聚合物修饰多壁碳纳米管的合成、结构与性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管的独特结构,使其具有优异的光、电、磁、热、机械和化学性能,在功能材料、结构材料与纳米器件等方面具有许多特殊的应用。然而,碳纳米管自身的不溶不熔性、易缠结团聚以及难于加工操纵等问题,极大地限制了它的应用和研究。聚合物/碳纳米管复合材料,由于碳纳米管在基体中的难分散性、无序排列以及弱的相容性与界面粘接性能,削弱和降低了碳纳米管赋予聚合物的功能性与结构增强作用。因此,聚合物修饰碳纳米管的研究引起了广泛关注。一方面,聚合物修饰碳纳米管可以改变碳纳米管的表面性质,增加其溶解性,有利于在溶液状态下对碳纳米管进行结构表征,以及研究其溶液自组装与流变行为等;另一方面,利用功能性聚合物修饰碳纳米管,可赋予碳纳米管新的功能,进一步拓展其应用范围;再者,有利于碳纳米管在基体中均匀分散或取向排列,改善纳米管与基体之间的相容性和界面粘接性能,从而将碳纳米管的功能性与聚合物的加工性能结合起来,制备出高性能的功能材料与结构材料。
     本论文主要围绕聚合物共价修饰碳纳米管的合成,碳纳米管对聚合物结构与性能的影响进行研究。预先通过酰胺化反应在碳纳米管表面引入功能性有机小分子,再引发单体进行原位接枝聚合反应,制备了线性聚合物、超支化聚合物和液晶高分子接枝碳纳米管,并率先开展了聚合物接枝碳纳米管的溶液自组装、溶液流变学以及碳纳米管对偶氮苯光致异构化行为和液晶高分子液晶性影响的研究。
     预先在碳纳米管表面引入乙烯基,然后在引发剂作用下形成碳纳米管大分子自由基,引发苯乙烯单体进行原位接枝聚合,合成了线性聚苯乙烯接枝碳纳米管,这是一种自由基聚合共价修饰碳纳米管的新方法。结果表明,每100个纳米管碳中有1个碳被接枝上分子量为9800g/mol的聚苯乙烯链,形成核-壳纳米结构。碳纳米管在聚苯乙烯基体中均匀分散,明显地提高了聚合物的热稳定性和玻璃化温度。聚苯乙烯接枝碳纳米管在THF、DMF和CH2Cl2等溶剂中具有很好的溶解性,并随其溶液浓度增加,在玻璃基底上自组装形成了长度和直径逐渐增加的纳米针状结构。
     与线性聚合物相比,超支化聚合物具有更好的溶解性、更低的溶液与本体粘度以及多功能性末端基,且在制备方法上比树枝状聚合物的合成简单。本论文采用缩聚反应合成了超支化聚(脲-氨酯)接枝碳纳米管,并通过调节反应单体的物质量之比有效地控制了碳纳米管表面接枝聚合物的含量与厚度。重点研究了超支化聚(脲-氨酯)接枝碳纳米管的溶液流变性质,同时也比较了线性聚苯乙烯接枝碳纳米管的溶液流变行为。结果发现,依赖于接枝聚合物的含量与测试温度,超支化聚(脲-氨酯)接枝碳纳米管的溶液在低剪切速率下,表现出低温剪切增稠与高温剪切变稀的溶液行为;而高剪切速率下,均呈牛顿流体行为。不同温度下,聚苯乙烯接枝碳纳米管的溶液在低剪切速率下呈假塑性流体,高剪切速率下呈牛顿流体。这种新颖的溶液流变行为,与分子内和分子间氢键的形成、转换与破坏,以及剪切作用下聚合物链与碳纳米管的取向重排有关,并建立流变学模型讨论了溶液流变机理。
     此外,利用二异氰酸酯与双羟基偶氮苯液晶单体之间的缩聚反应,合成了具有柔性主链和主链较刚性的偶氮苯侧链液晶高分子接枝碳纳米管。结果发现,大尺度的刚性碳纳米管引入液晶高分子结构中,限制和阻碍了液晶高分子的取向排列,使分子链间的堆砌规整性降低,无序度增加,从而不再表现出液晶行为。研究液晶高分子接枝碳纳米管溶液的光化学行为,发现随紫外光照时间增加,偶氮苯部分逐渐从反式构型向顺式构型转化,并产生相应的光致变色现象。避光放置紫外光照射后的溶液,其颜色逐渐恢复到初始状态,并通过光照前后样品的1H NMR谱变化,证实了光致异构化反应的可逆性。碳纳米管的引入降低了偶氮苯基元的反-顺异构化速率,但增加接枝聚合物链的柔顺性,可提高其光响应速度。偶氮苯修饰碳纳米管结合了偶氮苯与碳纳米管的优异性能,在新型的功能材料与纳米器件方面具有潜在的应用。
     最后,将碳纳米管、4′-戊基-4-氰基联苯(5CB)小分子液晶和甲基丙烯酸(MAA)单体超声分散后,通过原位聚合反应制备了PMAA/5CB/MWNT复合材料。利用5CB在力作用下取向诱导了聚合物基体中碳纳米管的有序排列,并通过溶剂刻蚀的方法移除了体系中的5CB,从而制备了碳纳米管取向排列的聚合物薄膜,为研制新型的薄膜器件提供了一种简单的方法。
Carbon nanotubes (CNTs) have been proposed for many potential applications in functional materials, structural materials and nanodevices due to their unique optical, electronic, thermal, mechanical and chemical properties. However, the lack of solubility and fusibility and the entanglements as well as the difficult manipulation have imposed great limitations to their applications and development of CNTs. Despite the extraordinary promise of polymer/CNT nanocomposites, their realistic applications have been hindered by their poor dispersibility and random distribution in polymer matrix as well as the weak compatibility and interface interaction between matrix and CNTs. Therefore, functionalization of CNTs with various polymers has generated great attention. On the one hand, polymer-modified CNT changes the surface properties of CNTs, which not only improves their solubility, but also has benefits to investigate their structures, self-assembly and rheology behavior in solutions. On the other hand, modification of CNTs using functional polymers can endow CNTs with new properties, resulting in the further development for their applications. Moreover, the functionalization improves the dispersibility or alignment of CNTs in polymer matrix, and enhances the compatibility and interface adhesion between polymer matrix and CNTs, which promises the high performance materials with good functionality, mechanical properties and excellent processability.
     In the present dissertation, the synthesis of polymer covalently modified CNTs, and the effect of CNTs on the structures and properties of polymers were mainly studied. The organic small molecules with functional groups were preliminarily grafted onto the CNT surfaces via amidation to generate CNT-supported macroinitiators. Then linear polymers, hyperbranched polymers and liquid crystalline polymers (LCPs) were covalently grafted onto CNTs by grafting-from approaches based on the in-situ polymerization of monomers in the presence of CNT-macroinitiators. The self-assembly and rheology of the polymer-grafted CNTs solutions were investigated, and the influence of CNTs on the photoisomerization of azobenzene moieties and liquid crystallinity of LCPs was also discussed.
     Linear polystyrene-grafted CNTs (NT-LPS) with a core-shell nanostructure have been synthesized by a new in-situ free radical polymerization of styrene in the presence of CNTs terminated with vinyl groups. The results showed that 1 of 100 every 100 carbon atoms in CNTs is functionalized at the tips and side walls of CNTs and grafted by PS with a molecular weight of 9800 g/mol. CNTs are dispersed uniformly in polymer matrix, and the thermal stability and glass-transition temperature (Tg) of PS in NT-LPS are clearly enhanced. NT-LPS is soluble in THF, DMF and CH2Cl2. The self-assembly of NT-LPS that accompanies the evaporation of their THF solutions on glass substrates forms nanopins whose lengths and diameters increase with an increase in the solution concentration.
     Compared with linear polymers, hyperbranched polymers show better solubility, lower solution and melt viscosities and multifunctionality at end groups, and their synthetical methods are relatively ease. In the present dissertation, hyperbranched poly(urea-urethane)s (HPUs) have been grafted onto the surfaces of multiwalled carbon nanotubes (MWNTs) using one-pot polycondensation of diethanolamine (DEOA) and tolylene 2, 4-diisocyanate (TDI) in the presence of MWNT terminated with multi-hydroxyl groups (MWNT-OH). The grafted-HPU content and thickness on MWNTs were well-controlled by adjusting the feed ratio of TDI to DEOA. The solution rheology of the HPU-functionalized MWNTs was investigated for the first time by steady shear measurements. For comparison, the solution rheology of NT-LPS with comparable grafted-polymer content was also discussed. Depending on the grafted-HPU content and the temperature measured, the HPU-grafted MWNT solutions at low shear rates exhibit typical shear-thickening at low temperature and shear-thinning at high temperature, and show Newtonian fluids under high shear flow with a decreased viscosity. However, the NT-LPS solutions always represent shear-thinning at low shear rates and Newtonian behavior at high shear rates when they are measured at different temperatures. These novel rheological behaviors are related to the formation, conversion and disassociations of hydrogen-bonds as well as the orientation of polymer chains and MWNTs under shear. The rheology model was proposed to account for their rheological behaviors of polymer-grafted MWNT solutions.
     LCP-grafted MWNTs (MWNT-LCPs) have been synthesized by an in-situ polycondensation of azobenzene monomer containing bishydroxyl (AzoM) and diisocyanate in the presence of MWNT-OH. Two kinds of diisocyanates, an aliphatic diisocyanate (HDI) and an aromatic diisocyanate (TDI), were employed to react with AzoM, generating soft and semi-rigid LCPs with azobenzene side-chains onto the MWNT surfaces. Incorporating MWNTs into the molecular structures of LCPs increases the conformational and configurational disorder, and the ordered structures of liquid crystalline phase are destroyed, resulting in the disappearance of LCPs’liquid crystallinity due to the large scale and rigidity of MWNTs. The trans-isomers of azobenzene moieties in MWNT-LCP are gradually transformed to cis-isomers upon UV-irradiation, and accompanied by photochromism. When the UV-irradiated MWNT-LCP solution is kept in the dark for several days, the original color of solution is gradually recovered and shown the same 1H NMR spectrum, indicating the reversible photoisomerization. As compared with the parent polymer, the photoisomerization rate constant of MWNT-LCP decreases due to the heat sinks, and steric effects of MWNTs. However, the responsive rate of MWNT-LCP can be effectively controlled by adjusting the main-chain flexibility of the grafted-LCP on MWNTs, which might be the basis for developing novel high-performance optic and photonic devices.
