二茂铁基聚合物的合成和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二茂铁基聚合物是一类新型的功能聚合物,在电子、电化学、光学、电磁等方面表现出独特的性能,具有广泛的应用前景和重要的基础理论研究价值。
     本文合成了五个系列的聚二茂铁硅烷(PFS),它们是聚二茂铁二甲基硅烷(PFDMS)、聚二茂铁甲基苯基硅烷(PFMPS)、聚二茂铁甲基(4-甲酸丁酯基)苯氧基硅烷(PFMBOCS)、聚二茂铁甲基(3-二乙胺基)苯氧基硅烷(PFMDEAS)和聚二茂铁甲基(4-二甲胺基)苯基硅烷(PFMDMAS),其中PFMBOCS、PFMDEAS和PFMDMAS是未见报道的新聚合物。采用氢-核磁共振谱(H-NMR)、傅立叶红外光谱(FT-IR)、紫外-可见光谱(UV-Vis)对合成的聚合物进行了结构表征;采用凝胶色谱(GPC)测定了合成的PFS的分子量和分子量分布。PFS的UV-Vis光谱表明,PFS分子中Si桥原子上的取代基对分子的电荷分布和电子跃迁有一定影响,侧链取代基的电子效应和共轭效应在一定程度上可以通过Si原子传递。采用示差扫描量热法(DSC)和热重分析(TGA)测定了合成的PFS的热性能,结果表明,聚合物的分子结构对PFS的结晶性能有明显影响,PFDMS的硅桥上有对称小体积取代基时,聚合物是部分结晶的,其玻璃化转变温度较低(小于40℃)。PFMPS和PFMDMAS的硅桥上为非对称大取代基,且苯环以C-Si键与主链连接,具有一定的空间位阻,聚合物为非晶态结构,玻璃化转变温度也较高(大于90℃)。PFMBOCS和PFMDEAS的硅桥上也是非对称大取代基,但取代基是以具有较高柔顺性的C-O-Si键与主链连接,所以聚合物是部分结晶的,但结晶度比PFDMS低,熔融热焓△H_m小,玻璃化转变温度也比PFDMS高(大于50℃)。PFS在氮气氛中具有较高的热稳定性,分解温度为400~600℃。PFS的热稳定性与聚合物的分子结构有关,硅桥上取代基以C-Si链链接的聚合物较为稳定,而取代基以C-O-Si键链接的聚合物热稳定性较差。采用基于原子力显微镜的单分子力谱仪得到了PFDMS和PFMPS在氧化前后的单分子力谱。结果表明,两种聚合物虽然带有不同侧链基团,但在常态时表现出相似的弹性,它们的常态焓弹性均为22.0nN。而在氧化态时,由于聚合物链上增加的正电荷引起库仑排斥力,使它们的焓弹性比常态时明显增大。也由于侧基的空间效应增大,对氧化态PFDMS(o-PFDMS)和氧化态PFMPS(o-PFMPS)的弹性产生不同影响,使得氧化态的单分子链弹性产生差异,o-PFDMS的焓弹性为53.0nN,而o-PFMPS的焓弹性为200.0nN。
     采用循环伏安(CV)法和电化学石英晶体微天平(EQCM)技术研究了PFDMS膜和PFMPS膜在八种电解质水溶液中的CV行为;研究了PFDMS膜和PFMPS膜在LiClO_4水溶液中,电位扫描速度、电解质浓度、温度和膜厚度对PFS膜的CV行为的影响规律;研究了PFDMS膜、PFMPS膜、PFMDEAS膜和PFMBOCS膜在八种有机溶剂中的CV行为;
Ferrocene-based polymer as a new class of functional polymer with special electronic, electrochemical, optical, and magnetic properties has extensive application prospects and important values in academic research.In this paper, five series of polyferrocenylsilanes (PFS), polyferrocenyldimethylsilane (PFDMS) , polyferrocenylmethylphenylsilane (PFMPS) , polyferrocenylmethyl (3-diethyl-amino-) phenoxysilane (PFMDEAS), polyferrocenylmethy (4-butoxycarbonyl-) phenoxysilane (PFMBOCS) , polyferrocenylmethyl (4-dimethylamino-) phenylsilane (PFMDMAS) , are synthesized, and PFMDEAS, PFMBOCS, PFMDMAS are new polymers which have not been reported in literatures. The structures of the resultant polymers are characterized by 'H-NMR, FT-IR, UV-Vis spectra. The molecular weights and polydispersities of the polymers are measured by GPC. The UV-Vis spectra of PFS indicate that the substitution groups on the Si bridge of PFS have some influence on charge distribution and electronic transition of the molecule, therefore affect their electronic spectra. The electronic effect of the substituents can pass through the Si bridge in some extent. The thermal properties of the resultant polymers are investigated by the DSC and TGA techniques. The results indicate that the molecular structure of polymer has significant effect on the crystallization of PFS. The PFDMS with small and symmetric substitution groups on the Si bridge exhibits the thermal properties of partial crystallization and its glass transition temperature (T_g) is low (lower than 40℃). The substituents on the Si bridge of PFMPS and PFMDMAS are large and unsymmetrical. The phenyl groups link directly with main chains by means of C-Si bond. The steric hindrance makes the polymers exhibit the thermal properties of non-crystalline and their glass-transition temperatures are high (higher than 90℃). The substitution groups on Si bridges of PFMBOCS and PFMDEAS are large and unsymmetrical, but the phenyl rings link with main chains through C-O-Si bond which has more flexibility than C-Si bond, so that the PFMBOCS and PFMDEAS exhibit the thermal properties of partial crystallization, but their degrees of crystallinity and melting enthalpies A H_m are lower than those of PFDMS, and their glass-transition temperatures T_g are higher than that of PFDMS (higher than 50 ℃). However, PFS has high thermal stability in nitrogen atmosphere. PFS suffers weight loss at ca. 400-600 ℃. Our studies have also shown that the substituents on silicon greatly affect stability of the polymers. The thermal stabilities of PFS with
    symmetric substituents and C-Si bonds are higher than those with unsymmetrical substituents and C-O-Si bonds. The single-molecular force spectroscopy (SMFS) of PFDMS and PFMPS before and after oxidation is obtained by using AFM-based single-molecular force spectroscopy. The two polymers show similar elasticity in normal form, and their single-chain enthalpic elasticity is 22 nN, though bearing different side groups. However, in the oxidized form the difference between o-PFDMS and o-PFMPS in their enthalpic elasticity due to steric effect of side groups on single-chain elasticity are found, the single-chain enthalpic elasticity of o-PFDMS is 53 nN, and that of o-PFMPS is 200 nN.The electrochemical behaviors of PFS have been studied by means of cyclic voltammetry (CV) and electrochemical quartz crystals microbalance (EQCM). The CV behaviors of PFDMS film and PFMPS film in eight kinds of aqueous electrolyte solutions, and the effects of various factors, such as potential scan rate, electrolyte concentration, temperature, and film thickness on the CV behaviors of PFDMS film and PFMPS film in LiC104 aqueous solutions have been investigated. The CV behaviors of PFDMS film, PFMPS film, PFMDEAS film, and PFMBOCS film in eight kinds of organic solutions, and the CV behaviors of PFDMS film in NaBPh4, BU4NCIO4, BU4NBF4 solutions have also been investigated. Some results have been found. The PFS film on electrode surface will be oxidized to cationic polyferrocenium during oxidation process, and the electrolyte anions will penetrate into the film for charge neutrality. So that, the solvent, electrolyte, concentration of electrolyte, temperature and thickness of film will affect the electrochemical behavior of PFS film. It is found that the electrochemical redox processes of PFS films in aqueous and organic solutions all are diffusion controlled ones. The experimental results indicate that PFS films are poor-solvent-swollen in aqueous electrolyte solutions, and this result in a high resistance of mass transfer, slow rate of electrode reaction, and weak