金属/聚合物复合材料的腐蚀行为和金属离子扩散动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宫内节育器(Intrauterine Device,IUD)是一种安全、有效、经济、可逆、简便的避孕工具,也是全球使用最广泛的方法之一。IUD分为惰性和活性两大类。惰性IUD由于其避孕效果差而已经被活性IUD完全取代。活性IUD主要有两种类型:载铜IUD(Cu-IUD)和药物缓释IUD。Cu-IUD中铜的避孕效果好,因而成为当今研究最多,使用最广的IUD。
     铜/聚乙烯复合材料就是一种新型载铜IUD材料,因其具有多种优点而成为目前IUD研究的热点,作为一种金属/聚合物复合材料,这种新型IUD材料在实际应用之前需要对其在人体中的腐蚀问题进行系统研究。目前关于金属/聚合物复合材料的腐蚀研究中,高电阻、分散型复合材料的腐蚀研究较少。
     文章通过测试复合材料的体积电阻率和介电常数,发现微米铜/聚乙烯复合材料存在一个的电阻率突然降低区域,其渗流阈值大概为50wt. %铜含量。在渗流阈值前后,微米复合材料体积电阻率不随铜含量的变化而变化。纳米复合材料电阻率没有明显的突变区域,其体积电阻率随着纳米铜含量的增加而逐渐减小。两种复合材料的介电常数都是随着铜含量的增加而上升,但是微米复合材料的介电常数在渗流阈值附近有一个阶跃。
     对于不同铜含量的微米铜/聚乙烯复合材料,其浸泡于模拟宫腔液中的腐蚀行为与铜含量密切相关。在腐蚀稳定期,高铜含量微米复合材料的腐蚀速率大大高于低含量复合材料。当复合材料中微米铜的含量超过渗流阈值时,复合材料逐渐出现较明显的钝化现象,表面会出现大量成片状沉积物。纳米复合材料在浸泡初期的腐蚀速率变化较大,在浸泡5天后,腐蚀速率迅速趋于稳定。与纯铜电极相比,复合材料电极在模拟宫腔液中的腐蚀速率更加稳定,暴释现象和钝化现象都不如前者明显。经过一段时间浸泡后,纯铜电极表面会覆盖大量沉积物,复合材料尤其是纳米复合材料表面更为清洁。
     纯铜电极和两种复合材料在模拟宫腔液中都具有相似的腐蚀机理,都是分两步氧化反应,且中间产物都以Cu2O为主。对于微米复合材料,铜含量对其腐蚀机理有着一定的影响。当微米铜含量低于渗流阈值时,复合材料在腐蚀过程中只有一步还原反应,而当微米铜含量高于渗流阈值时,复合材料腐蚀过程有两步还原反应。纳米复合材料的铜含量对腐蚀机理没有影响。
     复合材料的铜离子转化率远远高于纯铜,而且纳米复合材料的转化率接近于100%。铜含量对微米复合材料的转化率影响较大,尤其是当铜含量超过渗流阈值时,铜离子转化率明显降低。而铜含量对纳米复合材料的转化率影响不显著。在浸泡初期,纯铜电极和微米复合材料电极的铜离子转化率都有一个明显的上升过程,纳米复合材料在浸泡过程中始终保持很高的铜离子转化率。
     复合材料的重量和电容都是随着浸泡时间的延长呈现上升的趋势,而且最终都趋于稳定饱和。浸泡初期,溶液在复合材料内部的扩散都符合Fick第二定律。铜离子在纯铜电极表面层的扩散系数远远高于其在复合材料内部的扩散系数。铜离子在复合材料内部的扩散系数的数量级在10-9cm2s-1左右。腐蚀稳定后,铜离子主要通过贯通复合材料内部的溶液路径向外扩散。电极在模拟宫腔液中的腐蚀过程都可以用相同的等效电路图进行解释,并且在模拟宫腔液中的腐蚀过程受到电荷传递过程和扩散过程共同控制。
     与纯铜相比,复合材料(尤其是纳米复合材料)具有铜离子转化率高、表面清洁等优点,更有利于作为一种新型IUD材料。另外,研究表明,电化学技术作为一种常用的腐蚀研究方法,在高电阻、分散型金属/聚合物复合材料的腐蚀行为研究中也是一个非常有力的工具。
Being safe, effective, economic, reversible and simple, intrauterine device (IUD) is one of the most popular contraceptive methods that are used all around the world. IUD can be divided into two categories, namely, the inert and the active one. Owing to its weak effect of contraceptive, the inert IUD has been replaced gradually with the active one. The active IUD covers copper-containing IUD (Cu-IUD) and drug slow-release IUD. Recently, Cu-IUD has been widely investigated and employed due to great contraceptive effect of copper.