     Finally, PMAA/5CB/MWNT composites have been synthesized by an in-situ free radical polymerization of methyl acrylic acid (MAA) in the presence of MWNTs and low molar mass liquid crystal, 4′-n-pentyl-4-cyanobiphenyl (5CB). The orientation of 5CB under shear induces the alignment of MWNTs in PMAA matrix, and 5CB is fully dialysed from PMAA matrix using a good solvent for 5CB and nonsolvency for PMMA. The oriented-MWNT polymeric films might have many potential applications in the thin-film devices.
引文
[1] Kroto H. W, Heath J. R., Obrien S. C., et al. C60 buckminsterfullerene. Nature, 1985, 318: 162~163
    [2] Kratschmer W., Lamb L. D., Fostiropoulos K., et al. Solid C60: a new form of carbon. Nature, 1990, 347: 354~358
    [3] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56~58
    [4] Ebbesen T. W. Carbon nanotubes. Physics Today, New York, 1996, 49: 26
    [5] Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603~605
    [6] Bethune D. S., Klang C. H., de Vries M. S., et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363: 605~607
    [7] Henning T. H., Salama F. Carbon in the universe. Science, 1998, 282: 2204~2210
    [8] Hiura H., Ebbesen T. W., Fujita J., et al. Role of sp3 defect structures in graphite and carbon nanotubes. Nature, 1994, 367: 148~151
    [9] Qin L.-C., Zhao X., Hirahara K., et al. The smallest carbon nanotube. Nature, 2000, 408: 50
    [10] Hertel T., Walkup. R. E., Avouris P. Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B, 1998, 58: 13870~13873
    [11] Cumings J., Zettl A. Low-friction nanoscale linear bearing realized form multiwall carbon nanotubes. Science, 2000, 289: 602~604
    [12] Colbert D. T., Zhang J., Mcclure S. M., et al. Growth and sintering of fullerene nanotubes. Science, 1994, 266:1218~1222
    [13] Pan Z. W., Xie S. S., Chang B. H., et al. Very long carbon nanotubes. Nature, 1998, 394: 631~633
    [14] Baughman R. H., Zakhidov A. A., de Heer W. A. Carbon nanotubes-the route toward applications. Science, 2002, 297: 787~792
    [15] Ajayan P. M., Schadler L. S., Braun P. V. Nanocomposite Science and Technology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2003
    [16] Nalwa H. S. Handbook of Nanostructured Materials and Nanotechnology, Vol. 5, Academic Press, New York, USA, 2000
    [17] Yakobson B. I., Smally R. E. Fullerene nanotubes: C1, 000, 000 and beyond author. Am. Sci., 1997, 85: 324~337
    [18] Dresselhaus M. S., Dresselhaus G., Eklund P. Carbon nanotubes: many researches have predicted remarkable and unique properties for carbon nanotubes. Phys. World, 1998, 11: 33~38
    [19] Ebbesen T. W., Lezec H. J., Hiura H., et al. Electrical conductivity of individual carbon nanotubes. Nature, 1996, 382: 54~56
    [20] Tang Z. K., Zhang L. Y., Wang N., et al. Superconductivity in 4 angstrom single-walled carbon nanotubes. Science, 2001, 292: 2462~2465
    [21] Ramirez A. P., Haddon R. C., Zhou O., et al. Magnetic-susceptibility of molecular carbon - nanotubes and fullerite. Science, 1994, 265: 84~86
    [22] Wang X. K., Chang R. P. H., Patashinski A., et al. Magnetic-susceptibility of buckytubes. J. Mater. Res., 1994, 9: 1578~1582
    [23] Fu H.X., Ye L., Xe X. D. Optical-properties for graphene microtubules of different geometries. Solid State Comm., 1994, 91: 191~194
    [24] Jiang J., Dong J. M., Wan X., et al. A new kind of nonlinear optical material: the fullerene tube. J. Phys. B: At. Mol. Opt. Phys., 1998, 31: 3079~3086
    [25] Sun X., Yu R. Q., Xu G. Q., et al. Broad optical limiting with multiwalled carbon nanotubes. Appl. Phys. Lett., 1998, 73: 3632~3634
    [26] Chen P., Wu X., Sun X., et al. Electronic structure and optical limiting behavior of carbon nanotubes. Phys. Rev. Lett., 1999, 82: 2548~2551
    [27] de Heer W. A., Chatelain A., Ugarte D. A carbon nanotube field-emission electron source. Science, 1995, 270: 1179~1180
    [28] de Heer W. A., Bonard J. M., Fauth K., et al. Electron field emitters based on carbon nanotube films. Adv. Mater., 1997, 9: 87~89
    [29] Chen P., Wu X., Lin J., et al. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science, 1999, 285: 91~93
    [30] Liu C., Fan Y. Y., Liu M., et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Sciecne, 1999, 286: 1127~1129
    [31] Planeix J. M., Coustel N., Coq B., et al. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc., 1994, 116: 7935~7936
    [32] Journet C., Maser W. K, Bernier P., et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997, 388: 756~758
    [33] Liu C., Cong H. T., Cheng H. M., et al. Semi-continuous synthesis of single-walled carbon nanotubes by hydrogen arc method. Carbon, 1999, 37: 1865~1868
    [34] Ando Y., Zhao X., Hirahara K., et al. Mass production of single-wall carbon nanotubes by the arc plasma jet method. Chem. Phys. Lett., 2000, 323: 580~585
    [35] Thess A., Lee R., Nikolaev P., et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273: 483~487
    [36] Balasubramanian K., Burghard M. Chemically functionalized carbon nanotubes, Small, 2005, 1: 180~192
    [37] Yacaman M. J., Yoshida M. M., Rendon L., et al. Catalytic growth of carbon microtubes with fullerene structure. Appl. Phys. Lett., 1993, 62: 202~204
    [38] Kong J., Cassell A. M., Dai H. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 1998, 272: 567~574
    [39] Cheng H. M., Li F., Su G., et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett., 1998, 72: 3282~3284
    [40] Nikolaev P., Bronikowski M. J., Bradley R. K., et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett., 1999, 313: 91~97
    [41] Li Y. M., Mann D., Rolandi M., et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett., 2004, 4: 317~321
    [42] Alvarez L., Guillard T., Olalde G., et al. Large scale solar production of fullerenes and carbon nanotubes. Synth. Met., 1999, 103: 2476~2477
    [43] Huang J. Y., Yasuda H., Mori H. Highly curved carbon nanostructures produced by ball-milling. Chem. Phys. Lett., 1999, 303: 130~134
    [44] VanderWal R. L., Ticich T. M., Curtis V. E. Diffusion flame synthesis of single-walled carbon nanotubes. Chem. Phys. Lett., 2000, 323: 217~223
    [45] Ebbesen T. W., Ajayan P. M., Hiura H., et al. Purification of nanotubes. Nature, 1994, 367: 519
    [46] Tohji K., Goto T., Takahashi H., et al. Purifying single-walled carbon nanotubes. Nature, 1996, 383: 679~670
    [47] Duseberg G. S., Blau W., Byrne H. J., et al. Chromatography of carbon nanotubes. Synth. Met., 1999, 103: 2484~2485
    [48] Niyogi S., Hu H., Hamon M. A., et al. Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs). J. Am. Chem. Soc., 2001, 123: 733~734
    [49] Zhao B., Hu H., Niyogi S., et al. Chromatographic purification and properties of soluble single-walled carbon nanotubes. J. Am. Chem. Soc., 2001, 123: 11673~11677
    [50] Chattopadhyay D., Lastella S., Kim S., et al. Length separation of zwitterion-functionalized single wall carbon nanotubes by GPC. J. Am. Chem. Soc., 2002, 124: 728~729
    [51] Bonard J. M., Stora T., Salvetat J. P., et al. Purification and size-selection of carbon nanotubes. Adv. Mater., 1997, 9: 827~831
    [52] Hu H., Yu A., Kim E., et al. Influence of the Zeta potential on the dispersability and purification of single-walled carbon nanotubes. J. Phys. Chem. B, 2005, 109: 11520~11524
    [53] Yu A., Bekyarova E., Itkis M. E., et al. Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes. J. Am. Chem. Soc., 2006, 128: 9902~9908
    [54] Bandow S., Rao A. M., Williams K. A., et al. Purification of single-wall carbon nanotubes by microfiltration. J. Phys. Chem. B, 1997, 101: 8839~8842
    [55] Shelimov K. B., Esenaliev R. O., Rinzler A. G., et al. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett., 1998, 282: 429~434
    [56] Tsang S. C., Harris P. J. F., Green M. L. H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 1993, 362: 520~522
    [57] Dujardin E., Ebbesen T. W., Krishnan A., et al. Purification of sing-shell nanotubes. Adv. Mater., 1998, 10: 611~613
    [58] Genett D. T., Gennett T., Jones K. M., et al. A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater., 1999, 11: 1354~1358
    [59] Shaffer M. S. P., Fan X., Windle A. H. Dispersion and packing of carbon nanotubes. Carbon, 1998, 36: 1603~1612
    [60] Hiura H., Ebbesen T. W., Tanigaki K., Opening and purification of carbon nanotubes in high yields. Adv. Mater., 1995, 7: 275~276
    [61] Liu J., Rinzler A. G., Dai H. J., et al. Fullerene pipes. Science, 1998, 280: 1253~1256
    [62] Chen J., Hamon M. A., Hu H., et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282: 95~98
    [63] Mibtmire J. W., Dunlap B. I., White C. T. Are fullerene tubules metallic? Phys. Rev. Lett., 1992, 68: 631~634
