Macromolecular, 1995, 28: 3182-3191
    [63] Chiou J S, Barlow J W, Paul D R. Plasticization of Glassy Polymers by CO2. J Appl Polym Sci, 1985, 30: 2633-2642
    [64] Goel S K, Beckman E J. Plasticization of Poly (methyl methacrylate) networks by supercritical carbon dioxide. Polymer, 1993, 34 (7) : 1410-1417
    [65] Watkins J J, McCarthy T J. Polymerization in supercritical fluid-swollen polymers: A new route to polymer blends. Macromolecules, 1994, 27: 4845-4847
    [66] Paulaitis M E, Alexander G C. Reactions in supercritical fluids. A case study of the thermodynamic solvents effects on a Diels Alder reaction in supercritical carbon dioxide. Pure Appl Chem, 1987, 59 (1) : 61-68
    
    
    [67] Ganapathy S, Carlier C, O'Brien J A et al. Influence of local structure correlations on free-radical reactions in supercritical fluids: a hierarchical approach. Ind Eng Chem Res, 1996, 35: 19-27
    [68] Biddulph R H , Plesch P H. J Chem Soc, 1960,3913
    [69] Hagiwara M, et al. FR, 1524533. 1968
    [70] Hagiware M, Mitsui H, Machi s et al. Liquid Carbon Dioxide as a solvent for the Radiation Polymerization of Ethylene. J polym Sci, Part-A, 1968, 6(3) : 603
    [71] Fukui K, et al. US, 3522228. 1970
    [72] SertageWG, et al. CA, 1274942. 1986
    [73] Hartmann H and Denzinger W. US, 4748220. 1988
    [74] Herbert M W and Huvard G S, EP, 88112198. 2. 1988
    [75] DeSimone J M, et al. Synthesis of Fluoropolymers in Supercritical Carbon Dioxide. Science, 1992, 257:945
    [76] DeSimone J M, Maury E E, Menceloglu Y Z et al. Disperizations in Supercritical Carbon Dioxide. Science, 1994, 265: 356-359
    [77] Guan Zhi bin, Combes J R, Elsbernd C S et al. Synthesis of Fluoropolymers in Supercritical Carbon Dioxide. Polymer Preprint, 1993, 34 (1) : 447-448
    [78] Kapellen K K, Mistele C D, DeSimone J M. Synthesis of Poly (2, 6-dimethylphenylene oxide) in Carbon diocide. Macromolecules, 1996, 29: 495-496
    [79] Hagiwara M, Mitsui H, Machi S, Kagiya T. Kinetics of the r-Radiation Induced Polymerization of Ethylene in Liquid Carbon Dioxide. J Polym Sci part A-1, 1968, 6 (3) : 609-621
    [80] Romack T J, Maury E E, DeSimone J M. Precipitation Polymerization of Acrylic Acid in Carbon Dioxide. Polym Prepr, 1994, 35 (2) : 741-742
    [81] Romack T J, Maury E E, DeSimone J M. Precipitation Polymerization of Acrylic Acid in Supercritical Carbon Dioxide. Macromolecular, 1995, 28 (4) :912-915
    [82] 胡红旗,陈鸣才,李静等.超临界CO2中的丙烯酸聚合反应.高分子学报,1998,(6) :740-743
    [83] Consani K A. Smith R D. J Supercrit Fluids, 1990, 3, 51-65
    