     The copper/low-density polyethylene (Cu/LDPE) composite is one kind of new IUD, because it has the many kinds of merits to become the hot spot of the present IUD research. To optimize the properties of these composite systems, it is necessary to study their corrosion behaviour in the uterine solution thoroughly. Currently on the corrosion research of the metal/polymer composite, high resistivity and dispersing type composite are less.
     By testing the volume resistivity and the dielectric constant of the composite, the resistivity of the microcomposite have of a sudden decreased region and the percolation threshold of the microcomposite probably is 50% copper quality percentage. Around the percolation threshold, the volume resistivity of the microcomposite does not change along with the copper content change. There are not obvious mutation region for the volume resistivity of the nanocomposite, its volume resistivity gradually reduces along with the copper content increase. The dielectric constant of two composites all are rise along with the copper content increase. The dielectric constant of the microcomposite has a leap in the vicinity of the percolation threshold.
     The corrosion behaviour of the microcomposite immersion in the simulated uterine solution is depended on the copper content. Corrosion in stable, the corrosion rate of the microcomposite with high copper content much high than the microcomposite with low copper content. The surface of the microcomposite appears obvious passivation phenomenon and schistose sediment when the copper content of the microcomposite was exceeding the percolation threshold. The corrosion rate of the nanocomposite was fluctuations in early immersion. Compared with bulk copper, the composite have more stable the corrosion rate, less burst release of Cu~(2+) and hardly passivation. Immersion after period time, the surface of the bulk copper is covered the massive sediment. Corresponding, the surface of the composite, especially the nanocomposite, is cleaner.
     The bulk copper and two kinds composite have similar corrosion mechanism in the course of corrosion in the simulated uterine solution, all is some two steps of oxidizing reaction. The intermediate products of them are mainly Cu2O. For the microcomposite, the copper content have some effect to its corrosion mechanism. When the copper content is lower than the percolation threshold, the microcomposite only has a step of reduction reaction; but when the copper content is higher than the percolation threshold, the microcomposite has two steps of reduction reaction. The copper content has not affected to the corrosion mechanism of the nanocomposite immersion in the simulated uterine solution.
     The copper transformation ratio of two composites is higher than the bulk copper, and the transformation ratio of the nanocomposite is close to 100%. The copper content has greater impact to the transformation ratio of the microcomposite, especially the transformation ratio reduces obviously while the copper contents exceed the percolation threshold. And the copper content is not significantly affected to the transformation ratio of the nanocomposite. Is soaking the initial period, the transformation ratio of the bulk and the microcomposite all has an obvious rise process. The nanocomposite throughout to maintain the very high the transformation ratio when immersion in the simulated uterine solution.
     The weight and capacitance of the composite all are along with the immersion time of the rising trend, and all tends to stable finally. Be immersed initial stage, the diffusion characteristics of the solution in the composite according to the FickⅡ. The diffusion coefficient of Cu~(2+) in the surface layer of the bulk is far high than the composite, and the diffusion coefficient of Cu~(2+) in the composite about 10-9cm2s-1. When corrosion of the composite reaches stable, Cu~(2+) generated within composite disperses through solution path to penetrate to simulated uterine solution outside the composite. The corrosion behaviour of the bulk and the composite all can be explained by the similar electrical equivalent circuits, and it was controlled by both the processes of the pervasion of Cu~(2+) and the transfer of the charge.
     Compared with the bulk copper, the Cu/LDPE composite have high copper transformation ratio, clean surface, single product and hardly passivation quality when immersion in the simulated uterine solution. We can conclude that the Cu/LDPE composite, especially the nanocomposite, is favorable to as the novel material of IUD. Further, the electrochemical method in this study is proved to be useful to characterize the corrosion behaviour of high resistivity and dispersing type metal/polymer composite.
引文
[1]郑怀美.妇产科学.北京:人民卫生出版社, 1995: 120-319.
    [2]方可娟.三种国内节育器临床多中心比较性研究.生殖与避孕, 1996,16(1): 27-33.