    [64] Hamada N., Sawada S. I., Oshiyama A. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett., 1992, 68: 1579~1581
    [65] Saito R., Fujita M., Dresselhaus G., et al. Electronic structure of chiral graphene tubules. Appl. Phys. Lett., 1992, 60: 2204~2206
    [66] Strano M. S., Dyke C. A., Usrey M. L., et al. Electronic structure control of single-walled carbon nanotube functionalization. Science, 2003, 301: 1519~1522
    [67] Dyke C. A., Stewart M. P., Tour J. M. Separation of single-walled carbon nanotubes on silica gel. materials morphology and raman excitation wavelength affect data interpretation . J. Am. Chem. Soc., 2005, 127: 4497~4509
    [68] Maeda Y., Kimura S.-i., Kanda M., et al. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc., 2005, 127: 10287~10290
    [69] Chattopadhyay D., Galeska L., Papadimitrakopoulos F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc., 2003, 125: 3370~3371
    [70] Samsonidze G. G., Chou S. G., Santos A. P., et al. Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes. Appl. Phys. Lett., 2004, 85: 1006~1008
    [71] Li H. P., Zhou B., Lin Y., et al. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc., 2004, 126: 1014~1015
    [72] Chen Z., Du X., Du M.-H., et al. Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes. Nano Lett., 2003, 3: 1245~1249
    [73] Krupke R., Hennrich F., L?hneysen H. V., et al. Separation of metallic from semiconducting single-walled carbon nanotubes. Science, 2003, 301: 344~347
    [74] Zheng M., Jagota A., Strano M. S., et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science, 2003, 302: 1545~1548
    [75] Joselevich, E. Electronic structure and chemical reactivity of carbon nanotubes: a chemist's view. ChemPhysChem., 2004, 5: 619~624
    [76] Maeda Y., Kimura S., Kanda M., et al. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc., 2005, 127: 10287~10290
    [77] Maeda Y., Kanda M., Hashimoto M., et al. Dispersion and separation of small-diameter single-walled carbon nanotubes. J. Am. Chem. Soc., 2006, 128: 12239~12242
    [78] Ménard-Moyon C., Izard N., Doris E., et al. Separation of semiconducting from metallic carbon nanotubes by selective functionalization with azomethine ylides. J. Am. Chem. Soc., 2006, 128: 6552~6553
    [79] Ugarte D., Chatelain A., de Heer W. A. Nanocapillarity and chemistry in carbon nanotubes. Science, 1996, 274: 1897~1899
    [80] Pederson M. R., Broughtpn J. Q. Nanocapillarity in fullerene tubules. Phys. Rev. Lett., 1992, 69: 2689~2692
    [81] Ajayan P. M., Iijima S. Capillarity-induced filling of carbon nanotubes. Nature, 1993, 361: 333~334
    [82] Jankovi? L., Gournis D., Trikalitis P. N., et al. Carbon nanotubes encapsulating superconducting single-crystalline tin nanowires. Nano Lett., 2006 , 6: 1131~1135
    [83] Hu J., Bando Y., Zhan J., et al. Carbon nanotubes as nanoreactors for fabrication of single-crystalline Mg3N2 nanowires. Nano Lett., 2006, 6: 1136~1140
    [84] Jourdain V., Simpson E. T., Paillet M., et al. Periodic inclusion of room-temperature-ferromagnetic metal phosphide nanoparticles in carbon nanotubes. J. Phys. Chem. B, 2006, 110: 9759~9763
    [85] Satishkumar B. C., Govindaraj A., Mofokeng J., et al. Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes. J. Phys. B: At. Mol. Opt. Phys., 1996, 29: 4925~4934
    [86] Smith B. W., Monthioux M., Luzzi D. E. Encapsulated C60 in carbon nanotubes. Nature, 1998, 396: 323~324
    [87] Hornbaker D. J., Kahng S.-J., Misra S., et al. Mapping the one-dimensional electronic states of nanotube peapod structures. Science, 2002, 295: 828~831
    [88] Sun B. Y., Sato Y., Suenaga K., et al. Entrapping of exohedral metallofullerenes in carbon nanotubes: (CsC6 0 )n @SWNT nano-peapods. J. Am. Chem. Soc., 2005, 127: 17972~17973
    [89] Kitaura R., Shinohara H. Carbon-nanotube-based hybrid materials: nanopeapods. Chem. Asian J., 2006, 1: 646~655
    [90] Chen S., Wu G., Sha M., et al. Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes. J. Am. Chem. Soc., 2007, 129: 2416~2417
    [91] Curran S., Ajayan P. M., Balu W. Optical and electrical properties of a polymer-nanotube composite. Synth. Met., 1999, 103: 2559~2562
    [92] Planeix J. M., Coustel N., Coq B., et al. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc., 1994, 116: 7935~7936
    [93] Yu R., Chen L., Liu Q., et al. Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater., 1998, 10: 718~722
    [94] Kong J., Chapline M., Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater., 2001, 13: 1384~1386
    [95] Wildgoose G. G., Banks C. E., Compton R. G. Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small, 2006, 2: 182~193
    [96] Wang C., Waje M., Wang X., et al. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett., 2004, 4: 345~348
    [97] Lin Y., Cui X., Yen C., et al. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J. Phys. Chem. B, 2005, 109: 14410~14415
    [98] Qu L., Dai L. Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J. Am. Chem. Soc., 2005, 127: 10806~10807
    [99] Vijayaraghavan G., Stevenson K. J. Synergistic assembly of dendrimer templated platinum catalyst on nitrogen-doped carbon nanotube electrodes for oxygen reduction. Langmuir, 2007, 23: 5279~5282
    [100] Haremza J. M., Hahn M. A., Krauss T. D., et al. Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Lett., 2002, 2: 1253~1258
    [101] Han W.-Q., Zettl A. Coating single-walled carbon nanotubes with Tin oxide. Nano Lett., 2003, 3: 681~683
    [102] Shi J., Qin Y., Wu W., et al. In situ synthesis of CdS nanoparticles on multi-walled carbon nanotubes. Carbon, 2004, 42: 455~458
    [103] Cao J., Sun J.-Z., Hong J., et al. Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method. Adv. Mater., 2004,16: 84~87
    [104] Robel I., Bunker B. A., Kamat P. V. Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interactions. Adv. Mater., 2005, 17: 2458~2463
    [105] Whitsitt E. A., Barron A. R. Silica coated single walled carbon nanotubes. Nano Lett., 2003, 3: 775~778
    [106] Sainsbury T., Fitzmaurice D. Templated assembly of semiconductor and insulator nanoparticles at the surface of covalently modified multiwalled carbon nanotubes. Chem. Mater., 2004, 16: 3780~3790
    [107] Agrawal S., Kumar A., Frederick M. J., et al. Hybrid microstructures from aligned carbon nanotubes and silica particles. Small, 2005, 1: 823~826
    [108] Olek M., Kempa K., Jurga S., et al. Nanomechanical properties of silica-coated multiwalled carbon nanotubes-poly(methyl methacrylate) composites. Langmuir, 2005, 21: 3146~3152
    [109] Grzelczak M., Correa-Duarte M. A., Liz-Marzán L. M. Carbon nanotubes encapsulated in wormlike hollow silica shells. Small, 2006, 2: 1174~1177
    [110] Kim D. S., Lee T., Geckeler K. E. Hole-doped single-walled carbon nanotubes: ornamenting with gold nanoparticles in water. Angew. Chem. Int. Ed., 2006, 45: 104~107
    [111] Han L., Wu W., Kirk F. L. A direct route toward assembly of nanoparticle-carbon nanotube composite materials. Langmuir, 2004, 20: 6019~6025
    [112] Zanella R., Basiuk E. V., Santiago P., et al. Deposition of gold nanoparticles onto thiol-functionalized multiwalled carbon nanotubes. J. Phys. Chem. B, 2005, 109: 16290~16295
    [113] Sainsbury T., Stolarczyk J., Fitzmaurice D. An experimental and theoretical study of the self-assembly of gold nanoparticles at the surface of functionalized multiwalled carbon nanotubes. J. Phys. Chem. B, 2005, 109: 16310~16325
    [114] Cha S. I., Kim K. T., Arshad S. N., et al. Field-emission behavior of a carbon-nanotube implanted Co nanocomposite fabricated from pearl-necklace-structured carbon nanotube/Co powders. Adv. Mater., 2006, 18: 553~558
    [115] Kim Y.-T., Ohshima K., Higashimine K., et al. Fine size control of platinum on carbon nanotubes: from single atoms to clusters. Angew. Chem. Int. Ed., 2006, 45: 407~411
    [116] Kedem S., Schmidt J., Paz Y. et al. Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles. Langmuir, 2005, 21: 5600~5604
    [117] Sheeney-Haj-Khia L., Basnar B., Willner I. Efficient generation of photocurrents by using cds/carbon nanotube assemblies on electrodes. Angew. Chem. Int. Ed., 2005, 44: 78~83
    [118] Chaudhary S., Kim J. H., Singh K. V., et al. Fluorescence microscopy visualization of single-walled carbon nanotubes using semiconductor nanocrystals. Nano Lett., 2004, 4: 2415~2419
    [119] Robel I., Bunker B. A., Kamat P. V. Single-walled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interactions. Adv. Mater., 2005, 17: 2458~2463
    [120] Du J., Fu L., Liu Z., et al. Facile route to synthesize multiwalled carbon nanotube/zinc sulfide heterostructures: optical and electrical properties. J. Phys. Chem. B, 2005, 109: 12772~12776
