纳米银的可控制备与形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新兴的功能材料,纳米银广泛用作催化材料、防静电材料、低温超导材料、生物传感器材料、电子浆料和抗菌抑菌材料。纳米银的性能与其结构、形貌、尺寸和尺寸分布以及材料本身所处的化学物理环境密切相关,纳米银的形貌、尺寸和尺寸分布可以通过采用不同的合成技术和反应条件来调控。因此,研究银系纳米材料的可控制备技术、探索不同反应条件下纳米银的形核和生长机制具有重要意义。本文在大量阅读文献的基础上首先对纳米银的主要制备方法及材料的光谱特性进行了简要的回顾,分析了微乳液法可控合成纳米银粒子的影响因素,论述了化学法制备各向异性银纳米材料的研究进展,指出了银系纳米材料研究中存在的不足。然后,围绕球形纳米银和棒状纳米银的可控制备及形成机理等方面展开研究工作,研究了表面活性剂琥珀酸二异辛酯磺酸钠(AOT)的合成,探讨了微乳液体系特别是AOT微乳体系中纳米银制备的影响因素,研究了柠檬酸钠体系中纳米银粒子的制备。最后,利用该晶粒作晶种在溴化十六烷基三甲基铵(CTAB)体系中研究了银纳米棒(线)的生长和形成机制。主要内容包括以下几个方面:
     在氮气保护下,以对甲苯磺酸为催化剂,合成了高纯度表面活性剂AOT,研究了酯化温度、体系真空度和酯化料比对酯化反应的影响。结果表明,在130℃、29.33 KPa、n(异辛醇):n(顺丁烯二酸酐)=1.82:1的条件下反应2h,所得酯化产物无色透明,酯化率可达99.6%。对双酯的磺化反应研究表明,适宜的磺化条件为130℃, n(NaHSO3):n(顺丁烯二酸酐)=1.10:1, w(AOT)=10%,反应时间3.5h。经甲醇溶解、活性碳吸附和正己烷抽提等方法提纯、旋转蒸发后,得到白色蜡状固体,红外光谱分析显示产物的纯度较好,可用来替代进口产品。
     在AOT-十二烷-水三元微乳体系中制备了球形银的纳米粒子。紫外-可见光(UV-Vis)吸收光谱显示,在较低的水合肼浓度下,Ag+的还原反应是不完全的;在反应的初级阶段形成的产物有Ag4+等中间产物,随后这些纳米团簇逐渐生长或相互团聚形成较大的银纳米粒子。硝酸银的浓度越高,银晶粒的形核和生长速率越大;水对表面活性剂的摩尔比(W)越大,反应形成的粒子粒径越大,粒子的尺寸分布也越宽。透射电镜显微图像显示在该体系中制备的纳米银粒子为球形结构,所得粒子具有很窄的尺寸分布,同时,形成粒子的粒径也很小,最小的平均粒径仅为1.6nm。傅立叶变换红外光谱(FT-IR)分析表明,通过银原子和AOT分子中磺酸基团的配位作用,表面活性剂分子被吸附于银粒子的表面,由此赋予形成粒子在油性溶剂中良好的稳定性。此法制备的纳米银溶胶不仅无毒无味,而且具有很高的稳定性,即使保存几个月也不会有沉淀析出。
     在AOT、短链烷烃和水组成的三元微乳体系中也研究了球形纳米银粒子的制备。结果表明,W值增大,微乳液液滴的直径变大,形成的纳米银溶胶的UV-Vis特征光谱吸收强度增大,共振谱带的半峰宽明显减小,表明形成粒子的平均粒径随体系中的含水量增加而明显增大。水合肼比NaBH4在AOT反胶束中的溶解度大,能完全还原水核中增溶的硝酸银。硝酸银和水合肼的浓度在一定范围内增大,形成的纳米银粒子增多,但还原剂浓度过高会破坏纳米银溶胶的稳定性。连续相链烃分子的碳链变长,UV-Vis光谱的吸收强度变大并发生蓝移,表明体系中生成的纳米银数量增多,形成粒子的平均粒径也相对减小。
     在十二烷基硫酸钠(SDS)、环己烷、异戊醇和水的四元微乳体系研究了纳米银粒子的制备,该体系和AOT微乳体系一样也可实现对纳米银粒子尺寸和形貌的可控制备。考察了反应时间、硝酸银浓度和W值对形成粒子的粒径和尺寸分布的影响。在典型值W=5和W=20时,形成的是球形纳米银粒子,银粒子的平均粒径分别为6.5nm和12.1nm,粒子的尺寸分布也随W值的增加而明显增大。通过对纳米银溶胶的离心分离,获得的产物为片状银粉,这种片状银的尺寸较大,厚度也在纳米至亚微米之间。这种现象表明,SDS表面活性剂不仅在纳米粒子的形成过程中形成保护层阻止了纳米粒子之间的团聚,而且在由纳米粒子集聚生长形成片状银粉的过程中起着模板的导向作用。
     利用柠檬酸钠包覆化学还原法制备了纳米银晶粒,重点考察了的反应温度、还原剂的加入方式以及银溶胶的陈化时间等因素对晶粒形成的影响,还利用不同银晶种制备了含银纳米棒的溶胶,由此进一步证实反应条件对纳米银晶粒形成的影响。三种温度下形成的纳米银溶胶,其共振峰的半峰宽明显不同。UV-Vis光谱研究表明,0℃下反应形成的银溶胶,纳米银晶粒的粒径最小,升高温度,银晶粒的粒径存在一个极值,继续升高温度,反应生成的纳米银晶粒的平均粒径也相对较小。一次性加料方式获得的纳米银晶粒的平均粒径仅为2nm左右,连续加料时形成的纳米银粒子的平均粒径达到了10nm。适度的陈化有利于银晶粒完善晶形。纳米银粒径越小,陈化处理前后的变化越明显,陈化时间太长,纳米银晶粒会发生严重的团聚。然而,陈化处理对粒径较大的纳米银几乎没有影响。
     在由CTAB、抗坏血酸(Vc)、AgNO3和银晶种组成的反应体系中,加入NaOH制备了含纳米棒的银溶胶,主要考察了反应时间、反应温度、CTAB浓度以及种子浓度和NaOH加入量对银纳米棒制备的影响。反应时间越长,形成了银纳米棒长径比越大。较高的温度下反应生成的银纳米棒的长径比减小,纳米棒的尺寸和形状的单分散性越好;反应温度降低,Ag+的还原速率下降,有利于形成具有较大长径比的银纳米棒。晶种数量较少,晶种在CTAB胶束中的分布均匀,有利于生成长径比较大的纳米棒。胶束浓度不是反应的敏感因素,在一定程度上变化不会影响银纳米棒的形成。溶液的酸碱性在银纳米棒形成过程中具有重要的作用。NaOH较多时,Vc发生二级电离,形成的是银的纳米棒;如果控制溶液的酸碱度使Vc发生一级电离,UV-Vis光谱中会在350nm处产生银本体材料的特征光学吸收,但不产生银纳米棒的径向共振吸收,表明此时反应形成的是银的纳米线。
As an advanced functional material, silver nanoparticles have extensive applications in civil and industrial areas. For example, they can be used as catalytic materials, cryo-genic superconducting materials, biosensor materials, microelectronic materials and bacte-riostatic materials, etc. The capability of silver nanoparticles is dependent on their struc-ture, shape, size, size distribution and the chemical-physical environment. Generally, the shape, size and size distribution of silver particles can be controlled by adjusting the reac-tion conditions such as reducing agent, stabilizer and so on or employing different syn-thetic techniques. Therefore, it is necessary to study the nucleation and growth mechanism of silver nanomaterials. In the past few years, nanoparticle production by a size-controlled or shaped-controlled procedure has become a new and interesting research focus. Based on the large number published literatures, the dissertation has firstly made a brief intro-duction on the synthetic methods as well as the Ultraviolet-visible (UV-Vis) spectral prop-erties of silver nanoparticles, and then it has evaluated the influencing factors of silver nanoparticles prepared in microemulsion method by a controlled preparation procedure. The research progresses in silver anisotropic nanomaterials synthesized by chemical re-duction are discussed. The shortages in the relevant research fields are also analyzed. Subsequently, the studies on the controlled synthesis and formation mechanism of spheri-cal and rod-like silver nanoparticles have been performed in detail.