    [3]范光生.女性避孕技术新进展.中国实用妇科与产科杂志, 2001,17(9): 513-521.
    [4] W.E. kkehard, M.D. Jecht, S. Gerald, M.D. Bernstein. The influence of copper on the motility of human spermatozoa. Contraception, 1973, 7(5): 381-398.
    [5] M.K. Holland, I.G. White. Heavy metals and spermatozoa.Ⅲ, the toxicity of copper ions for spermatozoa. Contraception, 1988, 38(6): 685-699.
    [6] R. Araya, H.G. Mora, R. Vera, J.M. Bastidas. Human spermatozoa motility analysis in a Ringer’s solution containing cupric ions. Contraception, 2003, 67(21): 161-169.
    [7] G.T. sanadis, S.N. Kalantaridou. Bacteriological cultures of removed intrauterine devices and pelvic inflammatory disease. Contraception, 2002, 65(9): 339-342.
    [8] T.M. Farley, M.J. Rosenberg, P. Rowe, J.H. Chen, O. Meirik. Intrauterine devices and pelvic inflammatory disease: an international perspective. Lancet, 1992, 339(18): 785-788.
    [9] H. Zielske, U.J. Koch, R. Badura, H. Ladeburg. Studies on copper release from copper-T device (T-Cu200) and its influence on sperm migration in vitro. Contraception, 1974, 10(3): 651-662.
    [10] T. Xu, H. Lei, S.Z. Cai, X.P. Xia, C.S. Xie. The release of cupric ion in simulated uterine: new material nano-Cu/low-density polyethylene used for intrauterine devices. Contraception, 2004, 70(28): 153-157.
    [11] S.Z. Cai, X.P. Xia, C.S. Xie. Corrosion behavior of copper LDPE nanocomposites in simulated uterine solution. Biomaterials, 2005, 26(10): 2671-2676.
    [12] X.P. Xia, C.S. Xie, S.Z. Cai. Non-isothermal crystallization behavior of low-density polyethylene/copper nanocomposites. Thermochimica Acta, 2005, 427(2): 129-135.
    [13]吴人杰.复合材料.天津:天津大学出版社, 2000: 1-24.
    [14]国家自然科学基金委.高分子材料科学.北京:科学出版社,1995: 2-36.
    [15]师昌绪.新型材料与材料科学.北京:科学出版社, 1998: 1-16.
    [16]石川欣造,泽冈昭.开拓未来的新材料.北京:冶金工业出版社,1989: 102-135.
    [17] I.K. Partridge. Advanced composites. New York: Elsevier science publisher LTD, 1989: 350-498.
    [18] S.K. Bhattacharys. Metal-filled polymers: properties and applications. New York and Basel: Marcel Dekker, 1986: 27-210.
    [19] C. Jouve, D. Julien, B. Remaki. Conductivities in a metal/polymer composite/metal sandwich. Case of charge-transfer doped polyethylene complex .Synthetic metals, 1994, 66(3): 197-202.
    [20] J. Tang, X. Chu, X. Gao. Electrochemical synthesis of polyacrylonitrile(PAN)-copper composite conductive film. Journal of applied polymer science, 1996, 61(10): 1773-1779.
    [21] R.G. Freeman, K.C. Grabar, K.J. Allision. Self-assembled metal colloid monolayers: an approach to SERS substrates. Science, 1995, 267(9): 1629-1632.
    [22] J.H. Golden, F.J. Disalvo, J.M. Frechet. Subnanometer-diameter wires isolated in a polymer matrix by fast polymerization. Science, 1996, 273(19): 782-784.
    [23] M. Nishizawa, V.P. Menon, C.R. Martin. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science, 1995, 268(2): 700-702.
    [24] M. Yoshida, M. Lai, K.N. Deepak, P.N. Prasad. TiO2 nano-particale dispersed polyimide composite optical waveguide materials through reverse micelles. Journal of material science, 1997, 32(18): 40-47.
    [25]熊传溪,闻荻江,皮正杰.超微细Al2O3增韧增强聚苯乙烯的研究.高分子材料科学与工程, 1994, 10(4): 69-73.
    [26]郑桂环.碳纤维/铜复合材料的研究.碳素, 1988, 1(10): 13-15.
    [27] F.A. Uribe, J. Valerio, S. Gottesfeld. Application of conducting polymer precoats for the metallization of insulator. Synthetic metals, 1993, 55(57): 3760-3765.