    [121] Li X., Liu Y., Fu L., et al. Efficient synthesis of carbon nanotube–nanoparticle hybrids. Adv. Funct. Mater., 2006, 16: 2431~2437
    [122] Ye J. S., Cui H. F., Liu X., et al. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small, 2005, 1: 560~565
    [123] Fu L., Liu Z., Liu Y., et al. Beaded cobalt oxide nanoparticles along carbon nanotubes: towards more highly integrated electronic devices. Adv. Mater., 2005, 17: 217~221
    [124] Zhu Y., Elim H. I., Foo Y.-L., et al. Multiwalled carbon nanotubes beaded with zno nanoparticles for ultrafast nonlinear optical switching. Adv. Mater., 2006, 18: 587~592
    [125] Liu J., Li X., Dai L. Water-assisted growth of aligned carbon nanotube-ZnO heterojunction arrays. Adv. Mater., 2006, 18: 1740~1744
    [126] Wong S. S., Joselevich E., Woolley A. T., et al. Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology. Nature, 1998, 394: 52~55
    [127] Wong S. S., Woolley A. T., Joselevich E., et al. Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy. J. Am. Chem. Soc., 1998, 120: 8557~8558
    [128] Tasis D., Tagmatarchis N., Bianco A. et al. Chemistry of carbon nanotubes. Chem. Rev., 2006, 106: 1105~1136
    [129] Sun Y. P., Fu K., Lin Y., et al. Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res., 2002, 35: 1096~1104
    [130] Banerjee S., Hemraj-Benny T., Wong S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater., 2005, 17: 17~29
    [131] Hirsch A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed., 2002, 41: 1853~1859
    [132] Hamon M. A., Chen J., Hu H., et al. Dissolution of single-walled carbon nanotubes. Adv. Mater., 1999, 11: 834~840
    [133] Chen Y., Haddon R. C., Fang S., et al. Chemical attachment of organic functional groups to single-walled carbon nanotube materials. J. Mater. Res., 1998, 13: 2423~2431
    [134] Li X. H., Niu J. L., Zhang J., et al. Labeling the defects of single-walled carbon nanotubes using titanium dioxide nanoparticles. J. Phys. Chem. B, 2003, 107: 2453~2458
    [135] Zhang J., Zou H. L., Qing Q., et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B, 2003, 107: 3712~3718
    [136] Zhou W., Ooi Y. H., Russo R., et al. Structural characterization and diameter-dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO. Chem. Phys. Lett., 2001, 350: 6~14
    [137] Tsang S. C., Chen Y. K., Green M. L. H., et al. A simple chemical method of opening and filling carbon nanotubes. Nature, 1994, 372: 159~162
    [138] Tsang S. C., Chen Y. K., Green M. L. H., et al. Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups. Chem. Commu., 1995, 1355~1356
    [139] Chen Y., Chen J., Haddon R.C., et al. Solution-phase EPR studies of single-walled carbon nanotubes. Chem. Phys. Lett., 1999, 299: 532~535
    [140] Pompeo F., Resasco D. Water solubilization of single-walled carbon nanotubes by funcitonalzied with glucosamine. Nano Lett., 2002, 2: 369~373
    [141] Zhao B., Hu H., Yu A., et al. Synthesis and characterization of water soluble single-walled carbon nanotubes graft copolymers. J. Am. Chem. Soc., 2005, 127: 8197~8203
    [142] Zhao B., Hu H., Mandal S. K., et al. A bone mimic based on the self-assembly of hydroxyapatite on chemically fucntionalized single-walled carbon nanotubes. Chem. Mater., 2005, 17: 3235~3241
    [143] Yim T.-J., Liu J., Lu Y., et al. Highly active and stable DNAzyme-carbon nanotube hybrids. J. Am. Chem. Soc., 2005, 127: 12200~12201
    [144] Banerjee S., Wong S. S. Synthesis and characterization of carbon nanotube-nanocrystal heterostructures. Nano Lett., 2002, 2: 195~200
    [145] Liu Z. F., Shen Z. Y., Zhu T., et al. Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique. Langmuir, 2000, 16: 3569~3573
    [146] He P., Urban M. W. Controlled phospholipids fucntionalization of single-walled carbon nanotubes. Biomacromolecules, 2005, 6: 2455~2457
    [147] Gao J., Itkis M. E., Yu A., et al. Continuous spinning of a single-walled carbon nanotube-nylon composite fiber. J. Am. Chem. Soc., 2005, 127: 3847~3854
    [148] Gao J., Zhao B., Itkis M. E., Chemical engineering of the single-walled carbon nanotube-nylon 6 interface. J. Am. Chem. Soc., 2006, 128: 7492~7496
    [149] Ge J. J., Zhang D., Li Q., et al. Multiwalled carbon nanotubes with chemically grafted polyetherimides. J. Am. Chem. Soc., 2005, 127: 9984~9985
    [150] Hamon M. A., Hui H., Bhowmik P., et al. Ester-functionalized soluble single-walled carbon nanotubes. Appl. Phys. A, 2002, 74: 333~338
    [151] Sun Y. P., Huang W. J., Lin Y., et al. Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties. Chem. Mater., 2001, 13: 2864~2869
    [152] Fu K. F., Huang W. J., Lin Y., et al. Defunctionalization of functionalized carbon nanotubes. Nano Lett., 2001, 1: 439~441
    [153] Baskaran D., Mays J. W., Zhang X. P., et al. Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. J. Am. Chem. Soc., 2005, 127: 6916~6917
    [154] Chen G.-X., Kim H.-S., Park B. H., et al. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid). J. Phys. Chem. B, 2005, 109: 22237~22243
    [155] Lin Y., Zhou B., Fernando K. A. S., et al. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules, 2003, 36: 7199~7204
    [156] Hill D., Lin Y., Qu L., et al. Functionalization of carbon nanotubes with derivatized polyimide. Macromolecules, 2005, 38: 7670~7675
    [157] Qin Y. J., Shi J. H., Wu W., et al. Concise route to functionalized carbon nanotubes. J. Phys. Chem. B, 2003, 107: 12899~12901
    [158] Chen J., Rao A.M., Lyuksyutov S., et al. Dissolution of full-length single-walled carbon nanotubes. J. Phys. Chem. B, 2001, 105: 2525~2528
    [159] Kahn M. G. C., Banerjee S., Wong S. S. Solubilization of oxidized single-walled carbon nanotubes in organic and aqueous solvents through organic derivatization. Nano Lett., 2002, 2: 1215~1218
    [160] Pekker S., Salvetat J.-P., Jakab E., et al. Hydrogenation of carbon nanotubes and graphite in liquid ammonia, J. Phys. Chem. B, 2001, 105: 7938~7943
    [161] Khare B. N., Meyyappan M., Cassell A. M., et al. Functionalization of carbon nanotubes using atomic hydrogen from a glow discharge, Nano Lett., 2002, 2: 73~77
    [162] Kim K. S., Bae D. J., Kim J. R., et al. Modification of electronic structures of a carbon nanotube by hydrogen functionalization. Adv. Mater., 2002, 14: 1818~1821
    [163] Khare B. N., Meyyappan A. M., Moore M. H., et al. Proton irradiation of carbon nanotubes. Nano Lett., 2003, 3: 643~646
    [164] Zhang G., Qi P., Wang X., et al. Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J. Am. Chem. Soc., 2006, 128: 6026~6027
    [165] Mickelson E. T., Huffman C. B., Rinzler A. G., et al. Fluorination of single-wall carbon nanotubes. Chem. Phys. Lett., 1998, 296: 188~194
    [166] Mickelson E. T., Chiang I. W., Zimmerman J. L., et al. Soluation of fluorinated single-wall carbon nanotubes in alcohol solvents. J. Phys. Chem. B, 1999, 103: 4318~4322
    [167] Gu Z., Peng H., Hauge R. H., et al. Cutting single-wall carbon nanotubes through fluorination. Nano Lett., 2002, 2: 1009~1013
    [168] Pehrsson P. E., Zhao W., Baldwin J. W., et al. Thermal fluorination and annealing of single-wall carbon nanotubes. J. Phys. Chem. B, 2003, 107: 5690~5695
    [169] An K. H., Park K. A., Heo J. G., et al. Structural transformation of fluorinated carbon nanotubes induced by in situ electron-beam irradiation. J. Am. Chem. Soc., 2003, 125: 3057~3061
    [170] Bettinger H. F., Kudin K. N., Scuseria G. E. Thermochemistry of fluorinated single wall carbon nanotubes, J. Am. Chem. Soc., 2001, 123: 12849~12856
    [171] Boul P. J., Liu J., Mickelson E. T., et al. Reversible sidewall functionalization of buckytubes. Chem. Phys. Lett., 1999, 310: 367~372
    [172] Saini R. K., Chiang I. W., Peng H., et al. Covalent sidewall functionalization of single wall carbon nanotubes. J. Am. Chem. Soc., 2003, 125: 3617~3621
    [173] Stevens J. L., Huang A. Y., Peng H. Q., et al. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett., 2003, 3: 331~336
    [174] Zhang L., Kiny V. U., Peng H., et al. Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties. Chem. Mater., 2004, 16: 2055~2061
    [175] Geng H., Rosen R., Zheng B., et al. Fabrication and properties of composites of poly(ethylene oxide) and functionalized carbon nanotubes. Adv. Mater., 2002, 14: 1387~1390
    [176] Ni B., Sinnott S. B. Chemical functionalization of carbon nanotubes through energetic radical collisions. Phys. Rev. B, 2000, 61: R16343~R16346
    [177] Mylvaganam K., Zhang L. C. Nanotube functionalization and polymer grafting: an AB initio study. J. Phys. Chem. B, 2004, 108: 15009~15012
    [178] Bahr J. L., Yang J. P., Kosynkin D. V., et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc., 2001, 123: 6536~6542
    [179] Strano M. S., Dyke C. A., Usrey M. L., et al. Electronic structure control of single-walled carbon nanotube functionalization. Science, 2003, 301: 1519~1522