     Sodium di(2-ethylhexyl) sulfosuccinate (AOT) has been synthesized by purging with N2 and catalyzing with p-toluenesulfonic acid. Effects of reaction temperature, vacuum and molar ratio of 2-ethyl hexanol to maleic anhydride on esterification are studied. The esterification product is colorless and transparent and the esterification conversion is up to 99.6% at the condition of 130℃, 29.33 KPa, n(2-ethyl hexanol):n(maleic anhydride) = 1.82:1 and reaction time 2h. Optimal sulfonation conditions are 130℃, molar ratio of NaHSO3 to di(2-ethylhexyl)maleate) = 1.10:1, mass fraction of AOT = 10% and reaction time 3.5h. After purification by methanol dissolution, activated carbon adsorption, hexane extraction and rotatory evaporation, the obtained product is a kind of white waxy solid. Fourier transform-infrared spectrometry (FT-IR) analysis shows that the product has a higher quality and can substitute for imported product.
     Spherical silver nanoparticles have been prepared in AOT-dodecane-H2O ternary mi-croemulsion system. The UV-Vis absorption spectra and transmission electron micros-copy (TEM) have been used to trace the growth process and elucidate the structure of the silver nanoparticles. UV-Vis spectra show that the reaction is incomplete at low N2H4 concentration and the Ag4+intermediates form at early stages of the reaction and then the clusters grow or aggregate to larger nanoparticles. The higher the AgNO3 concentration is, the faster the growth rate of the silver particles is. The higher molar ratios of water to AOT (W) value has been found to give larger particle size and broader size distribution. TEM micrographs confirm that the silver nanoparticles are all spherical. The resulting particles have a very narrow size distribution. Meanwhile, the diameter size of the particles is so small that the smallest mean diameter is only 1.6 nm. FT-IR results show that the surfac-tant molecules are strongly adsorbed on the surface of silver particles through a coordina-tion bond between the silver atom and the sulfonic group of AOT molecules, which en-dowed the particles with a good stability in oil solvents. Thus, the silver colloidal has a high stabilization and can be preserved for a long time without precipitation. As dodecane is used as oil solvent to prepare silver nanoparticles, the formed nano-silver sol is almost nontoxic. As a result, the silver nanoparticles need not be separated from the reaction solu-tion and the silver sol may be directly used in antibacterial fields.
     Spherical silver nanoparticles are also synthesized in AOT microemulsion system using short carbon chain alkanes as oil phase. Effects of various factors on the formation of silver nanoparticles have been studied by UV-Vis spectra technology. As the increase of the molar ratio of water to surfactant, the absorption intensity of UV-Vis spectra increase and the half band width decrease obviously. It means that the diameter of microemulsion as well as the mean diameter of the formed particles increases with the water content in the system. Hydrazine hydrate can be reduced the silver nitrate solubilized in the water core of another microemulsion completely because of its higher solubility in AOT mi-croemulsions. In some degree, the amount of silver nanoparticles obviously increases with the concentration of AgNO3 and hydrazine hydrate. However, the stability of silver col-loidal solution would be destroyed, if the concentration of hydrazine hydrate were too high. The plasma resonance intensity of silver colloid increase and the most absorption position happen to blue-shift clearly. The results mean that the quantity of silver nanopar-ticles has increased and the mean diameter of the particles has also decreased.
     Size and shape controlled silver nanoparticles have been synthesized in sodium do-decyl sulfate (SDS) quaternary microemulsion system. The effects of reaction time, AgNO3 concentration and the molar ratios of water to SDS (W) on the particle diameter and size distribution are investigated. TEM micrographs confirm that the mean diameters of spherical silver nanoparticles obtained at two typical values of W=5, 20 are 6.5nm, 12.1nm, respectively, and the size distribution of the particles increases obviously with the W values. Flake-like silver powders can be obtained by centrifugation of the particles. The result indicates that SDS surfactant molecules not only can form a protection layer on the surface to prevent the particles from aggregation, but also may act as a template to orient the particle growth to form flake-like particles, which may be important in the fabrication of flake-like silver powders.
     In the capping action of citrate, silver nanocrystals have been prepared by chemical reduction. The effects of reaction temperature, charging mode of reductant and the aged time of silver colloid on the formation of silver nanocrystals are mainly investigated. The effects of reaction conditions can be further confirmed by synthesizing silver nanorods under the induction of different silver nanocrystals. The silver colloid is prepared under three temperatures, the half-band width of resonance peaks are clearly different. The re-sults show that the diameter of nanocrystals prepared at 0℃is smallest and the particle diameter increase with the temperature, but has a maximum. The mean diameter of resul-tant nanocrystals is about 2 nm in one-time mode and the mean diameter of them will at-tain 10 nm in continuous mode, when NaBH4 is added into the solution. Appropriate aged treatment is favorable to perfect the crystalline form. The aged time has obvious influence on the smaller nanocrystals and has little influence on the larger nanoparticles. However, the nanoparticles will aggregate into larger nanoparticles if the solution is aged for a long time.
     Silver nanorods and nanowires of controllable aspect ratio have been synthesized in the mixed solution composed of cetyltrimethylammoniun bromide (CTAB), ascorbic acid (Vc), AgNO3 and silver seeds by adding NaOH. The longer reaction time, the greater the aspect ratio of the formed nanorods is. The aspect ratio of silver nanorods decrease with the increase of reaction temperature, meanwhile, the monodispersity of size and shape of the nanorods turn better. On the contrary, it is advantageous to the formation of silver nanorods with higher aspect ratio. As fewer seeds are easily distributed into rod-like mi-celles and its nucleation and growth can be controlled by the micelles, the silver rods in-crease in average aspect ratio as the seed concentration decrease. The micelle concentra-tion is not the main factor to influence the formation of silver nanorods. The relative amount of NaOH in solution has an important role in the fabrication process of silver nanorods and nanowires. Ascorbic acid will ionize to form the ascorbate dianion when the amount of NaOH is higher. By contraries, ascorbic acid ionizes to form the monoanion of ascorbic acid at a low concentration of NaOH. Two different forms of ascorbic acid have different complexation capabilities with CTAB and silver seed in solution, which is im-portant in nanorod and nanowire formation.