interaction of active centers, therefore, low-reversible or irreversible CV processes are obtained. There are obvious difference in the CV potential and CV current of PFS films in various aqueous solutions. The reduction potentials of PFDMS range 0.32 V to 0.48 V, and the oxidation potentials of PFDMS range 0.48 V to 0.58 V. The reduction potentials of PFMPS range 0.43 V to 0.59 V, and the oxidation potentials of PFMPS range 0.58 V to 0.73 V. The potential scan rate affects the reversibility of film electrode process. The electrode processes of PFS film are complex due to slow rate and low efficiency of charge transfer in the films. The CV reversibility of PFS decreases with increasing scan rate. The influences of supporting electrolyte concentration are investigated. Below 0.05 M, the increasing the concentration of electrolyte will decrease the resistance of solution, which will be favorable for charge transfer and increase the CV currents. When the concentration is larger than 0.05M, the concentration of electrolyte has very small effect on the
    CV behavior of the film. The thickness of PFS film affects the electrode process. In aqueous solutions, the CV behavior of PFS film exhibits the character of a single layer film and the peak current increases with increasing the thickness when the film is very thin. But the CV current will not increase with increasing the thickness, and the CV behavior of PFS film exhibits the character of diffusion controlled process when the film is thicker than a critical thickness. Because the thickness of film is thicker than the diffusion layer and the reaction layer of the electrode process in such case, and the film swelling, electrolyte penetration and mass transfer in the film play an important role. The kinetic parameters of film electrode processes, such as the surface transfer coefficient ana, the apparent diffusion coefficient Dapp and standard rate constant k° for electron transfer, for PFS films in LiClO4 aqueous solutions are measured, it is found that these kinetic parameters are all small. This result indicates that the rate of diffusion and the efficiency of charge exchange are very small in the PFS films. Elevated temperature increases the rates of diffusion and electrode process, and improves the reversibility of film electrode process. The CV currents of PFS film increase with increasing temperature. The electrochemical behaviors of PFS films in eight kinds of organic solvents are investigated. In "good" solvents, such as in methanol solutions the films are solvent-swollen moderately, the electrolytes are dissociated almost completely, the electrolyte ions penetrate into and out of the film easily, and the CV behavior of the films exhibits reversible features. In acetonitrile, ethyl acetate, and nitromethane solutions, the PFS films are over-swollen, which lead the films to dissolve gradually into the solutions, and the CV currents of the films attenuate gradually during the scanning, although the CV waves exhibit as the distinguishable double peaks. In ethanol, isopropanol, and n-butanol solutions, the swelling of the films, and the dissociation of electrolytes all reduce successively. The resistances of solutions, the resistances of mass transfer and diffusion in the films increase correspondingly. The CV waves of the films show that the double peaks gradually incorporate into overlapping peaks or single broad peaks, and the reversibility of CV process decrease gradually. In polar organic solutions, the diffusion coefficients of CV process of PFS film are large, which indicate that the film have good swelling, the resistance of mass transfer is small in the films. The diffusion coefficients decrease with decreasing the polarities of organic solvents, which indicate that the swelling of films is reduced. The electrolyte ion size effect on the CV behavior of PFS films in organic solvents is investigated. Electrolyte anions, as counter ions, take part in charges neutralizing in the films, so that the size of anion affects the CV behavior of films remarkably. The electrolyte cations do not take part in charges neutralizing in the films, so that the size of cations do not affect the CV behavior of films on the whole. The molecular structure of PFS has notable influence on the electrochemical behavior of PFS film. The PFDMS with small and symmetric substitution groups
    on Si bridge presents the symmetric, the narrowest, and the largest current CV peaks, which means the PFDMS film has the fastest rates of mass transfer and electrode reaction. The phenyl groups in PFMPS hobble the chain mobility in polymer, and restrict the surface charge transfer, so that, the kinetic parameters of PFMPS are smaller than those corresponding to PFDMS. The CV waves of PFMPS film have the broader peak shape, the higher peak potential, and the smaller peak current than those of PFDMS film. The C-O-Si bonds in molecules make the flexibility of PFMDEAS and PFMBOCS be better than PFMPS, which make the rate of mass transfer in PFMDEAS film and PFMBOCS film be faster than in PFMPS film, so that, the CV currents of PFMDEAS film and PFMBOCS film are larger than that of PFMPS film. The ether bonds and amine groups have big electron-donor effect, which make the CV currents of PFMDEAS film and PFMBOCS film be larger than that of PFMPS film. The big substitution groups make PFMDEAS and PFMBOCS have better compatibility with organic solutions, which make PFMDEAS film and PFMBOCS film be solvent swelled and mass losing easily in acetonitrile and acetone solutions. The amount of the redox charge and the response of EQCM in situ during the CV process indicate that there are only partial ferrocene units to take part in redox reaction in the PFS film on the electrode, and the amount of reacted ferrocene decreases with reducing the polarities of the solvents. In aqueous solution, the molar amount of C1O4" penetrating into the PFS film is equal to the molar amount of reacted Fe in