    [28]周钰明,吴长如,陈超.聚丙烯腈与铜相互作用的研究.功能高分子学报, 1997, 1(1): 42-45.
    [29] F. Houze, L. Boyer, S. Noel. Electrical properties of very thin heat-treatedpolyacrylonitrile layers electropolymerized on nickel for contact application. Synthetic metals, 1994, 62(3): 207-216.
    [30] J. Tanguy, P. Viel, G. Deniau, G. Lecayon. Study of the grafting and of the electrochemical polymerization of acrylic monomers on a metallic surface by impedance spectroscopy. Electrochemical Acta, 1993, 38(11): 1501-1512.
    [31] N. Yukimichi. Noble metal solid sols in poly(methyl methacrylate). Journal of colloid and interface science, 1995, 171(13): 386-392.
    [32] M.M D. Jimenez, M.P. Elizalde, M. Gonozlez, et al. Electrochemical behaviour of nickel-polyester composite electrodes. Electrochimica Acta, 2000, 45(25): 4187-4190.
    [33] V. Shinde, S.R. Sainkar. P.P. Patil. Corrosion protective poly(o-toluidine) coatings on copper. Corrosion Science, 2005, 47(6): 1352-1369.
    [34] G.A. Shagisultanova, I.A. Orlova, A.N. Borisov. Synthesis and properties of photoactive and electroactive polymers based on transition metal complexes. Journal of Photochemistry and Photobiology, 1997, 103(3): 249-254.
    [35] Q.L. Thu, G.P. Bierwagen, S. Touzain. EIS and ENM measurements for three different organic coatings on aluminum. Progress in Organic Coatings, 2001, 42(3): 179-187.
    [36] S. Ramakrishna. Microstructural design of composite materials for crashworthy structural applications. Materials & Design, 1997, 18(3): 167-173.
    [37] P.H. Wang, C.Y. Pan. Polymer metal composite microspheres preparation and characterization of poly(St-co-AN)Ni microspheres. European Polymer Journal, 2000, 36(10): 2297-2300.
    [38] D.A. Reece, S.F. Ralph, G.G. Wallace. Metal transport studies on inherently conducting polymer membranes containing cyclodextrin dopants. Journal of Membrane Science, 2005, 249(1): 9-20.
    [39] F. Mansfeld, F.J. Perez. Surface modification of Al/15%SiC metal matrix composite in molten salts containing CeCl3. Surface & Coatings Technology, 1996, 86(1): 449-453.
    [40] Z.H. Jin, R.C. Batra. Residual strength of centrally cracked metal/fiber composite laminates. Materials Science & Engineering A, 1996, 216(2): 117-124.
    [41] Q. Li, N. Imanishi, A. Hirano, et al. Four volts class solid lithium polymer batteries with a composite polymer electrolyte. Journal of Power Sources, 2002, 110(1): 38-45.
    [42] Y.S. Huang, X.T. Zeng, X.F. Hu, et al. Corrosion resistance properties of electroless nickel composite coatings. Electrochimica Acta, 2004, 49(25): 4313-4319.
    [43] S. Patil, S.R. Sainkar, P.P. Patil. Poly(o-anisidine) coatings on copper: Synthesis, characterization and evaluation of corrosion protection performance. Applied Surface Science, 2004, 225(5): 204-216.
    [44] Y. Wei, J. Wang, X. Jia, et al. Polyaniline as corrosion protection coatings on cold rolled steel. Polymer, 1995, 36 (23): 4535-4542.
    [45] V. Shinde, S.R. Saikar, P.P. Patil. Corrosion protective poly(o-toluidine) coatings on copper. Corrosion Science, 2005, 47(6): 1352-1369.
    [46]谢德明,胡吉明,童少平等.富锌漆研究进展.中国腐蚀与防护学报, 2004, 24(5): 314-320.
    [47] S.E. Faidi, J.D. Scantlebury, P. Bullivant, et al. Electrochemical study of zinc-containing epoxy coatings on mild steel. Corrosion Science, 1993, 35(5): 1319-1328.
    [48] B.V. Johnson, T.K. Ross. Protection of mild steel by zinc-paint in flowing aerated 0.5M NaCl solution em dash2. Corrosion Science, 1978, 18(6): 511-518.