引文
[1] Atzmony U., Livne Z., McMichael R. D., et al. Magnetic viscosity investigations of nanograin iron powder. Journal of Applied Physics, 1996, 79(8): 5456-5458
    [2] Cho K. H., Park J. E., Osaka T., et al. The study of antimicrobial activity and preserva-tive effects of nanosilver ingredient. Electrochimica Acta, 2005, 51(5): 956-960
    [3] Sun S. H., Murray C. B., Weller D., et al. Monodisperse FePt nanoparticles and ferro-magnetic FePt nanocrystal superlattices. Science, 2000, 287(5460): 1989-1992
    [4] Cao Y. W. C., Jin R. C., Mirkin C. A. Nanoparticles with Raman spectroscopic finger-prints for DNA and RNA detection. Science, 2002, 297(5586): 1536-1540
    [5] Wang J. F., Gudiksen M. S., Duan X. F., et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293(5534): 1455-1457
    [6]石川,程谟杰,曲振平等.纳米银催化的甲烷选择还原NO反应研究.复旦学报(自然科学版), 2002, 41(3): 269-273,279
    [7] Hirano S., Wakasa Y., Saka A., et al. Preparation of Bi-2223 bulk composed with sil-ver-alloy wire. Physica C: Superconductivity, 2003, 392-396(Part 1): 458-462
    [8] Ren X. L., Tang F. Q. Enhancement effect of Ag-Au nanoparticles on glucose biosen-sor sensitivity. Acta Chimica Sinica, 2002, 60(3): 393-397
    [9]任湘菱,唐芳琼.超细银-金复合颗粒增强酶生物传感器的研究.化学学报, 2002, 60(3): 393-397
    [10] Chiment?o R. J., Kirm I., Medina F., et al. Different morphologies of silver nanoparti-cles as catalysts for the selective oxidation of styrene in the gas phase. Chemical Communications, 2004, (7): 846-847
    [11] Zhang J. P., Chen P., Sun C. H., et al. Sonochemical synthesis of colloidal silver cata-lysts for reduction of complexing silver in DTR system. Applied Catalysis A, 2004, 266(1): 49-54
    [12] Jiang H. Q., Manolache S., Wong A. C. L., et al. Plasma-enhanced deposition of silvernanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science, 2004, 93(3): 1411-1422
    [13]张庆敏,李彦,黄福志等.聚氧乙烯类表面活性剂体系中银纳米颗粒的合成.物理化学学报, 2001, 17(6): 537-541
    [14] Petit C., Lixon P., Pileni M. P. In situ synthesis of silver nanocluster in AOT reverse micelles. Journal of Physical Chemistry, 1993, 97(49): 12974-12983
    [15] Furneaux R. C., Rigby W. R., Davidson A. P. The formation of controlled-porosity membranes from anodically oxidized aluminum. Nature, 1989, 337(6203): 147-149
    [16] Qu L. T., Shi G. Q., Wu X. F., et al. Facile route to silver nanotubes. Advanced Materi-als, 2004, 16(14): 1200-1203
    [17] Lahav M., Sehayek T., Vaskevich A., et al. Nanoparticle nanotubes. Angewandte Che-mie-International Edition, 2003, 42(45): 5575-5579
    [18] Stoltenberg R. M., Woolley A. T. DNA-templated nanowire fabrication. Biomedical Microdevices, 2004, 6(2): 105-111
    [19] Braun E., Eichen Y., Sivan U., et al. DNA-templated assembly and electrode attach-ment of a conducting silver wire. Nature, 1998, 391(6669): 775-778
    [20] Ford W. E., Harnack O., Yasuda A., et al. Platinated DNA as precursors to templated chains of metal nanoparticles. Advanced Materials, 2001, 13(23): 1793-1797
    [21] Harnack O., Ford W. E., Yasuda A., et al. Tris(hydroxymethyl)phosphine-capped gold particles templated by DNA as nanowire precursors. Nano Letters, 2002, 2(9): 919-923
    [22] Monson C. F., Woolley A. T. DNA-templated construction of copper nanowires. Nano Letters, 2003, 3(3): 359-363
    [23] Wei G., Zhou H. L., Liu Z. G., et al. One-step synthesis of silver nanoparticles, nano-rods, and nanowires on the surface of DNA network. Journal of Physical Chemistry B, 2005, 109(18): 8738-8743
    [24] Zhu J. J., Liao X. H., Chen H. Y. Electrochemical preparation of silver dendrites in the presence of DNA. Materials Research Bulletin, 2001, 36(9): 1687-1692
    [25] Zhang Z. L., Li B., Shi Z. J., et al. Filling of single-walled carbon nanotubes with sil-ver. Journal of Materials Research, 2000, 15(12): 2658-2661
    [26] Sloan J., Wright D. M., Woo H. G., et al. Capillarity and silver nanowire formation ob-served in single walled carbon nanotubes. Chemical Communications, 1999, (8): 699-700
    [27] Hong B. H., Bae S. C., Lee C. W., et al. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science, 2001, 294(5541): 348-351
    [28] Kim K. S. Self-assembled organic nanotubes and self-synthesized silver subnanowire arrays in an ambient solution phase. Current Applied Physics, 2002, 2(1): 65-69
    [29] Barbic M., Mock J. J., Smith D. R., et al. Single crystal silver nanowires prepared by the metal amplification method. Journal of Applied Physics, 2002, 91(11): 9341-9345
    [30] Mock J. J., Oldenburg S. J., Smith D. R., et al. Composite plasmon resonant nanowires. Nano Letters, 2002, 2(5): 465-469
    [31] Chaudhari K., Das T. K., Rajmohanan P. R., et al. Synthesis, characterization, and catalytic properties of mesoporous tin-containing analogs of MCM-41. Journal of Ca-talysis, 1999, 183(2): 281-291
    [32] Adhyapak P. V., Karandikar P., Vijayamohanan K., et al. Synthesis of silver nanowires inside mesoporous MCM-41 host. Materials Letters, 2004, 58(7-8): 1168-1171
    [33] Huang M. H., Choudrey A., Yang P. D. Ag nanowire formation within mesoporous sil-ica. Chemical Communications, 2000, (12): 1063-1064
    [34] Xiao J. P., Xie Y., Tang R., et al. Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Advanced Materials, 2001, 13(24): 1887-1891
    [35]廖学红,朱俊杰,赵小宁等.纳米银的电化学合成.高等学校化学学报, 2000, 21(12): 1837-1839
    [36]孙秀玉,徐法强,李宗木等.循环伏安法制备Ag纳米线阵列.无机化学学报, 2004, 20(6): 721-724
    [37] Zhu J. J., Liao X. H., Zhao X. N., et al. Preparation of silver nanorods by electro-chemical methods. Materials Letters, 2001, 49(2): 91-95
    [38] Zhu J. J., Qiu Q. F., Wang H., et al. Synthesis of silver nanowires by a sonoelectro-chemical method. Inorganic Chemistry Communications, 2002, 5(4): 242-244