    [180] Dyke C. A., Tour J. M. Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett. 2003, 3: 1215~1218
    [181] Strano M. S. Probing chiral selective reactions using a revised kataura plot for the interpretation of single-walled carbon nanotube spectroscopy. J. Am. Chem. Soc.,2003, 125: 16148~16153
    [182] Leventis H. C., Wildgoose G. G., Davies I. G., et al. Multiwalled carbon nanotubes covalently modified with fast black K. ChemPhysChem, 2005, 6: 590~595
    [183] Bahr J. L., Tour J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater., 2001, 13: 3823~3824
    [184] Mitchell C. A., Bahr J. L., Arepalli S., et al. Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules, 2002, 35: 8825~8830
    [185] Hudson J. L., Casavant M. J., Tour J. M. Water-Soluble, exfoliated, nonroping single-wall carbon nanotubes. J. Am. Chem. Soc.,2004, 126: 11158~11159
    [186] Dyke C. A., Tour J. M. Solvent-free functionalization of carbon nanotubes. J. Am. Chem. Soc., 2003, 125: 1156~1157
    [187] Dyke C. A., Tour J. M. Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem. Eur. J., 2004, 10: 812~817
    [188] S. E. Kooi, U. Schlecht, M. Burghard, et al. Electrochemical modification of single carbon nanotubes, Angew. Chem. Int. Ed., 2002, 41: 1353~1355
    [189] Ying Y. M., Saini R. K., Liang F., et al. Functionalization of carbon nanotubes by free radicals. Org. Lett., 2003, 5: 1471~1473
    [190] H. Peng, L. B. Alemany, J. L. Margrave, et al. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc., 2003, 125: 15174~15182
    [191] Georgakilas V., Kordatos K., Prato M., et al. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc., 2002, 124: 760~761
    [192] Maggini M., Scorrano G., Prato M. Addition of azomethine ylides to C60-synthesis, characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc., 1993, 115: 9798~9799
    [193] Bianco A., Prato M. Can carbon nanotubes be considered useful tools for biological applications. Adv. Mater., 2003, 15: 1765~1768
    [194] Wu W., Wieckowski S., Pastorin G., et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed., 2005, 44: 6358 ~6362
    [195] Lovat V., Pantarotto D., Lagostena L., et al. Carbon nanotube substrates boostneuronal electrical signaling. Nano Lett., 2005, 5: 1107~1110
    [196] Guldi D. M., Marcaccio M., Paolucci D., et al. Single-wall carbon nanotube–ferrocene nanohybrids: observing intramolecular electron transfer in functionalized SWNTs. Angew. Chem. Int. Ed., 2003, 42: 4206~4209
    [197] Tagmatarchis N., Prato M., Functionalization of carbon nanotubes via 1, 3-dipolar cycloadditions. J. Mater. Chem., 2004, 14: 437~439
    [198] Georgakilas V., Tagmatarchis N., Pantarotto D., et al. Amino acid functionalization of water soluble carbon nanotubes. Chem. Commu., 2003, 3050~3051
    [199] Alvaro M., Atienzar P., de la Cruz P., et al. Sidewall functionalization of single-walled carbon nanotubes with nitrile imines. electron transfer from the substituent to the carbon nanotube. J. Phys. Chem. B, 2004, 108: 12691~12697
    [200] Wang Y., Iqbal Z., Mitra S. Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon, 2005, 43: 1015~1020
    [201] Lu X., Tian F., Xu X., et al. A theoretical exploration of the 1, 3-dipolar cycloadditions onto the sidewalls of (n, n) armchair single-wall carbon nanotubes. J. Am. Chem. Soc., 2003, 125: 10459~10464
    [202] Tagmatarchis N., Georagakilas V., Prato M., et al. Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition. Chem. Comm., 2002, 2010~2011
    [203] Lu X., Tian F., Zhang Q. The [2+1] cycloadditions of dichlorocarbene, silylene, germylene, and oxycarbonylnitrene onto the sidewall of armchair (5, 5) single-wall carbon nanotube. J. Phys. Chem. B, 2003, 107: 8388~8391
    [204] Chu Y.-Y., Su M.-D. Theoretical study of addition reactions of carbene, silylene, and germylene to carbon nanotubes. Chem. Phys. Lett., 2004, 394: 231~237
    [205] Lee W. H., Kim S. J., Lee W. J., et al. X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material. Appl. Surf. Sci., 2001, 181: 121~127
    [206] Hu H., Zhao B., Hamon M. A., et al. Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J. Am. Chem. Soc., 2003, 125: 14893~14900
    [207] Holzinger M., Vostrowsky O., Hirsch A., et al. Sidewall functionalization of carbonnanotubes. Angew. Chem. Int. Ed., 2001, 40: 4002~4005
    [208] Prato M., Li Q. C., Wudl F., et al. Addition of azides to fullerene C : synthesis of azafulleroids.60J. Am. Chem. Soc., 1993, 115: 1148~1150
    [209] Hawker C. J. A simple and versatile method for the synthesis of C6 0 copolymers. Macromolecules, 1994, 27: 4836~4837
    [210] Moghaddam M. J., Taylor S., Gao M., et al. Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett., 2004, 4: 89~93
    [211] Lee K. M., Dai L. Asymmetric end-functionalization of multi-walled carbon nanotubes. J. Am. Chem. Soc., 2005, 127: 4122~4123
    [212] Qin S., Qin D., Ford W. T., et al. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules, 2004, 37: 752~757
    [213] Li H., Cheng F., Duft A. M., et al. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by“click”coupling. J. Am. Chem. Soc., 2005, 127: 14518~14524
    [214] Bingel C., Cyclopropylation of fullerenes. Chem. Ber. Recl., 1993, 126: 1957~1959
    [215] Coleman K. S., Bailey S. R., Fogden S., et al. Functionalization of single-walled carbon nanotubes via the Bingel reaction. J. Am. Chem. Soc., 2003, 125: 8722~8723
    [216] Yao Z., Braidy N., Botton G. A., et al. Polymerization from the surface of single-walled carbon nanotubes-preparation and characterization of nanocomposites. J. Am. Chem. Soc., 2003, 125: 16015~16024
    [217] Baskaran D., Mays J. W., Bratcher M. S. Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew. Chem. Int. Ed., 2004, 43: 2138~2142
    [218] Kong H., Gao C., Yan D. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc., 2004, 126: 412~413
    [219] Kong H., Gao C., Yan D. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defucntionalization of the products.Macromolecules, 2004, 37: 4022~4030
    [220] Qin S., Qin D., Ford W. T., et al. Polymer brushes on single-walled carbon nantoubes by atom transfer radical polymerization of n-butyl methacrylate. J. Am. Chem. Soc., 2004, 126: 170~176
    [221] Gao C., Vo C. D., Jin Y. Z., et al. Multihydroxy polymer-functionalized carbon nanotubes: synthesis, derivatization, and metal loading. Macromolecules, 2005, 38: 8634~8648
    [222] Hong C.-Y., You Y.-Z., Wu D., et al. Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP. Macromolecules, 2005, 38: 2606~2611
    [223] Matyjaszewski K., Xia J. Atom transfer radical polymerization. Chem. Rev., 2001, 101: 2921~2990
    [224] Lou X., Detrembleur C., Pagnoulle C., et al. Surface modification of multiwalled carbon nanotubes by poly(2-vinylpyridine): dispersion, selective deposition, and decoration of the nanotubes. Adv. Mater., 2004, 16: 2123~2126
    [225] Liu Y., Yao Z., Adronov A. Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling. Macromolecules, 2005, 38: 1172~1179
    [226] Zhao X.-D., Fan X.-H., Chen X.-F., et al. Surface modification of multiwalled carbon nanotubes via nitroxide-mediated radical polymerization. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 4656~4667
    [227] Devonport W., Michalak L., Malmstrom E., et al. "Living" free-radical polymerizations in the absence of initiators: controlled autopolymerization. Macromolecules, 1997, 30: 1929~1934.
    [228] Chiefari J., Chong Y. K., Ercole F., et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the raft process. Macromolecules, 1998, 31: 5559~5562
    [229] Cui J., Wang W. P., You Y. Z., et al. Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization. Polymer, 2004, 45: 8717~8721
    [230] Hong C.-Y., You Y.-Z., Pan C.-Y. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFTpolymerization. Chem. Mater., 2005, 17: 2247~2254
    [231] Hong C.-Y., You Y.-Z., Pan C.-Y. Functionalized multi-walled carbon nanotubes with poly(n-(2-hydroxypropyl)methacrylamide) by RAFT polymerization. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 2419~2427
    [232] Pei X., Hao J., Liu W. Preparation and characterization of carbon nanotubes-polymer/Ag hybrid nanocomposites via surface RAFT Polymerization. J. Phys. Chem. C, 2007, 111: 2947~2952
    [233] Viswanathan G., Chakrapan N., Yang H., et al. Single-step in situ synthesis of polymerization-grafted single-walled nanotube composites. J. Am. Chem. Soc., 2003, 123: 9258~9259
    [234] Qu L., Veca L. M., Lin Y., et al. Soluble nylon-functionalized carbon nanotubes from anionic ring-opening polymerization from nanotube surfaces. Macromolecules, 2005, 38: 10328~10331.