    [49] S.G. Real, A.C. Elias, J.R. Vilche, et al. Electrochemical impedance spectroscopy study of zinc rich paints on steels in artificial sea water by a transmission line model. Electrochimica Acta, 1993, 38(14): 2029-2035.
    [50] J.M. Bastidas, S. Feliu, M. Morcillo, et al. Study of the electrochemical noise generated by the mild steel/zinc-rich paint/NaCl solution system. Progress in Organic Coatings, 1990, 18(3): 265-273.
    [51] O. Levy, D. Stroud. Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers. Physical Review B, 1997, 56(13): 8035-8041.
    [52] E.P. Mamunya, V.V. Davidenko, E.V. Lebedev. Percolation conductivity of polymer composites filled with dispersed conductive filler. Polymer Composites, 1995,16(4): 319-327.
    [53] E. Thommerel, J.C. Valmalette, J. Musso, S. Villain, J.R. Gavarri. Relations between microstructure, electrical percolation and corrosion in metal-insulator composites. Materials science and engineering A, 2002, 328(6): 67-79.
    [54] H. Marchebois, C. Savall, J. Bernard. Electrochemical behavior of zinc-rich powder coatings in artificial sea water. Electrochimica Acta, 2004, 49(17): 2945-2954.
    [55]刘志权,吴峰.防腐蚀涂层的透过性概述.涂料与应用, 1996, 27(1): 27-31.
    [56] W.W. Kittleberger, A.C. Elm. Physical models of diffusion for polymer solutions, gels and solids. Progress in polymer science, 1952, 44(1): 326-337.
    [57] C. Cmaitland, J.E.O. Mayne. Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers. Polymer, 1962, 34(3): 972-981.
    [58] F. Bellucci, M. Kloppers, R.M. Latanision. Protective properties of polyimide (PMDA-ODA) on aluminum metallic substrate. Journal of the Electrochemical Society, 1991, 138(1): 40-48.
    [59] R.C. Pacij, V.S. Agawala. Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS. Corrosion, 1988, 44(9): 680-688.
    [60] H. Marchebois, S. Touzain, S. Joiret, et al. Zinc-rich powder coatings corrosion in sea water: Influence of conductive pigments. Progress in Organic Coatings, 2002, 45(4): 415-421.
    [61] O.O. Knudsen, U. Steinsmo, M. Bjordal. Zinc-rich primers - Test performance and electrochemical properties. Progress in Organic Coatings, 2005, 54(2): 224-229.
    [62] W.B. Chen, P. Chen, H.Y. Chen, et al. Development of Al-containing zinc-rich paints for corrosion resistance. Applied Surface Science, 2002, 187(1): 154-164.
    [63] F. Wen, C.S. Xie, S.Z. Cai, et al. Electrochemical behaviour of copper/LDPE composites in the simulated uterine solution. Electrochimca Acta, 2006, 51(28): 5606-5611.
    [64]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层.腐蚀与防护, 1998, 19(3): 99-104.
    [65] H. Marchebois, M. Keddam, C. Savall, et al. Zinc-rich powder coatings characterisation in artificial sea water EIS analysis of the galvanic action. Electrochimca Acta, 2004, 49(11): 1719-1729.
    [66] J.R. Vilche, E.C. Bucharsky, C.A. Giudice. Application of EIS and SEM to evaluate the influence of pigment shape and content in ZRP formulations on the corrosion prevention of naval steel. Corrosion Science, 2002, 44(6): 1287-1309.
    [67] Editorial. Trends in corrosion research. Electrochim. Acta, 2001, 46(8): 3607-3609.
    [68] R.J. Forster, L. Keane. Nanoparticle-metallopolymer assemblies: Charge percolation and redox properties. Journal of Electroanalytical Chemistry, 2003, 554(1): 345-354.
    [69] O. Levy, D. Stroud. Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers. Physical Review B, 1997, 56(13): 8035-8041.
    [70] A. Benlhachemi, J.R. Gavarri, J. Musso, C. Alfred-Duplan, J.Marfaing. High-Tc superconductor/polymer composites. Modeling of abnormal electrical properties at low temperature. Physica C: Superconductivity, 1994, 230(3): 246-254.
    [71] E.P. Mamunya, V.V. Davidenko, E.V. Lebedev. Percolation conductivity of polymer composites filled with dispersed conductive filler. Polymer Composites, 1995, 16(4): 319-327.
    [72] J.P. Clerc, G. Giraud, J.M. Laugier, J.M. Luck. The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models. Advances in Physics, 1990, 39(3): 191-309.