    [39]钟福新,蒋治良,李芳等.纳米银胶的光化学制备及其共振散射光谱研究.光谱学与光谱分析, 2000, 20(5): 724-726
    [40] Jin R. C., Cao Y. W., Mirkin C. A., et al. Photoinduced conversion of silver nano-spheres to nanoprisms. Science, 2001, 294(5548): 1901-1903
    [41] Jin R. C., Cao Y. C., Hao E. C., et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425(6957): 487-490
    [42] Zhou Y., Yu S. H., Wang C. Y., et al. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Ad-vanced Materials, 1999, 11(10): 850-852
    [43] Zhou Y., Hao L. Y., Hu Y., et al. Synthesis of nanowires and coral-shaped nanostruc-tures of Ag by an ultraviolet photo-reduction technique at room temperature. Chemis-try Letters, 2001, 30(11): 1192-1193
    [44] Zou K., Zhang X. H., Duan X. F., et al. Seed-mediated synthesis of silver nanostruc-tures and polymer/silver nanocables by UV irradiation. Journal of Crystal Growth, 2004, 273(1-2): 285-291
    [45]邹凯,张晓宏,吴世康等.光化学法合成银纳米线及其形成机理的研究.化学学报, 2004, 62(18): 1771-1774
    [46] Wang C. Y., Chen M. H., Zhu G. M., et al. A novel soft-template technique to synthe-size metal Ag nanowire. Journal of Colloid and Interface Science, 2001, 243(2): 362-364
    [47] Yamamoto T., Yin H. B., Wada Y., et al. Morphology-control in microwave-assisted synthesis of silver particles in aqueous solutions. Bulletin of the Chemical Society of Japan, 2004, 77(4): 757-761
    [48] Roosen A. R., Carter W. C. Simulations of microstructural evolution: Anisotropic growth and coarsening. Physica A-Statistical Mechanics and Its Applications, 1998, 261(1-2): 232-247
    [49]贺蓉,钱雪峰,印杰等.银纳米棱镜的形成及其光学性能研究.高等学校化学学报, 2003, 24(8): 1341-1345
    [50] He R., Qian X. F., Yin J., et al. Preparation of polychrome silver nanoparticles in dif-ferent solvents. Journal of Materials Chemistry, 2002, 12(12): 3783-3786
    [51] He R., Qian X. F., Yin J., et al. Formation of silver dendrites under microwave irradia-tion. Chemical Physics Letters, 2003, 369(3-4): 454-458
    [52] Liu F. K., Huang P. W., Chu T. C., et al. Gold seed-assisted synthesis of silver nano-materials under microwave heating. Materials Letters, 2005, 59(8-9): 940-944
    [53] Liu F. K., Huang P. W., Chang Y. C., et al. Formation of silver nanorods by microwave heating in the presence of gold seeds. Journal of Crystal Growth, 2005, 273(3-4): 439-445
    [54] Tsuji M. L., Nishizawa Y., Hashimoto M., et al. Syntheses of silver nanofilms, nano-rods, and nanowires by a microwave-polyol method in the presence of Pt seeds and polyvinylpyrrolidone. Chemistry Letters, 2004, 33(4): 370-371
    [55] Zhu J. J., Liu S. W., Palchik O., et al. Shape-controlled synthesis of silver nanoparti-cles by pulse sonoelectrochemical methods. Langmuir, 2000, 16(16): 6396-6399
    [56]熊金钰,徐国财,吉小利等.纳米银的超声合成及分形研究.安徽理工大学学报(自然科学版), 2004, 24(3): 69-72
    [57] Xiong Y. J., Xie Y., Du G. A., et al. Ultrasound-assisted self-regulation route to Ag nanorods. Chemistry Letters, 2002, 31(1): 98-99
    [58] Ge Xuewu, Ni Yonghong, Liu Huarong, et al. a novel irradiating template approach to prepare silver nano-ribbons. Journal of Radiation Research and Radiation Processing, 2001, 19(2): 118-121
    [59] Choi S. H., Lee S. H., Hwang Y. M., et al. Interaction between the surface of the silver nanoparticles prepared by gamma-irradiation and organic molecules containing thiol group. Radiation Physics and Chemistry, 2003, 67(3-4): 517-521
    [60] Hornebecq V., Antonietti M., Cardinal T., et al. Stable silver nanoparticles immobilized in mesoporous silica. Chemistry of Materials, 2003, 15(10): 1993-1999
    [61] Tsuji T., Higuchi T., Tsuji M. Laser-induced structural conversions of silver nanoparti-cles in pure water - Influence of laser intensity. Chemistry Letters, 2005, 34(4): 476-477
    [62] Tsuji T., Watanabe N., Tsuji M. Laser induced morphology change of silver colloids: Formation of nano-size wires. Applied Surface Science, 2003, 211(1-4): 189-193
    [63] Wang Z. H., Liu J. W., Chen X. Y., et al. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chemistry-a European Journal, 2004, 11(1): 160-163
    [64] Wang Z. H., Chen X. Y., Liu J. W., et al. Glucose reduction route synthesis of uniform silver nanowires in large-scale. Chemistry Letters, 2004, 33(9): 1160-1161
    [65] Chang J. Y., Chang J. J., Lo B., et al. Silver nanoparticles spontaneous organize into nanowires and nanobanners in supercritical water. Chemical Physics Letters, 2003, 379(3-4): 261-267
    [66] Leopold N., Lendl B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. Journal of Physical Chemistry B, 2003, 107(24): 5723-5727
    [67] Caswell K. K., Bender C. M., Murphy C. J. Seedless, surfactantless wet chemical syn-thesis of silver nanowires. Nano Letters, 2003, 3(5): 667-669
    [68] Pillai Z. S., Kamat P. V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? Journal of Physical Chemistry B, 2004, 108(3): 945-951
    [69] Yin Y. D., Li Z. Y., Zhong Z. Y., et al. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. Journal of Materials Chemistry, 2002, 12(3): 522-527
    [70] Zhu Y. C., Ji M. R., Zheng H. G., et al. Seed-mediated synthesis of silver with skeleton structures. Materials Letters, 2004, 58(6): 1121-1126
    [71] Chaki N. K., Sharma J., Mandle A. B., et al. Size dependent redox behavior ofmonolayer protected silver nanoparticles (2-7 nm) in aqueous medium. Physical Chemistry Chemical Physics, 2004, 6(6): 1304-1309
    [72] Sun Y. G., Mayers B., Herricks T., et al. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters, 2003, 3(7): 955-960
    [73] Sun Y. G., Xia Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Sci-ence, 2002, 298(5601): 2176-2179