the film, and the C1O4" is non-solvated in aqueous, that is, few water molecules accompany with anion into the film. In methanol solution, the C1O4* is solvated, the equal amount of methanol molecules penetrate into the film accompanying with C1O4". In ethanol solution, the CIO4" is solvated too, but the amount of ethanol molecules penetrating into films is smaller than CIO/. In acetone solution, the PFS film and C1O4" are highly solvated, the mass of film decrease gradually during the CV process. The studies on the CV of four PFS CH2C12 solutions indicate that the redox processes of PFS on glassy carbon electrode in CH2CI2 solutions are diffusion controlled reversibility processes. The CV waves of the PFS solutions present double peaks owing to the interaction of the active ferrocene. The oxidated PFS separates from solution and adsorbs on electrode surface during oxidation process. There are anions and solvent molecules penetrating into the adsorption layer. The kinetic analysis points out that the mass transfer process is controlled by solution diffusion, but contains the surface adsorption layer electrode process during the reduction process. The measured diffusion coefficients from PFS CH2C12 solutions are larger than those from PFS film in aqueous solutions, which indicate that the poor swelling film restricts the diffusion of electroactive species. The molecular structure of PFS influences the CV behaviors of PFS solutions. The big substitution groups on Si decrease the rates of mass transfer, so that, the C V current decease, the peak broaden,
    the potential separation of peak-peak increase in PFMPS solution, and the reversibility of electrode process reduce. The flexibility of PFS elevates the efficiency of mass transfer, and the electron-donor substitution groups on Si enlarge the charge densities of electroactive centers, and increase the charge amount of redox reaction, so that, the CV currents of PFMDEAS and PFMBOCS solutions are larger than that of PFMPS solution.Polycationic polyferrocenylsilanes (PFS+C1") is employed together with commercial poly(sodium styrenesulfonate) (PSS"Na+) in the electrostatic layer-by-layer self-assembly process to form multilayer films on quartz piece and gold electrode. The UV-Vis spectra of the multilayer self-assembly films on quartz are measured. The linear relation between absorbance and the number of bilayers is indicative for the formation of well-defined multilayer. The electrochemistry of PFS+-PSS" multilayer self-assembly films on gold electrodes indicates that the electrochemical properties of multilayer film depend on the number of layers and the properties of outermost layer. At the first few layers, the film electrode processes express as feature of single layer film surface localized. With increasing the number of layers the diffusion of electroactive species gradually become as controlling step. The resistance of mass transport in the film increases and the rate of diffusion in the film decreases with increasing the number of layers. The ratio of reactive ferrocene units in outside layers decreases and the reversibility of CV processes also decrease with increasing the number of layers. When PSS" is outermost layer, anionic film goes against the electrolyte anions penetrating into the multilayer film, and make the CV current smaller than that of below PFS+ layer film.
引文
[1] Foucher D A, Tang B Z, Manners I. Ring-opening polymerization of strained, ring-tilted ferrocenophanes: a route to high molecular weight poly(ferrocenylsilanes). J. Am. Chem. Soc., 1992, 114: 6246-6248.
    [2] Nguyen P, Stojcevic G, Kulbaba K, MacLachlan M J, Liu X H, Lough A J, Manners I. Synthesis, characterization and properties of symmetrically substituted, ring-opened poly(ferrocenylalkoxy/aryloxy silanes). Macromolecules, 1998, 31: 5977-5983.
    [3] Nguyen P, Gdmez-Elipe P, Manners I. Organometallic polymers with transition metals in the main chain. Chem. Rev., 1999, 99: 1515-1548.
    [4] Manners I. Poly(ferrocenylsilanes): novel organometallic plastics. Chem. Commun., 1999, 857-865.
    [5] 计兵,王立,封麟先.硅桥联[1] 二茂铁衍生物热开环聚合的研究进展.功能材料,2000, 31(4): 349-351.
    [6] Foucher D. A., Manners I. Ring-opening polymerization as a route to new organometallic polymers: synthesis of the first poly(ferrocenylgermane). Makromol. Chem. Rapid Commun., 1993, 14: 63-66.
    [7] Foucher D A, Edwards M, Burrow R A, Lough A J, Manners I. Ring-opening polymerization (ROP) of strained, ring-tilted[1] ferrocenophanes with germanium in the bridge: structures of the[1] germaferrocenophane Fe(η-C_5H_4)_2GeMe_2 and the ferrocenylgermane Fe(η-C_5H_4GeEt_2Cl)rI-C_5H_5). Organometallics, 1994, 13: 4959-4966.
    [8] Foucher D, Ziembinski R, Rulkens R, Nelson J, Manners I. Ring-opening polymerization (ROP) of strained, ring-tilted metallocenophanes: a new route to transition metal-based polymers. ACS Symposium Series, 1994, 572: 442-455.
    [9] Buretea M A, Tilley T D. Poly(ferrocenylenevinylene) from ring-opening metathesis polymerization of ansa-(vinylene)ferrocene. Organometallics, 1997, 16: 1507-1510.
    [10] Honeyman C H, Foucher D A, Dahmen Y, Rulkens R, Lough, A J, Manners I. Thermal ring-opening polymerization (ROP) of strained, ring-tilted phosphorus-bridged[1] ferrocenophanes: synthesis of poly(ferrocenylphosphines) and poly(ferrocenylphosphine sulfides). Organometallics, 1995, 14: 5503-5512.
    [11] Peckham T J, Lough A J, Manners I. Ring-opening polymerization of a phosphoniumbridged[1] ferrocenophane;synthesis of an ionomeric poly(ferrocene). Organometallics, 1999, 18: 1030-1040.
    [12] Pudelski J K, Gates D P, Rulkens R, Lough A J, Manners I. Synthesis and structure of the first sulfur-bridged[1] ferrocenophane. Angew. Chem. Int. Ed. Engl, 1995, 34: 1506-1508.
    [13] Jakle F, Rulkens R, Zech G, Foucher D A, Lough A J, Manners I. Synthesis, reactivity, and the ring-opening polymerization (ROP) of tin-bridged[1] ferrocenophanes. Chem. Eur. J., 1998, 4(11): 2107-2128.