    [235] Liu I-C., Huang H.-M., Chang C.-Y., et al. Preparing a styrenic polymer composite containing well-dispersed carbon nanotubes: anionic polymerization of a nanotube-bound p-methylstyrene. Macromolecules, 2004, 37: 283~287
    [236] Xu Y., Gao C., Kong H., et al. Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules, 2004, 37: 8846~8853
    [237] Zeng H., Gao C., Yan D. Poly(ε-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv. Funct. Mater., 2006, 18: 812~818
    [238] Buffa F., Hu H., Resasco D. E. Side-wall functionalization of single-walled carbon nanotubes with 4-hydroxymethylaniline followed by polymerization ofε-caprolactone. Macromolecules, 2005, 38: 8258~8263
    [239] Gao C., Jin Y. Z., Kong H., et al. Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. J. Phys. Chem. B, 2005, 109: 11925~11932
    [240] Xia H., Song M., Jin J., et al. Poly(propylene glycol)-grafted multi-walled carbon nanotube polyurethane. Macromol. Chem. Phys., 2006, 207: 1945~1952
    [241] Qin S., Qin D., Ford W. T., et al. Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate. Macromolecules, 2004, 37: 3965~3967
    [242] Qin S., Qin D., Ford W. T., et al. Grafting of poly(4-vinylpyridine) to single-walled carbon nanotubes and assembly of multilayer films. Macromolecules, 2004, 37: 9963~9967
    [243] Ha J. K., Kim M., Lee J., et al. A novel synthesis of polymer brush on multiwalled carbon nanotubes bearing terminal monomeric unit. J. Polym. Sci. Part A: Polym. Chem., 2006, 44: 6394~6401
    [244] Dettalfff-Weglikowska U., Skakaova V., Graupner R., et al. Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotubes networks. J. Am. Chem. Soc., 2005, 127: 5125~5131
    [245] Jaegfeldt H., Kuwana T., Johansson G. Electrochemical stability of catechols with a pyrene side chain strongly adsorbed on graphite electrodes for catalytic oxidation of dihydronicotinamide adenine dinucleotide. J. Am. Chem. Soc., 1983, 105: 1805~1814
    [246] Chen R. J., Zhang Y. G., Wang D. W., et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am.Chem. Soc., 2001, 123: 3838~3839
    [247] Nakayama-Ratchford N., Bangsaruntip S., Sun X., et al. Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc., 2007, 129: 2448~2449
    [248] Rahman G. M. A., Guldi D. M., Cagnoli Ri., et al. Combining single-wall carbon nanotubes and photoactive polymers for photoconversion. J. Am. Chem. Soc., 2005, 127: 10051~10057
    [249] Cheng F., Adronov A., Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer. Chem. Eur. J., 2006, 12, 5053~5059
    [250] Alvaro M., Atienzar P., de la Cruz P., et al. Synthesis, photochemistry, and electrochemistry of single-wall carbon nanotubes with pendent pyridyl groups and of their metal complexes with zinc porphyrin comparison with pyridyl-bearing fullerenes. J. Am. Chem. Soc., 2006, 128: 6626~6635
    [251] Ehli C., Rahman G. M. A., Jux N., et al. Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J. Am. Chem. Soc., 2006, 128: 11222~11231
    [252] Chen J., Liu H., Weimer W. A., Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc., 2002, 124: 9034~9035
    [253] Tang B. Z., Xu H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules, 1999, 32: 2569~2576
    [254] Yuan W. Z., Sun J. Z., Dong Y., et al. Wrapping carbon nanotubes in pyrene-containing poly(phenylacetylene) chains: solubility, stability, light emission, and surface photovoltaic properties. Macromolecules, 2006, 39: 8011~8020
    [255] Zhang H., X. H. Li, Cheng H. M. Water-soluble multiwalled carbon nanotubes functionalized with sulfonated polyaniline. J. Phys. Chem. B, 2006, 110: 9095-9099
    [256] Zheng M., Rostovtsev V. V. Photoinduced charge transfer mediated by DNA-wrapped carbon nanotubes. J. Am. Chem. Soc., 2006, 128: 7702~7703
    [257] Dukovic G., Balaz M., Doak P., et al. Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. J. Am. Chem. Soc., 2006, 128: 9004~9005
    [258] Ortiz-Acevedo A., Xie H., Zorbas V., et al. Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides. J. Am. Chem. Soc., 2005, 127: 9512~9517
    [259] Zorbas V., Ortiz-Acevedo A., Dalton A. B.et al. Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. J. Am. Chem. Soc., 2004, 126: 7222~7227
    [260] Gong X., Liu J., Baskaran S., et al. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater., 2000, 12: 1049~1052
    [261] Mitchell C. A., Krishnamoorti R. Dispersion of single-walled carbon nanotubes in poly(ε-caprolactone). Macromolecules, 2007, 40: 1538~1545
    [262] Moore V. C.,. Strano M. S, Haroz E., et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett., 2003, 3: 1379~1382
    [263] Hagen A., Hertel T. Quantitative analysis of optical spectra from individual single-wall carbon nanotubes. Nano Lett., 2002, 3: 383~388
    [264] Islam M. F., Rojas E., Bergey D. M. et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett., 2003, 3: 269~273
    [265] Matarredona O., Rhoads H., Li Z. R. et al. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B, 2003, 107: 13357~13367
    [266] Yurekli K., Mitchell C. A., Krishnamoorti R. Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J. Am. Chem. Soc., 2004, 126: 9902~9903
    [267] Sano M., Kamino A., Okamura J. Ring closure of carbon nanotubes. Science, 2001, 293: 1299~1301
    [268] Dettlaff-Weglikowska U., Benoit J.-M., Chiu P.-W., et al. Chemical functionalization of single walled carbon nanotubes. Curr. Appl. Phys., 2002, 2: 497~501
    [269] Ru1ther M. G., Frehill F., O’Brien J. E., et al. Characterization of covalent functionalized carbon nanotubes. J. Phys. Chem. B, 2004, 108: 9665~9668
    [270] Ogino S., Sato Y., Yamamoto G., et al. Relation of the number of cross-links and mechanical properties of multi-walled carbon nanotube films formed by a dehydration condensation reaction. J. Phys. Chem. B, 2006, 110: 23159~23163
    [271] Xie X. L., Mai Y.-W., Zhou X. P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R, 2005, 49: 89~112
    [272] Salvetat J. P., Briggs A. D., Bonard J. M., et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett., 1999, 82: 944~947
    [273] Qian D., Dickey E. C., Andrews R., et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett., 2000, 76: 2868-2870
    [274] Xie X. L., Aloys K., Zhou X. P., et al. Ultrahigh molecular mass polyethylene/carbon nanotube compositescrystallization and melting properties. J. Therm. Anal. Calorim., 2003, 74: 317~323
    [275] Jin Z. X., Pramoda K. P., Goh S. H., et al. Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites. Mater. Res. Bull., 2002, 37: 271~278
    [276] Star A., Stoddart J. F., Steuerman D., et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem. Int. Ed., 2001, 40: 1721~1725
    [277] Xiao Q. F., Zhou X., The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochem. Acta, 2003, 48: 575~580
    [278] Park C., Ounaies Z., Watson K. A., et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett., 2002, 364: 303~308
    [279] Jang J., Bae J., Yoon S. H., A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxy-carbon nanotube composites. J. Mater. Chem., 2003, 13: 676~681
    [280] Barber A. H., Cohen S. R., Eitan A., et al. Fracture transitions at a carbon-nanotube/polymer interface. Adv. Mater., 2006, 18: 83~87
    [281] Hill D. E., Lin Y., Rao A. R., et al. Functionalization of carbon nanotubes with polystyrene. Macromolecules, 2002, 35: 9466~9471
    [282] Andrews R, Jacques D, Rao A. M., et al. Nanotube composite carbon fibers. Appl. Phys. Lett., 1999, 75: 1329~1331
    [283] Feng W., Bai X. D., Lian Y. Q., et al. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon, 2003, 41: 1551~1557
    [284] Raravikar N. R., Schadler L. S., Vijayaraghavan A., et al. Synthesis and characterization of thickness-aligned carbon nanotube-polymer composite films. Chem. Mater., 2005, 17: 974~983
    [285] Ajayan P. M., Stephen O, Colliex C, et al. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 1994, 265: 1212~1214
    [286] Vigolo B., Pénicaud A., Coulon C., et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 2000, 290: 1331~1334
    [287] Safadi B., Andrews R., Grulke E. A. Multiwalled carbon nanotube polymercomposites: synthesis and characterization of thin films. J. Appl. Polym. Sci., 2002, 84: 2660~2669
    [288] Bhattachacharyya A. B., Sreekumar T. V., Liu T., et al. Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer, 2003, 44: 2373~2377
    [289] Kimura T., Ago H., Tobita M. et al. Polymer composites of carbon nanotubes aligned by a magnetic field. Adv. Mater., 2002, 14: 1380~1383
    [290] Choi E. S., Brooks J. S., Eaton D. L., et al. Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J. Appl. Phys., 2003, 94: 6034~6039
    [291] Correa-Duarte M. A., Grzelczak M., Salgueiri?o-Maceira V., et al. Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J. Phys. Chem. B, 2005, 109: 19060~19063
    [292] Dror Y., Salalha W., Khalfin R. L., et al. Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir, 2003, 19: 7012~7020
    [293] Ko F., Gogotsi Y., Ali A., et al. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater., 2003, 15: 1161~1165
    [294] Sen R., Zhao B., Perea D., et al. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett., 2004, 4: 459~464
    [295] Vriezema D. M., Comellas A. M., Elemans J. A. A. W., et al. Self-assembled nanoreactors. Chem. Rev., 2005, 105: 1445~1490
    [296] Kroto H. W. C6 0 : buckminsterfullerene, the celestial sphere that fell to earth. Angew. Chem. Int. Ed. Engl., 1992, 31: 111~129
    [297] Ebbsen T. W. Carbon nanotubes. Annu. Rev. Mater. Sci., 1994, 24: 235~264
    [298] Sirringhaus H., Brown P. J., Friend R. H., et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999, 401: 685~688
    [299] Knaapil M., Stepanyan R., Lyons B. P. et al. The influence of the molecular weight on the thermotropic alignment and self-organized structure formation of branched side chain hairy-rod polyfluorene in thin films. Macromolecules, 2005, 38: 2744~2753