    [74] Chen D. H., Huang Y. W. Spontaneous formation of Ag nanoparticles in dimethy-lacetamide solution of poly(ethylene glycol). Journal of Colloid and Interface Science, 2002, 255(2): 299-302
    [75] Pastoriza-Santos I., Liz-Marzán L. M. Synthesis of silver nanoprisms in DMF. Nano Letters, 2002, 2(8): 903-905
    [76] Wang X. Q., Itoh H., Naka K., et al. Tetrathiafulvalene-assisted formation of silver dendritic nanostructures in acetonitrile. Langmuir, 2003, 19(15): 6242-6246
    [77] Chauhan B. P. S., Tewari P., Sardar R., et al. Multishaped nanoframes of silver in ace-tonitrile. Polymer Preprints, 2003, 42(2): 268-269
    [78] Faure C., Derre A., Neri W. Spontaneous formation of silver nanoparticles in multi-lamellar vesicles. Journal of Physical Chemistry B, 2003, 107(20): 4738-4746
    [79] Mandal S., Rautaray D., Sastry M. Ag+-Keggin ion colloidal particles as novel tem-plates for the growth of silver nanoparticle assemblies. Journal of Materials Chemistry, 2003, 13(12): 3002-3005
    [80] Malandrino G., Finocchiaro S. T., Fragala I. L. Silver nanowires by a sonoself-reduction template process. Journal of Materials Chemistry, 2004, 14(18): 2726-2728
    [81] Behrens S., Wu J., Habicht W., et al. Silver nanoparticle and nanowire formation by microtubule templates. Chemistry of Materials, 2004, 16(16): 3085-3090
    [82] Morley K. S., Marr P. C., Webb P. B., et al. Clean preparation of nanoparticulate met-als in porous supports: A supercritical route. Journal of Materials Chemistry, 2002,12(6): 1898-1905
    [83] Chen S. H., Carroll D. L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2002, 2(9): 1003-1007
    [84] Liang H. C., Rong M. Z., Zhang M. Q., et al. Studies on silver nanoparticles synthe-sized by microemulsion and their fluorescence. Acta Physica Sinica, 2002, 51(1): 49-54
    [85] McLeod M. C., McHenry R. S., Beckman E. J., et al. Synthesis and stabilization of silver metallic nanoparticles and premetallic intermediates in perfluoropolyether/CO2 reverse micelle systems. Journal of Physical Chemistry B, 2003, 107(12): 2693-2700
    [86] Egorova E. M., Revina A. A. Optical properties and sizes of silver nanoparticles in micellar solutions. Colloid Journal, 2002, 64(3): 301-311
    [87] Naik R. R., Stringer S. J., Agarwal G., et al. Biomimetic synthesis and patterning of silver nanoparticles. Nature Materials, 2002, 1(3): 169-172
    [88] Gardea-Torresdey J. L., Gomez E., Peralta-Videa J. R., et al. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 2003, 19(4): 1357-1361
    [89] Shankar S. S., Ahmad A., Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress, 2003, 19(6): 1627-1631
    [90] Kowshik M., Ashtaputre S., Kharrazi S., et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 2003, 14(1): 95-100
    [91] Ahmad A., Mukherjee P., Senapati S., et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B-Biointerfaces, 2003, 28(4): 313-318
    [92] Bfilainsa K. C., D'Souza S. F. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B-Biointerfaces, 2006, 47(2): 160-164
    [93] Shankar S. S., Rai A., Ahmad A., et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal ofColloid and Interface Science, 2004, 275(2): 496-502
    [94] Zhou Q. F., Xu Z. The preparation of nano-scale plate silver powders by visible light induction method. Journal of Materials Science, 2004, 39(7): 2487-2491
    [95] Shchukin D. G., Radtchenko I. L., Sukhorukov G. B. Photoinduced reduction of silver inside microscale polyelectrolyte capsules. Chemphyschem, 2003, 4(10): 1101-1103
    [96] Zhang L. Z., Yu J. C., Yip H. Y., et al. Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bacteri-cidal activities. Langmuir, 2003, 19(24): 10372-10380
    [97] Junior A. M., de Oliveira H. P. M., Gehlen M. H. Preparation of silver nanoprisms us-ing poly(N-vinyl-2-pyrrolidone) as a colloid-stabilizing agent and the effect of silver nanoparticles on the photophysical properties of cationic dyes. Photochemical & Photobiological Sciences, 2003, 2(9): 921-925
    [98] Mallick K., Witcomb M. J., Scurrell M. S. Polymer stabilized silver nanoparticles: A photochemical synthesis route. Journal of Materials Science, 2004, 39(14): 4459-4463
    [99] Kryukov A. I., Zin'chuk N. N., Korzhak A. V., et al. The effect of the conditions of catalytic synthesis of nanoparticles of metallic silver on their plasmon resonance. Theoretical and Experimental Chemistry, 2003, 39(1): 9-14
    [100] Cozzoli P. D., Comparelli R., Fanizza E., et al. Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. Journal of the American Chemical Society, 2004, 126(12): 3868-3879
    [101] He B. L., Tan J. J., Kong Y. L., et al. Synthesis of size controlled Ag nanoparticles. Journal of Molecular Catalysis A-Chemical, 2004, 221(1-2): 121-126
    [102] Liu F. K., Huang P. W., Chang Y. C., et al. Microwave-assisted synthesis of silver nanorods. Journal of Materials Research, 2004, 19(2): 469-473
    [103] Komarneni S., Li D. S., Newalkar B., et al. Microwave-polyol process for Pt and Ag nanoparticles. Langmuir, 2002, 18(15): 5959-5962
    [104] Yin H. B., Yamamoto T., Wada Y., et al. Large-scale and size-controlled synthesis ofsilver nanoparticles under microwave irradiation. Materials Chemistry and Physics, 2004, 83(1): 66-70
    [105] Qin A. M., Jiang Z. L., Liu Q. Y., et al. Preparation of silver nanoparticles in the pres-ence of polyacrylamide by microwave high-pressure synthesis method and its spectral properties. Chinese Journal of Analytical Chemistry, 2002, 30(10): 1254-1256
    [106] Johans C., Clohessy J., Fantini S., et al. Electrosynthesis of polyphenylpyrrole coated silver particles at a liquid-liquid interface. Electrochemistry Communications, 2002, 4(3): 227-230