    [14] MacLachlan M J, Zheng J, Thieme K, Lough A J, Manners I, Mordas C, LeSuer R, Geiger W E, Liable-Sands L M, Rheingold A L. Synthesis, characterization, and ring-opening polymerization of a novel silaferrocenophane with two ferrocenyl substituents at silicon. Polyhedron, 2000, 19: 275-289.
    [15] Berenbaum A, Braunschweig H, Dirk R, Englert U, Green J C, Jakle F, Lough A J, Manners I. Synthesis, electronic structure, and novel reactivity of strained, boron-bridged[1] ferrocenophanes. J. Am. Chem. Sot., 2000, 122: 5765-5774.
    [16] Pudelski J K, Manners I. A heterolytic cyclopentadienyl carbon-silicon bond cleavage mechanism for the thermal ring-opening polymerization (TROP) of silicon-bridged[1] ferrocenophanes. J. Am. Chem. Sot., 1995, 117: 7265-7266.
    [17] Rulkens R, Resendes R, Verma A, Manners I, Murti K, Fossum E, Miller P, Matyjaszewski K. Ring-opening copolymerization of cyclotetrasilanes and silicon-bridged[1] ferrocenophanes: synthesis and properties of polysilane- poly(ferrocenylsilane) random copolymers. Macromolecules, 1997, 30: 8165-8171.
    [18] Fossum E, Matyjaszewski K, Rulkens R, Manners I. Polysilane-poly(ferrocenylsilane) random copolymers. Macromolecules, 1995, 28: 401-402.
    [19] Rulkens R, Ni Y, Manners I. Living anionic ring-opening polymerization of silicon-bridged[1] ferrocenophanes: synthesis and characterization of poly(ferrocenylsilane)-polysiloxane block copolymers. J. Am. Chem. Sot., 1994, 1167 12121-12122.
    [20] 计兵,王立,潘杰,封麟先.硅桥联[1] 二茂铁衍生物阴离子引发和过渡金属催化引发开环聚合的研究进展.精细石油化工,2000,2:44-47.
    [21] Ni Y, Rulkens R, Manners I. Transition metal-based polymers with controlled architectures: well-defined poly(ferrocenylsilane) homopolymers and multiblock copolymers via the living anionic ring-opening polymerization of silicon-bridged[1] ferrocenophanes. J. Am. Chem. Soc., 1996, 118: 4102-4114.
    [22] Ni Y, Rulkens R, Pudelski J K, Manners I. Transition metal catalyzed ring-opening polymerization of silicon-bridged[1] ferrocenophanes at ambient temperature. Makrom. Chem. Rapid Commun., 1995, 16: 637-642.
    [23] Reddy N P, Yamashita H, Tanaka M. Platinum-catalyzed or palladium-catalyzed ring- opening homo-polymerization and co-polymerization of silicon-bridged and germanium- bridged [1]ferrocenophanes. J. Chem. Soc. Chem.. Commun., 1995, 2263-2264.
    [24]Zechel D L, Hultszch K C, Rulkens R, Balaishis D, Ni Y, Pudelski J K, Lough A J, Manners I. Thermal and transition metal-catalyzed ring-opening polymerization (ROP) of [1]silaferrocenophanes with chlorine substituents at silicon: a route to tunable poly(ferrocenylsilanes). Organometallics, 1996, 15: 1972-1978.
    [25] Sheridan J B, Gomez-Elipe P, Manners I. Transition-metal-catalyzed ring-opening copolymerization of silicon-bridged [1]ferrocenophanes and sila- or disilacyclobutanes: synthesis of poly(ferrocenylsilane)-poly(carbosilane), random copolymers. Communication, Macromol. Chem. Rapid. Commun., 1996, 17: 319-324.
    [26] Gomez-Elipe P, Resendes R, Macdonald P M, Manners I. Transition metal catalyzed ring-opening polymerization (ROP) of silicon-bridged [1]ferrocenophanes: facile molecular weight control and the remarkably convenient synthesis of poly(ferrocenes) with regioregular, comb, star, and block architectures. J. Am. Chem. Soc, 1998. 120: 8348-8356.
    [27] Sheridan J B, Temple K, Lough A J, Manners I. Isolation and characterization of a well defined precatalyst for the ring-opening polymerisation of silicon-bridged [1]ferrocenophanes. J. Chem. Soc, Dalton Trans., 1997, 711-713.
    [28] Temple K, Lough A J, Sheridan J B, Manners I. Insertion of a Pt(0)-fragment into the strained silicon-carbon bond of a silicon-bridged [1]ferrocenophane: synthesis, alkyne insertion chemistry, and catalytic reactivity of the [2]platinasilaferroceno- phane Fe(η5-C_5H_4)_2Pt(PEt_3)_2SiMe_2. J. Chem. Soc. Dalton Trans., 1998, 2799-2806.
    [29] Yamashita H, Tanaka M, Honda K. Oxidative addition of the Si-C bonds of silacyclobutanes to Pt(PEt_3)_3 and highly selective platinum(0)-catalyzed di- or polymerization of 1,1-dimethyl-1-silacyclobutane. J. Am. Chem. Soc, 1995, 117: 8873-8874.
    [30] Temple K, Jakle F, Sheridan J B, Manners I. The nature of the active catalyst in late transition metal-mediated ring-opening polymerization (ROP) reactions: mechanistic studies of the platinum-catalyzed ROP of silicon-bridged [1]ferrocenophanes. J. Am. Chem. Soc, 2001,123: 1355-1364.
    [31] Jakle F, Rulkens R, Zech G, Massey J A, Manners I. Nucleophilically-assisted ring-opening polymerization of group 14 element-bridged [1]ferrocenophanes. J. Am. Chem. Soc, 2000, 122: 4231-4232.
    [32] Resendes R, Nguyen P, Lough A J, Manners I. Synthesis, structure and cationic ring-opening polymerization (ROP) of a strained [2]carbathioferrocenophane. Chem. Commun., 1998, 1001-1002.
    [33] Resendes R, Nelson J M, Fischer A, Jaikle F, Lough A J, Manners I. Tuning the strain and polymerizability of organometallic rings: the synthesis, structure, and ring-opening polymerization behavior of[2] ferrocenophanes with C-Si, C-P and C-S bridges. J. Am. Chem. Soc., 2001, 123: 2116-2126.