    [73]潘宝风,李武光.导电高分子复合材料的研制.西南工学院学报, 2000, 15(4): 5-8.
    [74] J. Crank. The mathematics of diffusion, 2nd ed. Oxford: Clarendon press, 1975: 201-359
    [75] D. Stauffer. Introduction to Percolation Theory. London: Taylor & Francis, 1985: 35-59.
    [76] K.E. Silvia, L. Hans. Modelling of drug release from polymer matrices- Effect of drug loading. International journal of pharmaceutics, 1995, 121(23): 141-148.
    [77] I. Caraballo, M.F. Arevalo, M. Millan, A.M. Rabasco. Study of percolationthresholds in ternay tablets. International journal of pharmaceutics, 1996, 139(8): 177-186.
    [78] X. Liang, L. Ling, C. Lu. Resistively of carbon fibers/ABS resin composites. Materials letters, 2000, 43(3): 144-147.
    [79] E.L. Cussler. Diffusion, mass transfer in fluids sytems, 2nd ed. Cambridge: Cambridge University press, 1997: 45-150.
    [80] L. Masaro, X.X. Zhu. Physical models of diffusion for polymer solutions, gels and solids. Progress in polymer science, 1999, 24(6): 731-775.
    [81]张金涛.有机涂层中水传输与涂层金属失效机制的电化学研究: [博士论文].杭州:浙江大学, 2005: 20-46.
    [82] J. T.Alfrey, E.F. Gurnee, W. G.Lloyd. Journal of polymer science C, 1966, 12(5): 249-261.
    [83] R.A. Grinsted, L. Clark, J.L. Koenig. Study of cyclic sorption-desorption into poly(methyl methacrylate) rods using NMR imaging. Macromolecules, 1992, 25(4): 1235-1241.
    [84] W. Qin, Y. Shen, L. Fei. NMR imaging of acetone diffusion process in polycarbonate. Chinese Journal of Polymer Science, 1993, 11(4): 358-363.
    [85] L.A. Weisenberger, J.L. Koenig. NMR imaging of diffusion processes in polymers. Measurement of the spatial dependence of solvent mobility in partially swollen PMMA rods. Macromolecules, 1990, 23(9): 2445-2453.
    [86] N. Thomas, A.H. Windle. Deformation model for case II diffusion. Polymer, 1980, 21(6): 613-619.
    [87] N. Thomas, A.H. Windle. Theory of cae II diffusion. Polymer, 1982, 23(4): 529-542.
    [88] L. Masaro, X.X. Zhu. Physical models of diffusion for polymer solutions, gels and solids. Progress in polymer science, 1999, 24(12): 331-335.
    [89] F. Faupel, R. Willecke, A. Thran. Diffusion of metals in polymers. Materials science and engineering, 1998, 22(7): 1-55.
    [90] H. Fujita. Advance of polymer science, 1961, 3(1): 1-46.
    [91] H. Yasuda, C.E. Lamaze, A. Schindler. Salt rejection by polymer membranes inreverse osmosis- 2. Journal of polymer science part A-2 polymer physics, 1971, 9(9): 1579-1590.
    [92] E.M. Renkin. The journal of general physiology, 1954, 38(7): 225–243.
    [93] B. Krajewska. Diffusion of metal ions through gel chitosan membranes. Reactive & Functional Polymers, 2001, 125(47): 37-47.
    [94]杜庆玲,李万,曹路敏.固定式宫内节育器体内外铜离子释放量测定.同济医科大学学报, 1996, 25(3): 244-245.
    [95] A. Kosonen. Corrosion of copper in uterine. Tertility and Sterility, 1978, 30(1): 59-65.
    [96]刘庆喜,黄祝姈,崔丽瑜,康荣珠.含铜硅胶V形宫内节育器使用年限的研究.中华妇产科杂志, 1995, 39(9): 518-521.
    [97] J.M. Bastidas, E. Cano, N. Mora. Copper corrosion simulated uterine solutions. Contraception, 2000, 61(28): 395-399.
    [98]蔡水洲,夏先平,谢长生.载铜宫内节育器(IUD)及其腐蚀的研究.生殖与避孕, 2004, 24(5): 299-302.
    [99]朱建军,徐乃欣,张承典.模拟宫腔液中蛋白质对铜腐蚀的影响.生殖与避孕, 2000, 20(3): 161-164.