    [107] Zhang Y. H., Chen F., Zhuang J. H., et al. Synthesis of silver nanoparticles via electro-chemical reduction on compact zeolite film modified electrodes. Chemical Communi-cations, 2002, (23): 2814-2815
    [108] Ma H. Y., Yin B. S., Wang S. Y., et al. Synthesis of silver and gold nanoparticles by a novel electrochemical method. Chemphyschem, 2004, 5(1): 68-75
    [109] Yin B. S., Ma H. Y., Wang S. Y., et al. Electrochemical synthesis of silver nanoparti-cles under protection of poly(N-vinylpyrrolidone). Journal of Physical Chemistry B, 2003, 107(34): 8898-8904
    [110] Cheng J. Q., Yao S. W. Synthesis and characterization of silver nanoparticles by sonoelectrodeposition. Rare Metals, 2005, 24(4): 376-380
    [111] Socol Y., Abramson O., Gedanken A., et al. Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Langmuir, 2002, 18(12): 4736-4740
    [112] Zhang J. P., Sheng L. Q., Chen P. Synthesis of various types of silver nanoparticles used as physical developing nuclei in photographic science. Chinese Chemical Letters, 2003, 14(6): 645-648
    [113] Xin L. H., Zhou R. M., Gracien E. B., et al. Synthesis of silver nanoparticles by EB irradiation. Journal of Radiation Research and Radiation Processing 2004, 22(2): 69-72
    [114] Tsuji T., Kakita T., Tsuji M. Preparation of nano-size particles of silver with femtosec-ond laser ablation in water. Applied Surface Science, 2003, 206(1-4): 314-320
    [115] Andersson M., Pedersen J. S., Palmqvist A. E. C. Silver nanoparticle formation in mi-croemulsions acting both as template and reducing agent. Langmuir, 2005, 21(24): 11387-11396
    [116] Lam C. C., Leung P. T., Young K. Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering. Journal of the Optical Society of America B, 1992, 9(9): 1585-1592
    [117] CharléK. P., Frank F., Schulze W. The optical properties of silver microcrystallites in dependence on size and the influence of the matrix environment. Berichte Der Bun-sen-Gesellschaft-Physical Chemistry Chemical Physics, 1984, 88(4): 350-354
    [118] Pérez-Juste J., Pastoriza-Santos I., Liz-Marzán L. M., et al. Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 2005, 249(17-18): 1870-1901
    [119] Liz-Marzán L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir, 2006, 22(1): 32-41
    [120] Mie G. A contribution to the optics of turbid media: Special colloidal metal solutions (in German). Annalen der Physik, 1908, 25(4): 377-452
    [121] Sun Y. G., Xia Y. N. Gold and silver nanoparticles: A class of chromophores with col-ors tunable in the range from 400 to 750 nm. Analyst, 2003, 128(6): 686-691
    [122] Henglein A. Colloidal silver nanoparticles: Photochemical preparation and interaction with O2, CCl4, and some metal ions. Chemistry of Materials, 1998, 10(1): 444-450
    [123] Leydet A., Boyer B., Lamaty G., et al. Nitrogen analogs of AOT - Synthesis and prop-erties. Langmuir, 1994, 10(4): 1000-1002
    [124] Li M., Lebeau B., Mann S. Synthesis of aragonite nanofilament networks by mesoscale self-assembly and transformation in reverse microemulsions. Advanced Materials, 2003, 15(23): 2032-2035
    [125] Cason J. P., Miller M. E., Thompson J. B., et al. Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems. Journal of Physical Chemistry B,2001, 105(12): 2297-2302
    [126]孟凡涛,林毅,褚莹.新型阴离子表面活性剂的合成及其反胶束体系对cyt-C的提取.东北师大学报(自然科学版), 2002, 34(1): 22-26
    [127] Baczko K., Chasseray X., Larpent C. Synthesis and surfactant properties of symmetric and unsymmetric sulfosuccinic diesters, Aerosol-OT homologues. Journal of the Chemical Society-Perkin Transactions 2, 2001, (11): 2179-2188
    [128]丛川波,韩超,王洁炜等.琥珀酸二辛酯磺酸钠的合成及表征.青岛科技大学学报, 2004, 25(2): 116-119
    [129]赵汝淇.稀土固体超强酸SO42-/TiO2/La3+催化合成马来酸二丁酯.精细化工, 2000, 17(3): 180-182
    [130]华平,沙兆林,李建华.固体酸催化剂S2O82-/TiO2-ZrO2合成马来酸二辛酯.应用化学, 2002, 19(8): 807-809
    [131]华平,张海军.纳米固体酸S2O82-/Fe2O3催化合成马来酸二己酯.精细石油化工, 2004, (1): 21-25
    [132]张跃军,曲文超,魏焕曹等.琥珀酸二辛酯磺酸钠合成工艺研究辛基对合成工艺的影响.精细石油化工, 1999, (2): 16-20
    [133]郑龙珍,金乐红,吴守国等.油酸囊泡层状液晶作为模板电化学合成银纳米颗粒.分析科学学报, 2003, 19(5): 407-409
    [134] Manna A., Imae T., Iida M., et al. Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex. Langmuir, 2001, 17(19): 6000-6004
    [135]胡建强,吴继红,任斌等.纯化学还原方法制备银纳米棒及其SERS活性.光散射学报, 2002, 13(4): 226-230
    [136] Jana N. R., Gearheart L., Murphy C. J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications, 2001, (7): 617-618
    [137] Zhang J. L., Han B. X., Liu M. H., et al. Ultrasonication-induced formation of silver nanofibers in reverse micelles and small-angle X-ray scattering studies. Journal of Physical Chemistry B, 2003, 107(16): 3679-3683
    [138]梁海春,容敏智,章明秋等.微乳液法制备纳米银粒子的结构及其荧光现象研究.物理学报, 2002, 51(1): 49-54
    [139] Bagwe R. P., Khilar K. C. Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT. Langmuir, 2000, 16(3): 905-910
    [140] Kitchens C. L., McLeod M. C., Roberts C. B. Solvent effects on the growth and steric stabilization of copper metallic nanoparticles in AOT reverse micelle systems. Journal of Physical Chemistry B, 2003, 107(41): 11331-11338
    [141] Bagwe R. P., Khilar K. C. Effects of the intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelles of AOT. Langmuir, 1997, 13(24): 6432-6438
    [142] Henglein A. Physicochemical properties of small metal particles in solution: "micro-electrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. Journal of Physical Chemistry, 1993, 97(21): 5457-5471
    [143] Zhang Z. Q., Patel R. C., Kothari R., et al. Stable silver clusters and nanoparticles pre-pared in polyacrylate and inverse micellar solutions. Journal of Physical Chemistry B, 2000, 104(6): 1176-1182