    [34] Lammertink R G H, Hempenius M A, Manners I, Vancso G J. Crystallization and melting behavior of poly(ferrocenyldimethylsilanes) obtained by anionic polymeriza- tion. Macromolecules, 1998, 31: 795-800.
    [35] Pudelski J K, Rulkens R, Foucher D A, Lough A J, MacDonald P M, Manners I. Synthesis and properties of poly(ferrocenyldihydrosilane) homopolymers and copolymers. Macromolecules, 1995, 28: 7301-7308.
    [36] MacLachlan M J, Lough A J, Geiger W E, Manners I. Synthesis, structures, and properties of strained spirocyclic[1] sila-and[1] germaferrocenophanes and tetraferrocenylsilane. Organometallics, 1998, 17(9): 1873-1883.
    [37] Rulkens R, Perry R, Lough A J, Manners I, Lovelace S R, Grant C, Geiger W E. Linear oligo(ferrocenyldimethylsilanes) with between two and nine ferrocene units: electrochemical and structural models for poly(ferrocenylsilane) high polymers. J. Am. Chem. Sot., 1996, 118: 12683-12695.
    [38] Wang L, Ye C Y, Zhang P Y, Pan J, Feng L X, Wang S F, Peng T Z. Synthesis of polyferrocenyldimethylsilane through ring-open polymerization and its electrochemical properties in different mediums. J. Appl. Poly. Sci., 2001, 82: 3258-3261.
    [39] Wang L, Ye C Y, Zhang P Y, Pan J, Feng L X, Wang S F, Peng T Z. Studies on synthesis and properties of poly(ferrocenyldimethylsilanes) and poly(ferrocenylmethylphenylsilanes). Eur. Poly. J., 2002, 38: 531-535.
    [40] 王立,潘杰,计兵,封麟先.热开环聚合制备高分子量二茂铁基聚二甲基硅烷及其与四氰基乙烯生成电荷转移络合物的研究.高分子学报,2000,6:788-790.
    [41] Hmyene M, Yasser A, Escorne M, Percheronguegan A, Gamier E Magnetic-properties of ferrocene-based conjugated polymers. Adv. Mater., 1994, 6: 564-567.
    [42] MacLachlan M.J, Ginzburg M, Coombs N, Coyle T W, Raju N P, Greedan J E, Ozin G A, Manners I. Shaped ceramics with tunable magnetic properties from metal-containing polymers. Science, 2000, 287: 1460-1463.
    [43] MacLachlan M J, Ginzburg M, Coombs N, Ozin G A, Manners I. Superparamagnetic ceramic nanocomposites: synthesis and pyrolysis of ring-opened poly(ferrocenes) inside mesoporous silica. J.Am.Chem.Soc, 2000,122: 3878-3891.
    [44] Kulbaba K, Resendes R, Cheng A, Bartole A, Safa-Sefat A, Coombs N, Stover H D H, Greedan J E, Ozin G A, Manners I. Polyferrocenylsilane and magnetic ceramic microspheres. Adv. Mater., 2001, 13: 732-736.
    [45] Power-Billard K N, Manners I. Hydrophilic and water-soluble poly(ferrocenylsilanes). Macromolecules, 2000,33: 26-31.
    [46] Jakle F, Wang Z, Manners I. Versatile and convenient routes to functionalized poly(ferrocenylsilanes). Macromolecular Rapid Commun, 2000,21: 1291-1296.
    [47] Takeoka Y, Aoki T, Sanui K, Ogata N, Yokoyama M, Okano T, Sakurai Y, Watanabe M. Electrochemical control of drug release from redox-active micelles. J. Controlled Release, 1995, 33(1): 79-81.
    [48] Kopf-Maier P, Kopf H, Neuse E W. Ferrocenium salt the first antineoplastic iron compounds. Angew. Chem. Int. Ed. Engl., 1984, 23: 456-457.
    [49] Massey J, Power K N, Manners I, Winnik M A. Self-assembly of a novel organometallic-inorganic block copolymer in solution and the solid state: non-intrusive observation of novel wormlike poly(ferrocenyldimethylsilane)-b-poly(dimethylsilox ane) micelles. J. Am. Chem. Soc, 1998, 120: 9533-9540.
    [50] Massey J A, Temple K, Cao L, Raez J, Winnik M A, Manners I. Self-assembly of organometallic block copolymers: the role of crystallinity of the core-forming poly(ferrocene) block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethylsiloxane) in n-alkane solvents. J.Am. Chem. Soc, 2000,122: 11577-11584.
    [51] Raez J, Barjovanu R, Massey J A, Winnik M A, Manners I. Self-assembled organometallic block copolymer nanotubes. Angew. Chem. Int. Ed. Engl., 2000, 39: 3862-3865.
    [52] Resendes R, Massey J, Dorn H, Manners I. A convenient, transition metal-catalyzed route to water-soluble amphiphilic organometallic block copolymers: synthesis and aqueous self-assembly of poly(ethyleneoxide)-block-poly(ferrocenylsilane). Macromolecules, 2000, 33: 8-10.
    [53] Cao L, Manners I, Winnik M A. Synthesis and self-assembly of the organic-organometallic diblock copolymer poly(isoprene-b-ferrocenylphenyl phosphine): shell cross-linking and coordination chemistry of nanospheres with a polyferrocene core. Macromolecules, 2001, 34 (10): 3353-3360.
    [54] Resendes R, Massey J A, Temple K, Cao Lan, Power-Billard K Nicole, Winnik Mitchell A, Manners I. Supramolecular organometallic polymer chemistry: multiple morphologies and superstructures from the solution self-assembly of polyferrocene-block-polysiloxane- block-polyferrocene triblock copolymers. Chem. Eur. J., 2001,7: 2414-2424.
    [55] Ginzburg M, Galloro J, Jaekle F, Power-Billard K N, Yang S, Sokolov I, Lam C, Neumann A W, Manners I, Ozin G A. Layer-by-layer assembly of organic- organometallic polymer electrostatic superlattices using poly(ferrocenylsilanes). Langmuir, 2000,16: 9609-9614.
    [56] Peter M, Hempenius M A, Lammertink R G H, Van Os M T, Vancso G. J. Electrochemical AFM on surface grafted poly(ferrocenylsilanes). Polym. Prepr., 2000, 41(2): 1452-1453.