    [100] A. Benshushan, O. Paltied, N. Rojansky, A. Brzezinski. IUD use and the risk of endometrial cancer. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2002, 105(6): 166–169.
    [101]韩旭,韩向阳. TCu200c宫内节育器放置15年左右金相及表面沉积物分析.中国实用妇科与产科杂志, 2001, 17(11): 676-677.
    [102]张云山,杜建秋.宫内节育器与生殖道感染及盆腔炎.实用妇产科杂志, 2000, 16(5): 266-267.
    [103]韩红星,杜天竹,李明,罗新.三种新型CuIUD对宫底及宫颈部Cu2+浓度的影响.中国优生与遗传杂志, 2003, 11(5): 132-133.
    [104] S.B. Valdez, G.N. Rosas, M. Carrillo, L.T. Perez. Corrosion characteristics of copper-based IUDs. Anti-corrosion method and materials, 2003, 50(2): 129-135.
    [105]张承典,徐乃欣,陆菊芳等.用电化学方法研究IUD在人工配制液中铜的腐蚀.生殖与避孕, 1995, 15(1): 28-32.
    [106]张承典,徐乃欣.模拟宫腔液中铜与不锈钢的电偶腐蚀.中国腐蚀与防护学报, 1995, 15(4): 267-272.
    [107]薛华实,徐乃欣,张承典,陆菊芳.左旋18-甲基炔诺酮不影响人工配制液中铜的腐蚀作用.生殖与避孕, 1997, 17(3): 151-154.
    [108]朱建军,葛红花,徐乃欣等.人血清白蛋白对模拟宫腔液中铜的光电响应特性的影响.腐蚀与防护, 2002, 23(4): 144-147.
    [109] F. Wen, C.S. Xie, X.P. Xia. Electrochemical study of the corrosion behaviour of Cu/LDPE microcomposite in the simulated uterine solution. Journal of Electroanalytical Chemistry, 2007, 32(603): 219-226.
    [110] G.M. Tsangaris, N. Kouloumbi, S. Kyvelidis. Interfacial relaxation phenomena in particulate composites of epoxy resin with copper or iron particles. Materral chemistry and physics, 1996, 44(16): 245-256.
    [111] W.T. Doyle, I.S. Jacobs. Effective cluster model of dielectric enhancement in metal-insulator composites. Physics Review B, 1990, 42(2): 9319-9327.
    [112] O. Ferraz, E. Cavalcanti, A.R. Disarli. The characterization of protective properties for some naval steel/polymeric coating/3% NaCl solution systems by EIS and visual assessment. Corrosion science, 1995, 37(8): 1267-1280.
    [113]殷之文,方俊鑫.电介质物理学.北京:科学出版社, 2003: 29-189.
    [114]秦毅红,唐安平.铜阳极钝化机理及其影响因素.湖南有色金属, 2001, 17(1): 21-24
    [115] k. Patai, M. Berenyi, M. Sipos, B. Noszal. Characterization of calcified deposits on contraceptive intrauterine devices. Contraception, 1998, 58 (8): 305-308.
    [116] J.M. Bastidas, N. Mora, E. Cano, J.L. Polo. Characterization of copper corrosion products originated in simulated uterine fluids and on packaged intrauterine devices. Journal of the material science, 2001, 12 (20): 391-397.
    [117] S.Z. Cai, X.P. Xia, C.S. Xie. Research on Cu2+ transformations of Cu and its oxides particles with different sizes in the simulated uterine solution. Corrosion science, 2005, 32(47): 1039-1047.
    [118]薛华实.含铜宫内节育器腐蚀行为研究: [博士论文].上海:中科院上海冶金研究所, 1995: 10-35.
    [119]皮洪琼.生物降解纳米微球在药物控制释放中的应用研究: [硕士论文].天津:南开大学, 2001: 9-18.
    [120]查全性.电极过程动力学导论.北京:科学出版社, 2002: 74-128.
    [121]刘斌,李瑛,曹楚南.用EIS研究H2O在环氧涂层中的传输行为.中国腐蚀与防护学报, 2002, 22(3): 172-175.
    [122] J. Abella, J. Barcelo, L. Victori. Evaluation by electrochemical impedance spectroscopy of a process of removal of iron oxides deposited on heat exchanger tubing. Corrsion science, 1998, 40(9): 1561-1574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700