    [144] Sondi I., Goia D. V., Matijevic E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. Journal of Colloid and Interface Science, 2003, 260(1): 75-81
    [145] Sun Y. G., Xia Y. N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. Journal of the American Chemical Society, 2004, 126(12): 3892-3901
    [146] Im S. H., Lee Y. T., Wiley B., et al. Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angewandte Che-mie-International Edition, 2005, 44(14): 2154-2157
    [147] Sun Y. G., Gates B., Mayers B., et al. Crystalline silver nanowires by soft solution processing. Nano Letters, 2002, 2(2): 165-168
    [148] Sun Y. G., Yin Y. D., Mayers B. T., et al. Uniform silver nanowires synthesis by reduc-ing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chemistry of Materials, 2002, 14(11): 4736-4745
    [149] Chen D. L., Gao L. Large-scale growth and end-to-end assembly of silver nanorods by PVP-directed polyol process. Journal of Crystal Growth, 2004, 264(1-3): 216-222
    [150] Xia Y. N., Yang P. D., Sun Y. G., et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials, 2003, 15(5): 353-389
    [151] Gao Y., Jiang P., Liu D. F., et al. Synthesis, characterization and self-assembly of silver nanowires. Chemical Physics Letters, 2003, 380(1-2): 146-149
    [152] Jiang P., Li S. Y., Xie S. S., et al. Machinable long PVP-stabilized silver nanowires. Chemistry-a European Journal, 2004, 10(19): 4817-4821
    [153] Gao Y., Jiang P., Song L., et al. Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction. Journal of Physics D-Applied Physics, 2005, 38(7): 1061-1067
    [154] Murphy C. J., Jana N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials, 2002, 14(1): 80-82
    [155] Jana N. R. Shape effect in nanoparticle self-assembly. Angewandte Che-mie-International Edition, 2004, 43(12): 1536-1540
    [156] Lee G. J., Shin S. I., Kim Y. C., et al. Preparation of silver nanorods through the control of temperature and pH of reaction medium. Materials Chemistry and Physics, 2004, 84(2-3): 197-204
    [157] Hu J. Q., Chen Q., Xie Z. X., et al. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Advanced Functional Materials, 2004, 14(2): 183-189
    [158]赵启涛,侯立松,黄瑞安.软化学法低温合成银纳米线及其生长机制.化学学报, 2003, 61(10): 1671-1674
    [159] Zhao Q. T., Qiu J. R., Zhao C. J., et al. Synthesis and formation mechanism of silver nanowires by a templateless and seedless method. Chemistry Letters, 2005, 34(1):30-31
    [160] Giersig M., Pastoriza-Santos I., Liz-Marzán L. M. Evidence of an aggregative mecha-nism during the formation of silver nanowires in N,N-dimethylformamide. Journal of Materials Chemistry, 2004, 14(4): 607-610
    [161] Sharma J., Chaki N. K., Mahima S., et al. Tuning the aspect ratio of silver nanostruc-tures: the effect of solvent mole fraction and 4-aminothiophenol concentration. Journal of Materials Chemistry, 2004, 14(6): 970-975
    [162] Wang X. Q., Naka K., Itoh H., et al. Synthesis of silver dendritic nanostructures pro-tected by tetrathiafulvalene. Chemical Communications, 2002, (12): 1300-1301
    [163] Jiang G. H., Wang L., Chen T., et al. Preparation and characterization of dendritic sil-ver nanoparticles. Journal of Materials Science, 2005, 40(7): 1681-1683
    [164] Chen S. H., Fan Z. Y., Carroll D. L. Silver nanodisks: Synthesis, characterization, and self-assembly. Journal of Physical Chemistry B, 2002, 106(42): 10777-10781
    [165] Chen S. H., Carroll D. L. Silver nanoplates: Size control in two dimensions and forma-tion mechanisms. Journal of Physical Chemistry B, 2004, 108(18): 5500-5506
    [166]梁焕珍, Kim D. J., Chung H. S.乙二醇中化学还原合成片状银粉.物理化学学报, 2003, 19(2): 150-153
    [167] May S., Ben-Shaul A. Molecular theory of the sphere-to-rod transition and the second CMC in aqueous micellar solutions. Journal of Physical Chemistry B, 2001, 105(3): 630-640
    [168] Johnston K. P., Randolph T., Bright F., et al. Toxicology of a PFPE surfactant. Science, 1996, 272(5269): 1726-1726
    [169] Ohde H., Hunt F., Wai C. M. Synthesis of silver and copper nanoparticles in a wa-ter-in-supercritical-carbon dioxide microemulsion. Chemistry of Materials, 2001, 13(11): 4130-4135
    [170] Egorova E. M., Revina A. A. Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2000, 168(1): 87-96
    [171] Yeary L. W., Moon J. W., Love L. J., et al. Magnetic properties of biosynthesized magnetite nanoparticles. IEEE Transactions on Magnetics, 2005, 41(12): 4384-4389
    [172] Dameron C. T., Reese R. N., Mehra R. K., et al. Biosynthesis of cadmium-sulfide quantum semiconductor crystallites. Nature, 1989, 338(6216): 596-597
    [173] Zhang B., Ye X. C., Dai W., et al. Biomolecule-assisted synthesis of single-crystalline selenium nanowires and nanoribbons via a novel flake-cracking mechanism. Nanotechnology, 2006, 17(2): 385-390
    [174] Bhainsa K. C., D'Souza S. F. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B-Biointerfaces, 2006, 47(2): 160-164
    [175] Klaus-Joerger T., Joerger R., Olsson E., et al. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Bio-technology, 2001, 19(1): 15-20
    [176] Joerger R., Klaus T., Granqvist C. G. Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Advanced Materials, 2000, 12(6): 407-409
    [177] Nair B., Pradeep T. Coalescence of nanoclusters and formation of submicron crystal-lites assisted by Lactobacillus strains. Crystal Growth & Design, 2002, 2(4): 293-298
    [178] Aslan K., Gryczynski I., Malicka J., et al. Metal-enhanced fluorescence: An emerging tool in biotechnology. Current Opinion in Biotechnology, 2005, 16(1): 55-62
    [179]华平,张跃军.磺基琥珀酸二己酯钠盐合成工艺与结构的关系.日用化学工业, 2002, 32(2): 21-25
    [180]刘德荣.表面活性剂的合成与应用.第一版.成都:四川科学技术出版社, 1987. 37.
    [181]邢其毅,徐瑞秋,周政等.基础有机化学(上册).第二版.北京:高等教育出版社, 1993. 460.