    [300] Gao C. Supramolecular self-assembly of polymer-functionalized carbon nanotubes on surfaces. Macromol. Rapid Commun., 2006, 27: 841~847
    [301] Dalton A.B., Ortiz-Acevedo A., Zorbas V., et al. Hierarchical self-assembly of peptide-coated carbon nanotubes. Adv. Funct. Mater., 2004, 14: 1147~1151
    [302] Duggal R., Hussain F., Pasquali M. Self-assembly of single-walled carbon nanotubes into a sheet by drop drying. Adv. Mater., 2006, 16: 29~34
    [303] Li Q., Zhu Y. T., Kinloch I. A., et al. Self-organization of carbon nanotubes in evaporating droplets. J. Phys. Chem. B, 2006, 110: 13926~13930
    [304] Li X., Zhang L., Wang R., et al. Langmuir-blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc., 2007, 129: 4890~4891
    [305] Somoza A. M., Sagui C., Roland C. Liquid-crystal phase of capped carbon nanotubes. Phys. Rev. B., 2001, 63: 081403(R)/1~4
    [306] Song W., Kinloch I. A., Windle A. H. Nematic liquid crystallinity of multiwall carbon naotubes. Science, 2003, 302: 1363
    [307] Song W., Windle A. H. Isotropic-nematic phase transition of dispersion of multiwall carbon nanotubes. Marcomolecules, 2005, 38: 6181~6188
    [308] Rai P. K., Pinnick R. A., Parra-Vasquez A. N. G., et al. Isotropic-nematic phase transition of single-walled carbon nanotubes in strong acids. J. Am. Chem. Soc., 2006, 128: 591~595
    [309] Davis V. A., Ericson L. M., Parra-Vasquez A. N. G., et al. Phase behavior and rheology of SWNTs in superacids. Macromolecules, 2004, 37: 154~160
    [310] Ramesh S., Ericson L. M., Davis V. A., et al. Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B, 2004, 108: 8794~8798
    [311] Ko H., Tsukruk V. V. Liquid-crystalline processing of highly oriented carbon nanotube arrays. for thin-film ransistors. Nano Lett., 2006, 6: 1443~1448
    [312] Lynch M. D., Partrick D. L. Origanizing carbon nanotubes with liquid crystals. Nano Lett., 2002, 2: 1197~1201
    [313] Dierking I., Scalia G., Morales P. et al, Aligning and reorienting carbon nanotubeswith nematic liquid crystals. Adv. Mater., 2004, 16: 865~868
    [314] Ghosh S., Sood A. K., Kumar N. Carbon nanotube flow sensors. Science, 2003, 299: 1042~1044
    [315] Postma H. W. C., Teepen T., Yao Z., et al. Carbon nanotube single-electron transistors at room temperature. Science, 2001, 293: 76~79
    [316] Bachtold A., Hadley P., Nakanishi T., et al. Logic circuits with carbon nanotube transistors. Science, 2001, 294: 1317~1320
    [317] Wong S. S., Joselevich E., Woolley A. T., et al. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature, 1998, 394: 52~55
    [318] Yu M.-F., Lourie O., Dyer M. J., et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000, 287: 637~640
    [319] Sung J. H., Kim H. S., Jin H.-J. Nanofibrous membranes prepared by multiwalled carbon nanotube/poly(methyl methacrylate) composites. Macromolecules, 2004, 37: 9899~9902
    [320] Torrens F. Calculations of organic-solvent dispersions of single-wall carbon nanotubes. Int. J. Quantum Chem., 2006, 106: 712~718
    [321] Petekidis G., Vlassopoulos D., Fytas G., et al. Dynamics of hairy-rod polymers: semidilute regime. Macromolecules, 1998, 31: 1406~1417
    [322] Knaapil M., Stepanyan R., Lyons B. P., et al. The influence of the molecular weight on the thermotropic alignment and self-organized structure formation of branched side chain hairy-rod polyfluorene in thin films. Macromolecules, 2005, 38: 2744~2753
    [323] Yu S. M., Tirrell D. A. Thermal and structural properties of biologically derived monodisperse hairy-rod polymers. Biomacromolecules, 2000, 1: 310~312
    [324] Tang B., Kong X., Wan X., et al. Liquid crystalline polyacetylenes: synthesis and properties of poly{n-[((4'-cyano-4-biphenylyl)oxy)carbonyl]-1-alkynes}. Macromolecules, 1998, 31: 2419~2432
    [325] Wei C. Y., Srivastava D., Cho K. J. Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett., 2002, 2: 647~650
    [326] Koshio A., Yudasaka M., Zhang M., et al. A simple way to chemically react single-wall carbon nanotubes with organic materials using ultrasonication. Nano Lett., 2001, 1: 361~363
    [327] Qu L. W., Lin Y., Hill D. E., et al. Polyimide-functionalized carbon nanotubes: synthesis and dispersion in nanocomposite films. Macromolecules, 2004, 37: 6055~6060
    [328] Riggs J. E., Guo Z., Carroll D. L., et al. Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc., 2000, 122: 5879~5880
    [329] Jult A., Johansson M., Malmstr?m E. Hyerbranched polymers. Adv. Prog. Sci., 1999, 143: 1~34
    [330] Mori H., Müller A. H. E. Hyperbranched (meth)acrylates in solution, melts, and grafted from surface. Top. Curr. Chem., 2003, 228: 1~37
    [331] Bergbreiter D. E., Tao G. Chemical modification of hyperbranched ultrathin films on gold and polyethylene. J. Polym. Sci. Part A: Polym. Chem., 2000, 38: 3944~3953
    [332] Muthukrishnan S., Erhard D. P., Mori H., et al. Strong luminescence of solubilized carbon nanotubes. Macromolecules, 2006, 39: 2743~2750
    [333] Sidorenko A., Zhai X., Greco A., et al. Hyperbranched polymer layers as multifunctional interface. Langmuir, 2002, 18: 3408~3412
    [334] Nagale M., Kim B. Y.. Bruening M. L. Ultrathin, hyperbranched poly(acrylic acid) membranes on porous alumina supports. J. Am. Chem. Soc., 2000, 122: 11670~11678
    [335] Martin R. B., Qu L., Lin Y., et al. Functionalized carbon nanotubes with tethered pyrenes: synthesis and photophysical properties. J. Phys. Chem. B, 2004, 108: 11447~11453
    [336] Davis J. J., Coleman K. S., Azamian B. R., et al. Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem. Eur. J., 2003, 9: 3732~3739
    [337] Sano M., Kamino A., Shinkai S. Construction of carbon nanotube“stars”with dendrimers. Angew. Chem. Int. Ed., 2001, 40: 4661~4663
    [338] Campidelli S., Sooambar C., Diz E. L., et al. Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. J. Am. Chem. Soc., 2006, 128: 12544~12552
    [339] Hwang S.-H., Moorefield C. N., Wang P., et al. Dendron-tethered and templated cds quantum dots on single-walled carbon nanotubes. J. Am. Chem. Soc., 2006, 128: 7505~7509
    [340] Wang X., Liu H., Jin Y., et al. Polymer-functionalized multiwalled carbon nanotubes as lithium intercalation hosts. J. Phys. Chem. B, 2006, 110: 10236~10240
    [341] Schlüter A. D., Rabe J. P. Dendronized polymers: synthesis, characterization, assembly at interfaces, and manipulation. Angew. Chem. Int. Ed., 2000, 39: 864~883
    [342] Saunders J., Frisch K. C.,“Polyurethanes: Chemistry and Technology (Parts I and II)”, Interscience, New York, 1962
    [343] Bartelink C. F., De Pooter M., Grünbauer H. J. M., et al. Controlled formation of isocyanate-terminated star polyethers avoiding chain extension. J. Polym. Sci. Part A: Polym. Chem., 2000, 38: 2555~2565
    [344] Abdelerhim M., Komber H., Langenwalter J., et al. Synthesis and characterization of hyperbranched poly(urea-urethane)s based on AA* and B2B* monomers. J. Polym. Sci. Part A: Polym. Chem., 2004, 42: 3062~3081
    [345] Tang X. P., Kleinhammes A., Shimoda H., et al. Electronic structures of single-walled carbon nanotubes determined by NMR. Science, 2000, 288: 492~494
    [346] Kahn D., Lu J. P. Vibrational modes of carbon nanotubes and nanoropes. Phys. Rev. B, 1999, 60: 6535~6540
    [347] Bandow S., Asaka S., Saito Y., et al. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett., 1998, 80: 3779~3782
    [348] Hadjiev V. G., Iliev M. N., Arepalli S., et al. Raman scattering test of single-wall carbon nanotube composites. Appl. Phys. Lett., 2001, 78: 3193~3195
    [349] Price B. K., Hudson J. L., Tour J. M. Green chemical functionalization of single-walled carbon nanotubes in ionic liquids. J. Am. Chem. Soc., 2005, 127: 14867~14870
    [350] Yang Y., Xie X., Wu J., et al. Synthesis and self-assembly of polystyrene-grafted multiwalled carbon nanotubes with a hairy-rod nanostructure. J. Polym. Sci. Part A:Polym. Chem., 2006, 44: 3869~3881
    [351] Uppuluri S., Keinath S. E., Tomalia D. A., et al. Rheology of dendrimers. i. newtonian flow behavior of medium and highly concentrated solutions of polyamidoamine (PAMAM) dendrimers in ethylenediamine (EDA) solvent. Macromolecules, 1998, 31: 4498~4510
    [352] Farrington P. J., Hawker C. J., Fréchet J. M. J., et al. The melt viscosity of dendritic poly(benzyl ether) macromolecules. Macromolecules, 1998, 31: 5043~5050
    [353] Antonietti M., Pakula T., Bremser W. Rheology of small spherical polystyrene microgels: a direct proof for a new transport mechanism in bulk polymers besides reptation. Macromolecules, 1995, 28: 4227~4233
    [354] Boris D., Rubinstein M. A self-consistent mean field model of a starburst dendrimer: dense core vs dense shell. Macromolecules, 1996, 29: 7251~7260
    [355] Naylor A. M, Goddard W. A. III, Kiefer G. E., et al. Starburst dendrimers. 5. molecular shape control. J. Am. Chem. Soc., 1989, 111: 2339~2341
    [356] Murat M., Grest G. S. Molecular dynamics study of dendrimer molecules in solvents of varying quality. Macromolecules, 1996, 29: 1278~1285
    [357] Fréchet J. M. J. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science, 1994, 263: 1710~1715
    [358] Hawker C. J., Farrington P. J., Mackay M. E., et al. Molecular ball bearings: the unusual melt viscosity behavior of dendritic macromolecules. J. Am. Chem. Soc., 1995, 117: 4409~4410
    [359] Sendijarevic I., McHugh A. J. Effects of molecular variables and architecture on the rheological behavior of dendritic polymers. Macromolecules, 2000, 33: 590~596
    [360] Mitchell C. A., Bahr J. L., Arepalli S., et al. Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules, 2002, 35: 8825~8830
    [361] Grunlan J. C., Liu L., Kim Y. S. Tunable single-walled carbon nanotube microstructure in the liquid and solid states using poly(acrylic acid). Nano Lett., 2006, 6: 911~915