    [57] Chen Z, Foster M D, Zhou W, Fong H, Reneker Darrell H, Resendes R, Manners I. Structure of poly(ferrocenyldimethyl silane) in electrospun nanofibers. Macromolecules, 2001,34: 6156-6158.
    [58] Resendes R, Berenbaum A, Stojevic G, Jakle F, Bartole A, Zamanian F, Dubois G, Hersom C, Balmain K, Manners I. Application of ring-opened poly(ferrocenes) as protective charge dissipation coatings for dielectrics. Adv. Mater., 2000, 12: 327-330.
    [59] Tatsuma T, Takada K, Matsui H, Oyama N. A redox gel. electrochemically controllable phase transition and thermally controllable electrochemistry. Macromolecules, 1994, 27: 6687-6689.
    [60] Liu X H, Bruce D W, Manners I. Functionalization of poly(metallocenes) via hydrosily- lation: synthesis and properties of thermotropic liquid crystalline poly(ferrocenylsilanes). J. Organomet. Chem., 1997, 548: 49-56.
    [61] Spatz J P, Herzog T, Mobmer S, Ziemann P, Moeller M. Micellar inorganic-polymer hybrid systems—a tool for nanolithography. Adv. Mater., 1999, 11: 149-153.
    [62] Massey J A, Winnik M A, Manners I. Fabrication of oriented nanoscopic ceramic lines from cylindrical micelles of an organometallic polyferrocene block copolymer. J. Am. Chem. Soc, 2001, 123: 3147-3148.
    [63] Shadaram M, Espada L, Martinez J, Garcia F. Modeling and performance evaluation of ferrocene-based polymer clad tapered optical fiber gas sensors. Opt. Eng., 1998, 37(4): 1124-1129.
    [64] Pannell Keith H, Robillard J. Variable index material for optical switching and real time holographic recording. US Pat No 5,472,786 1995, Dec 5.
    [65] MacLeod P J, Veregin R P N, Honeyman C H. Carrier with ferrocene containing polymer. US Pat No 6,037091, 2000, Mar 14.
    [66] Valerio C, Fillaut JL, Ruiz J, Guittard J, Blais JC, Astruc D. The dendritic effect in molecular recognition: Ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions. J. Am. Chem. Soc., 1997, 119(10): 2588-2589.
    [67] Labande A, Ruiz J, Astruc D. Supramolecular gold nanoparticles for the redox recognition of oxoanions: Syntheses, titrations, stereoelectronic effects, and selectivity. J. Am. Chem. Soc., 2002, 124(8): 1782-1789.
    [68] Daniel M-C, Ruiz J, Astruc D. Supramolecular H-bonded assemblies of redox-active metallodendrimers and positive and unusual dendritic effects on the recognition of H_2PO_4~-. J. Am. Chem. Soc., 2003, 125(5): 1150-1151.
    [69] Valerio C, Alonso E, Ruiz J, Blais J C, Astruc D. A Polycationic Metallodendrimer with 24[Fe(η-C_5Me_5)(η~6-N-Alkylaniline)] ~+ Termini That Recognizes Chloride and Bromide Anions. Angew. Chem. Int. Ed., 1999, 38(12): 1747-1751.
    [70] Labande A, Astruc D. Colloids as redox sensors: recognition of H_2PO_4 and HSO_4~- by amidoferrocenylalkylthiol-gold nanoparticles. Chem. Commun., 2000, 1007-1008.
    [71] Losada J, Cuadrado I, Moran M, Casado C M, Alonso B, Barranco M. Ferrocenyl silicon-based dendrimers as mediators in amperometric biosensors. Analytica. Chimica. Acta., 1997,338: 191-198.
    [72] Yoon H C, Hong M Y, Kim H S. Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode. Analytical Chemistry, 2000, 72(18): 4420-4427.
    [73] Foucher D, Ziembinski R, Petersen R, Pudelski J, Edwards M, Ni Y Z, Massey J, Jaeger C R, Vancso G J, Manners I. Synthesis, characterization, and properties of high-molecularweight unsymmetrically substituted poly(ferrocenylsilanes). Macromolecules, 1994, 27 (14): 3992-3999.
    [74] 宁永成.有机化合物的结构鉴定与有机波谱学.第二版,北京,科学出版社,2001.
    [75] 谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用.修订版,北京,科学出版社,2001.
    [76] Shi W, Cui S, Wang C, Wang C, Zhang X, Wang X, Wang L. Single-chain elasticity of poly(ferrocenyldimethylsilane) and poly(ferrocenylmethylphenylsilane). Macromolecules, 2004, 37: 1839-1842.
    [77] CSPM 3000扫描探针显微镜说明书,本原纳米仪器公司,北京
    [78] Birmig G, Quate C F, Gerber C. Atomic force microscope. Phys. Rev. Lett., 1986, 56 (9): 930-933.
    [79] 沈家聪 等著.超分子层状结构—组装与功能.第9章,北京,科学出版社.2004.
    [80] Zhang W K, Zhang X. Single molecule mechanochemistry of macromolecules. Prog. Polym. Sci.,2003,28: 1271-1295.
    [81] Hugel T, Seitz M. The study of molecular interactions by AFM force spectroscopy. Macromol. Rapid Commun., 2001, 22: 989-1016.
    [82] Yamamoto S, Tsujii Y, Fukuda T. Atomic force microscopic study of stretching a single polymer chain in a polymer brush. Macromolecules, 2000, 33: 5995-5998.
    [83] Li H B, Liu B B, Zhang X, Gao C X, Shen J C, Zou G T. Single-molecule force spectroscopy on poly(acrylic acid) by AFM. Langmuir, 1999, 15: 2120-2124.
    [84] Wang C, Shi W Q, Zhang W K, Zhang X, Katsumoto Y, Ozaki Y. Force spectroscopy study on poly(acrylamide) derivatives: effects of substitutes and buffers on single-chain elasticity. Nano Lett., 2002, 2(10): 1169-1172.
    [85] Marszalek P E, Li H B, Oberhauser A F, Fernandez J M. Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proc. Natl. Acad. Sci. U.S.A., 2002,99: 4278-4283.
    [86] Li H B, Rief M, Oesterhelt F, Gaub H E, Zhang X, Shen J C. Single-molecule force spectroscopy on polysaccharides by AFM - nanomechanical fingerprint of alpha-(1,4)-linked polysaccharides. Chem. Phys. Lett., 1999, 305: 197-201.