    
    [84] Napper, D H. Polymeric. Stabilization of Colloidal Dispersions. Academic Press: New York. 1983
    [85] Hsiao Yu-Ling, Maury E E, DeSimone J M. Dispersion Polymerization of Methyl Methacrylate Stabilized with Poly ( 1, 1-dihydroperfluorooctyl acrylate ) in Supercritical Carbon Dioxide. Macromolecules, 1995, 28: 8159-8166
    [86] Hsiao Yu-Ling, DeSimone J M. Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide: Influence of Helium Concentration on Particle Size Distribution. J Polym Sci Part A, 1997, 35 (10) :2009-2013
    [87] O'Meill M L, Yates M Z, Johnston K P et al. Dispersion Polymerization in Supercritical CO2 with a Siloxane-Based Macromonomer: 1. The Particle Growth Regime. Macromolecules, 1998,31: 2838-2847
    [88] Canelas D A, DeSimone J M. Siloxane-Based Stabilizers for the Dispersion Polymerization of Styrene in Supercritical Carbon Dioxede. Polym Prepr, 1996, 37(2) : 542-543
    [89] Canelas D A, Betts D E, DeSimone J M. Dispersion Polymerization of Styrene in Supercritical Carbon Dioxide: Importance of Effective Surfactants. Macromolecules, 1996, 29:2818-2821
    [90] Canelas D A, Betts D E, DeSimone J M. Preparation of poly (vinyl acetate) Latexes in Liquid and Supercritical Carbon Dioxide. Polym Prepr, 1997, 38(2) : 628-629
    [91] Canelas D A, Betts D E, DeSimone J M. Poly(vinyl acetate) and Poly(vinyl acetate-co-ethylene) Latexes via Dispersion Polymerizations in Carbon Dioxide. Macromolecules, 1998, 31(20) : 6794-6805
    [92] Adamsky F A, Beckman E J, Inverse Emulsion Polymerization of Acrylamide in Supercritical CO2. Macromolecules, 1994, 27: 312-314
    [93] Maury E E, Batten H J, Killian S K et al. Graft Copolymer Surfactants for Supercritical Carbon Dioxide Applications. Polym Prepr, 1993, 34: 664-665
    [94] Clark M R, DeSimone J M Cationic Polymerization of Vinyl and Cyclic Ethers in Supercritical and Liquid Carbon Dioxide. Macromolecules, 1995, 28: 3002-3004
    
    
    [95] Clark M R, DeSimone J M. Cationic Polymerizations in Supercritical Carbon Dioxide. Polym Prepr, 1994, 35(1) : 482-483
    [96] Pernecker T, Kennedy J P. Carbocationic Polymerizations in Supercritical Carbon Dioxide. 1. Exploratory experiments with isobutylene. Polym Bull, 1994, 32: 537
    [97] Burke A L C, Givens R D, DeSimone J M. Use of CO2 in Step-Growth Polymerizations: From Plasticized Polymer Melts to Solid State Polymerizations. Polym Prepr, 1997, 38(2) :387-388
    [98] Burke A L C, Maier G, DeSimone J M. Synthesis of Polyesters in Supercritical Carbon Dioxide. Polym Mater Sci Eng, 1996, 74: 248-249
    [99] Odell P G, Hamer G K. Polycarbonates via Melt Transesterification in Supercritical Carbon Dioxide. Polym Prepr, 1997, 38(2) : 470-471
    [100] Givens R D, Jikei M, DeSimone J M. Synthesis of Polyamides and Polycarbonates using Supercritical CO2 . Polym Prepr, 1997, 38(2) : 468-469
    [101] Gross S M, Flowers D, Roberts G et al. Solid State Polymerization of Polycarbonates Using Supercritical CO2. Macromolecules, 1999, 32(9) : 3167-3169
    [102] Beckman E, Porter R S. Crystallization of Bisphenol a Polycarbonate induced by Supercritical Carbon Dioxide. J Polym Sci Part B, 1987, 25(7) : 1511-1517
    [103] Sharp K G, J Sol-Gel Sci. Thechnol, 1994, 2:35-41
    [104] M.Sittig. Chem Process Rev No 62: Acrylic and Vinyl Fibers, 1972
    [105] Mark H F, Atlas SN, Cernia E. Man-made Fibers, Science and Technology, Vol. 3. J. Wiley, NewYork, 1968
    [106] Thomas W M. Mechanism of Acrylonitrile Polymerization. Forschr Hochpolym Forsch,1961,2 : 401-441
    [107] Japan Exlan Comp, DE-AS 1223554, 1962
    [108] Du Pont, DE-AS 1174070,1960
    [109] Whinfield J R, Dickson J T.(Calico Printers), GB 578079, 1941

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700