    [362] Wang C.-F., Su Y.-C., Kuo S.-W., et al. Low-surface-free-energy materials based on polybenzoxazines. Angew. Chem. Int. Ed., 2006, 45: 2248~2251
    [363] Hirashima Y., Sato H., Suzuki A. ATR-FTIR spectroscopic study on hydrogenbonding of poly(n-isopropylacrylamide-co-sodium acrylate) gel. Macromolecules, 2005, 38: 9280~9286
    [364] Otsubo Y. A nonlinear elastic model for shear thickening of suspensions flocculated by reversible bridging. Langmuir, 1999, 15: 1960~1965
    [365] Tam K. C., Jenkins R. D., Winnik M. A., et al. A structural model of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in shear flows. Macromolecules, 1998, 31: 4149~4159
    [366] Smith G. L., McCormick C. L. Water-soluble polymers. 80. rheological and photophysical studies of pH-responsive terpolymers containing hydrophobic twin-tailed acrylamide monomers. Macromolecules, 2001, 34: 5579~5586
    [367] Witten T. A., Cohen Jr. M. H. Crosslinking in shear-thickening ionomers. Macromolecules, 1985, 18: 1915~1918
    [368] Ma S. X., Cooper S. L. Shear thickening in aqueous solutions of hydrocarbon end-capped poly(ethylene oxide). Macromolecules, 2001, 34: 3294~3301
    [369] Noda T., Hashidzume A., Morishima Y. Solution properties of micelle networks formed by nonionic surfactant moieties covalently bound to a polyelectrolyte: salt effects on rheological behavior. Langmuir, 2000, 16: 5324~5332
    [370] Eliassaf J., Silberberg A., Katchalsky A. Negative thixotropy of aqueous solutions of poly(methacrylic acid). Nature, 1955, 176: 1119~1120
    [371] Burow S. P., Peterlin A., Turner D. T. The upturn effect in the non-Newtonian viscosity of polymer solutions. Polymer, 1965, 6: 35~47
    [372] Maeda Y., Higuchi T., Ikeda I. Change in hydration state during the coil-globule transition of aqueous solutions of poly(n-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir, 2000, 16: 7503~7509
    [373] Badiger M. V., Rajamohanan P. R., Suryavanshi P. M., et al. In situ rheo-NMR Investigations of shear-dependent 1H spin relaxation in polymer solutions. Macromolecules, 2002, 35: 126~134
    [374] Tan H., Tam K. C., Jenkins R. D. Rheological properties of semidilute hydrophobically modified alkali-soluble emulsion polymers in sodium dodecyl sulfate and salt solutions. Langmuir, 2000, 16: 5600~5606
    [375] Liu R. C. W., Morishima Y., Winnik F. M. A rheological evaluation of theinteractions in water between a cationic cellulose ether and sodium poly(2-acrylamido-2-methylpropanesulfonates). Macromolecules, 2001, 34: 9117~9124
    [376] Bokias G., Hourdet D., Iliopoulos I. Positively charged amphiphilic polymers based on poly(n-isopropylacrylamide): phase behavior and shear-induced thickening in aqueous solution. Macromolecules, 2000, 33: 2929~2935
    [377] Wang Y., Goethals E. J., Du Prez F. E. Association behavior between end-functionalized block copolymers PEO-PPO-PEO and poly(acrylic acid). Macromol. Chem. Phys., 2004, 205: 1774~1781
    [378] Nunez C. M., Chiou B.-S., Andrady A. L., et al. Solution rheology of hyperbranched polyesters and their blends with linear polymers. Macromolecules, 2000, 33: 1720~1726
    [379] Sano M., Kamino A., Okamura J., et al. Self-organization of PEO-graft-single-walled carbon nanotubes in solutions and Langmuir-Blodgett films. Langmuir, 2001, 17: 5125~5128
    [380] Liu T., Phang I. Y., Shen L., et al. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules, 2004, 37: 7214~7222
    [381] Phang I. Y., M J., Shen L., et al. Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites. Polym. Int., 2006, 55: 71~79
    [382] Kondo M., Yu Y., Ikeda T. How does the initial alignment of mesogens affect the photoinduced bending behavior of liquid-crystalline elastomers? Angew. Chem. Int. Ed., 2006, 45: 1378~1382
    [383] Ikeda T., Nakano M., Yu Y., et al. Anisotropic bending and unbending behavior of azobenzene liquid-crystalline gels by light exposure. Adv. Mater., 2003, 15: 201~205
    [384] Tong X., Wang G., Yavrian A., et al. Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals. Adv. Mater., 2005, 17: 370~374
    [385] Tong X., Wang G., Zhao Y. Photochemical phase transition versus photochemical phase separation. J. Am. Chem. Soc., 2006, 128: 8746~8747
    [386] Zhao Y., Bai S., Asatryan K., et al. Holographic recording in a photoactive elastomer. Adv. Funct. Mater., 2003, 13: 781~788
    [387] Ramanujam P. S., Astrand P.-O., Hvilsted S., et al. Ab initio calculation of the electronic spectrum of azobenzene dyes and its impact on the design of optical data storage materials. J. Am. Chem. Soc., 2000, 122: 3482~3487
    [388] Han M., Ichimura K. Tilt orientation of p-methoxyazobenzene side chains in liquid crystalline polymer films by irradiation with nonpolarized light. Macromolecules, 2001, 34: 82~89
    [389] Victor J.G., Torkelson J. M. On measuring the distribution of local free volume in glassy polymers by photochromic and fluorescence techniques. Macromolecules, 1987, 20: 2241~2250.
    [390] Dall'Agnol F. F., Oliveira O. N. Jr., Giacometti J. A. Influence from the free volume on the photoinduced birefringence in azocompound-containing polymers. Macromolecules, 2006, 39: 4914~4919
    [391] Thostenson E. T., Chou T.-W. Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing. Adv. Mater., 2006, 18: 2837~2841
    [392] Bower C., Rosen R., Jin L., et al. Deformation of carbon nanotubes in nanotube-polymer composites. Appl. Phys. Lett., 1999, 74: 3317~3319
    [393] Yang Y., Xie X., Wu J., et al. Multiwalled carbon nanotubes functionalized by hyperbranched poly(urea-urethane)s by a one-pot polycondensation. Macromol. Rapid Commun., 2006, 27: 1695~1701
    [394] Takasu A., Takemoto A., Hirabayashi T. Polycondensation of dicarboxylic acids and diols in water catalyzed by surfactant-combined catalysts and successive chain extension. Biomacromolecules, 2006, 7: 6~9
    [395] Tien Y. I., Wei K. H. High-tensile-property layered silicates/polyurethane nanocomposites by using reactive silicates as pseudo chain extenders. Macromolecules, 2001, 34: 9045~9052
    [396] Li M., Daniels E. S., Dimonie V., et al. Preparation of polyurethane/acrylic hybrid nanoparticles via a miniemulsion polymerization process. Macromolecules, 2005, 38: 4183~4192
    [397] Curgul S., Yilgor I., Yillgor E., et al. Effect of chemical composition on large deformation mechanooptical properties of high strength thermoplastic poly(urethane urea)s. Macromolecules, 2004, 37: 8676~8685
    [398] Sin S. L., Gan L. H., Hu X., et al. Photochemical and thermal isomerizations of azobenzene-containing amphiphilic diblock copolymers in aqueous micellar aggregates and in film. Macromolecules, 2005, 38: 3943~3948
    [399] Shang T., Smith K. A., Hatton T. A. Photoresponsive surfactants exhibiting unusually large, reversible surface tension changes under varying illumination conditions. Langmuir, 2003, 19: 10764~10773
    [400] Curran S. A., Ajayan P. M., Blau W. J., et al. A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics. Adv. Mater., 1998, 10: 1091~1093
    [401] Xie S., Natansohn A., Rochon A. Recent developments in aromatic azo polymers research. Chem. Mater., 1993, 5: 403~411
    [402] Imai Y., Naka K., Chujo Y. Isomerization behavior of azobenzene chromophores attached to the side chain of organic polymer in organic-inorganic polymer hybrids. Macromolecules, 1999, 32: 1013~1017
    [403] Barrett C., Natansohn A., Rochen P. Thermal cis-trans isomerization rates of azobenzenes bound in the side chain of some copolymers and blends. Macromolecules, 1994, 27: 4781~4786
    [404] Corruccini R. J., Gilbert E. C. The heat of combustion of cis- and trans-azobenzene. J. Am. Chem. Soc., 1939, 61: 2925~2927
    [405] Yagai S., Nakajima T., Kishikawa K., et al. Hierarchical organization of photoresponsive hydrogen-bonded rosettes. J. Am. Chem. Soc., 2005, 127: 11134~11139
    [406] Tang W., Farris R. J., MacKnight W. J., et al. Segmented polyurethane elastomers with liquid crystalline hard segments. 1. synthesis and phase behavior. Macromolecules, 1994, 27: 2814~2819
    [407] Kishikawa K., Muramatsu N., Kohmoto S., et al. Control of molecular aggregations by doping in mesophases: transformation of smectic C phases to smectic CA phases by addition of long bent-core molecules possessing a central strong dipole. Chem.Mater., 2003, 15: 3443~3449
    [408] Takanishi Y., Takezoe H., Fukuda A., et al. Visual observation of dispirations in liquid crystals. Phys. Rev. B, 1992, 45: 7684~7689
    [409] Barklay G. G., Obr C. K., Papathomas K. I., et al. Rigid-rod thermosets based on 1, 3, 5-triazine-linked aromatic ester segments. Macromolecules, 1992, 25: 2947~2954
    [410] Pirlot C, Willems I, Fonseca A, et al. Preparation and characterization of carbon nanotube/polyacrylonitrile composites. Adv. Eng. Mater., 2002, 4: 109~114
    [411] Peng B., Johannsmann D., Rühe J. Polymer brushes with liquid crystalline side chains. Macromolecules, 1999, 32: 6759~6766
    [412] Peng B., Rühe J., Johannsmann D. Homogeneously aligned liquid-crystal polymer brushes. Adv. Mater., 2000, 12: 821~824
    [413] Bonheur V. L., Stupp S. I. Grafting of a functionalized side-chain liquid-crystal polymer on carbon fiber surfaces: novel coupling agents for fiber/polymer matrix composites. Chem. Mater., 1993, 5: 1287~1292
    [414] Dardel B., Deschenaux R., Even M., et al. Synthesis, characterization, and mesomorphic properties of a mixed [60] fullerene-ferrocene liquid-crystalline dendrimer. Macromolecules, 1999, 32: 5193~5198
    [415] Campidelli S., Lenoble J., BarberáJ., et al. Supramolecular fullerene materials: dendritic liquid-crystalline fulleropyrrolidines. Macromolecules, 2005, 38: 7915~7925

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700