    [87] Marszalek P E, Pang Y P, Li H B, Yazal J E, Oberhauser A F, Fernandez J M. Atomic levers control pyranose ring conformations. Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 7894-7898.
    [88] Xu Q B, Zhang W K, Zhang X. Oxygen bridge inhibits conformational transition of 1,4-linked alpha-D-galactose detected by single-molecule atomic force microscopy. Macromolecules, 2002,35: 871-876.
    [89] O'Donoghue P, Luthey-Schulten Z A. Barriers to forced transitions in polysaccharides. J. Phys. Chem.B, 2000,104: 10398-10405.
    [90] Hugel T, Holland B N, Cattani A, Moroder L, Seitz M, Gaub H E. Single-molecule optomechanical cycle. Science, 2002,296: 1103-1106.
    [91] Holland N B, Hugel T, Neuert G Cattani-Scholz A, Renner C, Oesterhelt D, Moroder L, Seitz M., Gaub H E. Single molecule force spectroscopy of azobenzene polymers: Switching elasticity of single photochromic macromolecules. Macromolecules, 2003, 36: 2015-2023.
    [92] Li H B, Rief M, Oesterhelt F, Gaub H E. Single-molecule force spectroscopy on Xanthan by AFM. Adv. Mater., 1998,10: 316-319.
    [93] Rief M, Clausen-Schaumann H, Gaub H. E. Sequence-dependent mechanics of single DNA molecules. Nature Struct. Biol., 1999,6: 346-349.
    [94] Li H B, Zhang W K, Xu W Q, Zhang X. Hydrogen bonding governs the elastic properties of poly(vinyl alcohol) in water: Single-molecule force spectroscopic studies of PVA by AFM. Macromolecules, 2000,33: 465-469.
    [95] Xu Q B, Zou S, Zhang W K, Zhang X. Single-molecule force spectroscopy on carrageenan by means of AFM. Macromol.Rapid Commun.,2001,22: 1163-1167.
    [96] Zhang L, Wang C, Cui S X, Wang Z Q, Zhang X. Single-molecule force spectroscopy on curdlan: unwinding helical structures and random coils. Nano Lett., 2003, 3 (8) : 1119-1124.
    [97] Zhang W K, Cui S X, Fu Y, Zhang X. Desorption force of poly(4-vinylpyridine) layer assemblies from amino groups modified substrates. J. Phys. Chem. B, 2002, 106: 12705-12708.
    [98] Seitz M, Friedsam C, Joestl W, Hugel T, Gaub H E. Probing solid surfaces with single polymers. Phys. Chem. Chem. Phys., 2003, 4, 986-990.
    [99] Haupt B J, Ennis J, Sevick E M. The detachment of a polymer chain from a weakly adsorbing surface using an AFM tip. Langmuir, 1999,15,3886-3892.
    [100] Haupt B J, Senden T J, Sevick E M. AFM evidence of rayleigh instability in single polymer chains. Langmuir, 2002,18: 2174-2182.
    [101] Cui S X, Liu C J, Zhang X. Simple method to isolate single polymer chains for the direct measurement of the desorption force. Nano Lett., 2003,3: 245-248.
    [102] Al-Maawali S, Bemis J E, Akhremitchev B B, Leecharoen R, Janesko B G, Walker G C. Study of the polydispersity of grafted poly(dimethylsiloxane) surfaces using single-molecule atomic force microscopy. J. Phys. Chem. B, 2001,105: 3965-3971.
    [103] Schoenherr H, Beulen M J, Buegler J, Huskerns J, Van Veggel F C J M, Reinhoudt D N, Vancso F J. Individual supramolecular host-guest interactions studied by dynamic single molecule force spectroscopy. J.Am.Chem.Soc, 2000,122: 4963-4967.
    [104] Zou S, Zhang Z H, Foerch R, Knoll W, Schoenherr H, Vancso G J. Tunable complex stability in surface molecular recognition mediated by self-complementary quadruple hydrogen bonds. Langmuir, 2003,19: 8618-8621.
    [105] Cui S X, Liu C J, Zhang W K, Zhang X, Wu C. Desorption force per polystyrene segment in water. Macromolecules, 2003,36: 3779-3782.
    [106] Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub H E. How strong is a covalent bond? Science, 1999,283: 1727-1730.
    [107] Kulbaba K, Manners I. Polyferrocenylsilanes: Metal-containing polymers for materials science, self-assembly and nanostructure applications. Macromol. Rapid Commun., 2001, 22: 711-724.
    [108] Nguyen M T, Diaz A F, Dement'ev V V, Pannell K H. High-molecular-weight poly(ferrocenediyl silanes) - synthesis and electrochemistry of [-(C_5H_4)Fe(C_5H_4)SiR_2-]_n, R = Me, Et, n-Bu, n-Hex. Chem. Mater., 1993,5: 1389-1394.
    [109] Smith S B, Finzi L, Bustamante C. Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic beads. Science, 1992, 258 (5085): 1122-1126.
    [110] Hugel T, Grosholz M, Clausen-Schaumann H, Pfau A, Gaub H, Seitz M. Elasticity of single polyelectrolyte chains and their desorption from solid supports studied by AFM based single molecule force spectroscopy. Macromolecules, 2001,34: 1039-1047.
    [111] Foucher D A, Honeyman C H, Nelson J M, Tang B Z, Manners I. Organometallic ferrocenyl polymers displaying tunable cooperative interactions between transition-metal centers. Angew. Chem. Int. Ed. Engl., 1993, 13(2): 1709-1711.
    [112] Jakle F, Rulkens R, Zech G, Foucher D A, Lough A J, Manners I. Synthesis, reactivity, and ring-opening polymerization (ROP) of tin-bridged [1]ferrocenophanes. Chem. Eur. J, 1998, 4(11): 2117-2128.
    [113] Nguyen M T, Diaz A F, Dememnt'ev V V, Pannell K H. Electrochemical and electrochromic properties of poly(dialkylsilyleneferrocenylene) films. Chem. Mater., 1994, 6: 952-954.
    [114] Pournaghi-Azar M H, Ojani R. Electrode kinetic-parameters of the ferrocene oxidation at platinum, gold and glassy-carbon electrodes in chloroform. Electrochim. Acta, 1994, 39(7): 953-955.