    [182] Sheu E. Y., Chen S. H. Thermodynamic analysis of polydispersity in ionic micellar systems and its effect on small-angle neutron scattering data treatment. Journal ofPhysical Chemistry, 1988, 92(15): 4466-4474
    [183] Politi M. J., Brandt O., Fendler J. H. Ground- and excited-state proton transfers in re-versed micelles. Polarity restrictions and isotope effects. Journal of Physical Chemistry, 1985, 89(11): 2345-2354
    [184] Ueda M., Schelly Z. A. Mean aggregation number and water vapor pressure of AOT reverse micellar systems determined by controlled partial pressure-vapor pressure os-mometry (CPP-VPO). Langmuir, 1988, 4(3): 653-655
    [185] Smeets J., Koper G. J. M., van der Ploeg J. P. M., et al. Viscosity of droplet-phase wa-ter/AOT/isooctane microemulsions: Solid sphere behavior and aggregation. Langmuir, 1994, 10(5): 1387-1392
    [186] Martin C. A., Magid L. J. Carbon-13 NMR investigations of Aerosol OT water/oil mi-croemulsions. Journal of Physical Chemistry, 1981, 85(25): 3938-3944
    [187] Andrews M. P., Ozin G. A. Liquid-phase agglomeration of Ag atoms in olefinic and ether media - electrocatalytic application 2. Journal of Physical Chemistry, 1986, 90(13): 2929-2938
    [188] Nakao Y., Kaeriyama K. Adsorption of surfactant-stabilized colloidal noble-metals by ion-exchange resins and their catalytic activity for hydrogenation. Journal of Colloid and Interface Science, 1989, 131(1): 186-191
    [189] Teng F., Xu J. G., Tian Z. J., et al. Formation of a novel type of reverse microemulsion system and its application in synthesis of the nanostructured La0.95Ba0.05MnAl11O19 catalyst. Chemical Communications, 2004, (16): 1858-1859
    [190] Hota G., Jain S., Khilar K. C. Synthesis of CdS-Ag2S core-shell composite nanoparti-cles using AOT n-heptane water microemulsions. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2004, 232(2-3): 119-127
    [191] Monnoyer P., Fonseca A., Nagy J. B. Preparation of colloidal AgBr particles from mi-croemulsions. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 1995, 100(1-3): 233-243
    [192] Liz-Marzán L. M., Lado-Touri?o I. Reduction and stabilization of silver nanoparticlesin ethanol by nonionic surfactants. Langmuir, 1996, 12(15): 3585-3589
    [193] Wilcoxon J. P., Williamson R. L., Baughman R. Optical-properties of gold colloids formed in inverse micelles. Journal of Chemical Physics, 1993, 98(12): 9933-9950
    [194] Sager W. F. C. Systematic study on the influence of impurities on the phase behavior of sodium bis(2-ethylhexyl)sulfosuccinate microemulsions. Langmuir, 1998, 14(22): 6385-6395
    [195] Barnickel P., Wokaun A., Sager W., et al. Size tailoring of silver colloids by reduction in W/O microemulsions. Journal of Colloid and Interface Science, 1992, 148(1): 80-90
    [196] Linnert T., Mulvaney P., Henglein A., et al. Long-lived nonmetallic silver clusters in aqueous-solution - Preparation and photolysis. Journal of the American Chemical So-ciety, 1990, 112(12): 4657-4664
    [197] Yonezawa Y., Kijima M., Sato T. Aggregation of silver particles in silver alginate films. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 1992, 96(12): 1828-1831
    [198] Zheng M. P., Gu M. Y., Jin Y. P., et al. Optical properties of silver-dispersed PVP thin film. Materials Research Bulletin, 2001, 36(5-6): 853-859
    [199] Huang Z. Y., Mills G., Hajek B. Spontaneous formation of silver particles in basic 2-propanol. Journal of Physical Chemistry, 1993, 97(44): 11542-11550
    [200] Eastoe J., Robinson B. H., Visser A., et al. Rotational-dynamics of AOT reversed mi-celles in near-critical and supercritical alkanes. Journal of the Chemical Soci-ety-Faraday Transactions, 1991, 87(12): 1899-1903
    [201] Pileni M. P., Zemb T., Petit C. Solubilization by reverse micelles - Solute localization and structure perturbation. Chemical Physics Letters, 1985, 118(4): 414-420
    [202] Taleb A., Russier V., Courty A., et al. Optical anisotropy of organized silver nanoparti-cles in 2D superlattice. Applied Surface Science, 2000, 162-163(1-4): 655-661
    [203] Koper G. J. M., Sager W. F. C., Smeets J., et al. Aggregation in oil-continuous wa-ter/sodium bis(2-ethylhexyl)sulfosuccinate/oil microemulsions. Journal of Physical Chemistry, 1995, 99(35): 13291-13300
    [204] Curri M. L., Agostiano A., Manna L., et al. Synthesis and characterization of CdS nanoclusters in a quarternary microemulsion: The role of the cosurfactant. Journal of Physical Chemistry B, 2000, 104(35): 8391-8397
    [205] Feng J., Zhang C. P. Preparation of Cu-Ni alloy nanocrystallites in water-in-oil mi-croemulsions. Journal of Colloid and Interface Science, 2006, 293(2): 414-420
    [206] Wang W. L., Wang Y., Wan C. C., et al. Self-assembly of Pd nanoparticles in dodeca-nol in situ generated from sodium dodecyl sulfate and its potential applications. Col-loids and Surfaces A-Physicochemical and Engineering Aspects, 2006, 275(1-3): 11-16
    [207] He P., Shen X. H., Gao H. C. Photoluminescence phenomenon during the formation of silver nanoparticles. Acta Physico-Chimica Sinica, 2004, 20(10): 1200-1203
    [208] Zeng R., Rong M. Z., Zhang M. Q., et al. Studies on the surface interaction and dis-persity of silver nanoparticles in organic solvents. Chinese Physics Letters, 2000, 17(9): 697-699
    [209] Chen Y. H., Yeh C. S. Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2002, 197(1-3): 133-139
    [210] Mafune F., Kohno J., Takeda Y., et al. Formation and size control of sliver nanoparti-cles by laser ablation in aqueous solution. Journal of Physical Chemistry B, 2000, 104(39): 9111-9117
    [211] Mitchell D. J., Ninham B. W. Micelles, vesicles and microemulsions. Journal of the Chemical Society, Faraday Transactions 2, 1981, 77(4): 601-629
    [212] Pileni M. P. Structure and Reactivity in Reverse Micelles. New York: Elsevier, 1989.
    [213] Zana R. Dynamics of amphiphile organized assemblies in solution. Proceedings of the American Chemical Society Division of Polymeric Materials. USA. 1993, 69:124-125.
    [214] Henglein A., Giersig M. Formation of colloidal silver nanoparticles: Capping action of citrate. Journal of Physical Chemistry B, 1999, 103(44): 9533-9539
    [215]刘霞,何天敬,刘凡镇等.含纳米棒银溶胶的制备及其光谱性质研究.化学物理学报, 2005, 18(1): 81-86
    [216] El-Sayed M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research, 2001, 34(4): 257-264
    [217] Jana N. R., Gearheart L., Murphy C. J. Wet chemical synthesis of high aspect ratio cy-lindrical gold nanorods. Journal of Physical Chemistry B, 2001, 105(19): 4065-4067
    [218] Tornblom M., Henriksson U. Effect of solubilization of aliphatic hydrocarbons on size and shape of rodlike C16TABr micelles studied by 2H NMR relaxation. Journal of Physical Chemistry B, 1997, 101(31): 6028-6035
    [219] Jana N. R. Nanorod shape separation using surfactant assisted self-assembly. Chemical Communications, 2003, (15): 1950-1951
    [220] Ah C. S., Hong S. D., Jang D. J. Preparation of AucoreAgshell nanorods and characteri-zation of their surface plasmon resonances. Journal of Physical Chemistry B, 2001, 105(33): 7871-7873
    [221] Nikoobakht B., El-Sayed M. A. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir, 2001, 17(20): 6368-6374
    [222] Petroski J. M., Wang Z. L., Green T. C., et al. Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. Journal of Physical Chemistry B, 1998, 102(18): 3316-3320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700