    [115] Daum P, Lenhard J R, Rolison D, Murray R W. Diffusional charge transport through ultrathin films of radiofrequency plasma polymerized vinylferrocene at low temperature. J. Am. Chem. Soc, 1980, 102: 4649-4653.
    [116] Bu H Z, English A M, Mikkelsen S R. Charge transport in ferrocene-containing polyacrylamide-based redox gels. J. Phys. Chem. B, 1997, 101: 9593-9599.
    [117] White S H, Leddy J, Bard A J. Polymer films on electrodes. 8. investigation of charge-transport mechanism in nafion polymer modified electrodes. J. Am. Chem. Soc, 1982, 104:4811-4817.
    [118] Martin C R, Rubinstein I, Bard A J. Polymer films on electrodes. 9. electron and mass transfer in nafion films containing Ru(bpy)_3~(2+) . J. Am. Chem. Soc, 1982, 104: 4817-4824.
    [119] Nishihara H, Shimano Y, Aramaki K. Charge-transfer kinetics for reduction of organic redox species at poly[1,1'-bis(chloromethyl)ferrocene]-coated electrodes. J. Phys. Chem., 1987,91:2918-2921.
    [120] Daum P, Murray R W. Charge-transfer diffusion rate and activity relationships during oxidation and reduction of plasma-polymerized vinylferrocene films. J. Phys. Chem., 1981, 85: 389-396.
    [121] Bard A J, Faulkner L R. Electrochemical Methods. John Wiley & Sons, Inc., New York, 1980, Chapter. 6.
    [122] Wang X J, Wang L, Wang J J, Chen T. Study on the electrochemical behavior of poly(ferrocenylsilane) films. J. Phys. Chem. B, 2004, 108 (18): 5627-5633.
    [123] Wang X J, Wang L, Wang J J. Electrochemical behavior of high-molecular-weight poly (ferrocenylsilane) films in aqueous electrolyte solutions. J. Polym. Sci. B 2004, 42 (12): 2245-2253.
    [124] Zhang X. Handbook of Practical Chemistry National Defence Industry Press, Beijing, 1986.
    [125] Bruckenstein S, Shay M. Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim. Acta, 1985, 30: 1295-1300.
    [126] Buschmann H W, Wilhelm S, Vielstich W. On the study of methanol oxidation by electrochemical sims. Electrochim Acta, 1986, 31: 939-942.
    [127] Varineau P T, Buttry D A. Applications of the quartz crystal microbalance to electrochemistry. Measurement of ion and solvent populations in thin films of poly(vinylferrocene) as functions of redox state. J. Phys. Chem. 1987, 91: 1292-1295.
    [128] Marx K A. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules. 2003, 4(5): 1009-1120.
    [129] Pater E M, Bruckenstin S, Hillman A R. Film mass and volume changes accompanying redox-driven solvent and salt transfer during redox switching of polyvinylferrocene films. J. Chem. Soc. Faraday Trans., 1998, 94(8): 1097-1103.
    [130] Jureviciute I, Bruckenstin S, Hillman A R, Jackson A. Kinetics of redox switching of electroactive polymers using the electrochemical quartz crystal microbalance part I. Identifying the rate limiting step in the presence of coupled electron/ion and solvent transfer. Phys. Chem. Chem. Phys, 2000, 2: 4193-4198.
    [131] Sauerbrey G.. Verwendung yon schwingquarzen zur wagung dunner schichten und zur mikrowagung. Z. Phys., 1959, 155(2): 206-222.
    [132] CHI-400石英晶体微天平仪器使用说明书,CHI仪器公司.
    [133] 曾晞,陈观文.聚电解质复合物.高分子通报,1997,1:29-36.
    [134] Decher G, Hong J D, Schrnitt J. Buildup of ultrathin multilayer films by a self-assembly process: Ⅲ. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces Thin Solid Film, 1992, 210-211: 831-835.
    [135] Lvov Y, Decher G, Moehwald H. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamide). Langmuir, 1993, 9 (2): 481-486.
    [136] Levasalmi J M, McCarthy T J. Poly(4-methyl-l-pentene)-supported polyelectrolyte multilayer films: preparation and gas permeability. Macromolecules, 1997, 30 (6): 1752-1757.
    [137] Stroeve P, Vasquez V, Coelho M A N, and Rabolt J E Gas transfer in supported films made by molecular self-assembly of ionic polymers. Thin Solid Film 1996, 284-285: 708-712.
    [138] Klizing R V, Mohwald H. Transport through ultrathin polyelectrolyte films. Thin Solid Film, 1996, 284-285: 352-356.
    [139] Cheung J H, Fou A F, Rubner M F. Molecular self-assembly of conducting polymers. Thin Solid Film, 1994, 244: 985-989.
    [140] Ferreira M, Rubner M E Molecular-level processing of conjugated polymers: 1, Layer-by-layer manipulation of conjugated polyions. Macromolecules, 1995, 28 (21): 7107-7114.
    [141] Decher G, Lehr B, Lowack K, Lvov Y, and Schmitt J. New nanocompoite films for biosensors: layer-by-layer adsorbed films of polyelectrolyte, proteins or DNA. Biosensors and Bioelectronics, 1994, 9 (9-10): 677-684.
    [142] Chen W, McCarthy T J. Layer-by-layer deposition: a tool for polymer surface modification. Macromolecules, 1997, 30 (1): 78-86.
    [143] Hsieh M C, Farris R J, McCarthy T J. Surface "priming" for layer-by-layer deposition: polyelectrolyte multilayer formation on allylamine plasma-modified poly(tetrafluoroethylene). Macromolecules, 1997, 30 (26): 8453-8458.
    [144] Laschewsky A, Mayer B, Wischerhoff E, Arys X., Bertrand P, Delcorte A, and A. Jonas. A new route to thin polymeric, non-centrosymmetic coatings. Thin Solid Film, 1996, 284-285: 334-337.
    [145] Farhat T, Yassin G, Dubas S T, Schlenoff J B. Water and ion pairing in polyelectrolyte multilayers. Langmuir, 1999, 15 (20): 6621-6623.
    [146] Ramsden J J, Lvov Yu M, Decher G. Determination of optical constants of molecular films assembled via alternate polyion adsorption.Thin Solid Film 1995, 254: 246-251.
    [147] 孙启龙,王朝阳,童真.纳米自组装聚电解质多层超薄膜.功能高分子学报,2000,13 (3),332-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700