激光法制备碳纳米颗粒及其发光的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从传统碳材料(石墨、碳黑)转变成新型碳材料(纳米金刚石、纳米碳洋葱等)需要足够高的温度和压力,一般常规手段很难满足这样的要求。激光可通过瞬间高能量的输入产生碳材料相变的条件,因此可望成为一种有效合成新型纳米碳材料的方法。
     用高功率密度的短脉冲(纳秒)激光虽然可以产生足够高的温度和压力获得纳米金刚石(粒径为30~300 nm),但是它的有效工作的时间太短,合成效率低。本课题组提出了较低功率密度的长脉冲(毫秒)激光辐照循环石墨悬浮液的方法,获得了超细的纳米金刚石(粒径<10 nm)并且使产率得到了提高。本文结合两种不同类型激光产生的条件差异,从热力学和动力学两方面研究了毫秒脉冲激光获得超细纳米金刚石的原因。研究表明,金刚石稳定的平衡尺寸、较小的生长速率以及表面的混合杂化限制了较大颗粒金刚石的产生;在小尺寸下转变成金刚石结构的几率大,有助于产率的提高。
     首次在细小的纳米金刚石上发现了多重孪晶,研究了多重孪晶的形成过程,为金刚石晶粒的生长提供了重要的理论依据。通过理论计算和观察到的金刚石孪晶的中间结构,证明了多重孪晶是通过依次形成孪晶而产生的。
     用激光辐照悬浮在水中的碳黑,首次合成了亲水性的碳纳米洋葱,其具有良好的应用前景。通过各种分析手段表明碳纳米洋葱的亲水性主要是来自于表面的亲水基团。结合理论计算,研究了激光功率密度对碳纳米洋葱结构的影响:过高的激光功率密度会导致碳质量损失,使碳洋葱中心造成空洞;而过低的激光功率密度则使碳黑结构不能发生完全有序化。
     发光的碳纳米颗粒由于具有无毒、化学惰性以及良好的生物相容性的特点,在生物和医药领域具有重要的潜在应用价值,所以研究它的发光机制对提高其发光效率和控制荧光特征具有非常重要的意义。本文研究了化学修饰法获得的碳纳米颗粒发光的机制,并开发了激光下一步合成发光碳纳米颗粒的新工艺。碳纳米颗粒的发光主要来自于表面态,通过改变试剂可以获得不同特征的荧光发射。另外,实验中获得的碳纳米颗粒具有双光子激发荧光发射的特征。
Laser irradiation for preparing nanomaterials has become one of the effective approaches and more and more impotrant with laser technique developing. The common technique hardly meets the high temperature and pressure required in phase transition from tranditional carbon materials (graphite and carbon black) to new carbon materials (nanodiamond and nanoonion et al.). However, pulsed laser can provide such conditions by imputing high energy enough in very short time. Thereby, laser irradiation will become a kind of method to synthesize new carbon materials.
     Although the larger nanodiamonds (30-300 nm in diameter) were formed in higher temperature and pressure produced by short-pulse-width (ns) laser with high laser power indensity, the yield was very low due to too short working time. Ultrafine nanodiamonds with sizes of smaller 10 nm were prepared by irradiating graphite suspension using long-pulse width (ms) laser at room temperature and normal pressure, and the yield was improved in our research group. The low power density and long pulse laser generated a lower temperature and a lower pressure, which determine the stable size of nanodiamonds. On the other hand, the low degree of supercooling allows a rather low growth velocity, and a disordered structure formed at the diamond surface retards the epitaxy growth. The above two factors dynamically limited the final size of nanodiamonds. Moreover, our study showed that the diamond-transition probabilties were high at the small size, which trended to improve the diamond yields.
     The multiply twinning structure (MTS) of nanodiamonds synthesized by pulsed-laser irradiation was firstly investigated theoretically and experimentally. The thermodynamic calculation shows MTS is more stable than single crystal in a certain size range and statistical results experimentally accords with the theory. A mechanism on the formation of MTS in nanodiamonds was proposed based on Transmission Electron Microscopy (TEM) observation, in which a single crystal successively grows into MTS through intermediate states, such as simple twin and triple twin.
     Hydrophilic carbon nanoonions were firstly synthesized by irradiating carbon black particles in water using pulsed laser, which exploited their application. All of analyzed techniques showed that the hydrophilic properties of carbon nanoonions orginated from hydrophilic ligands. Based on the theoretical calcaulation, the influences of laser power intensity on the structure of carbon nanoonions were studied in this paper: The higher laser power intensity could make the mass lose by carbon sublimation and resulted in the hole formation in the centre of carbon nanoonions; however, the lower laser power intensity could not produce carbon nanoonions due to lack of enough energy.
     Fluorescent carbon nanoparticles (CNPs) show high potential on the application of biology labelling and life science, because they own many advantages over the conventional quantum dots based on sulphides, selenides, or tellurides of zinc and cadmium, such as biocompatible, chemically inert, and can be surface-modified. Therefore, it is very important to study the luminescent mechanism. An effective method to synthesize fluorescent CNPs by laser irradiation of the suspension of carbon materials in organic solvent, the synthesis and surface modification of luminescent CNPs were believed to realize simultaneously. Compared with previous works, such a one-step process is simple and easy to be industrialized. Especially, by selecting organic solvents, the surface states could be modified conveniently to realize tuneable light emission. Based on the results of control experiments, the origin of the luminescence is proposed to be the surface states related to the ligands on the surface of CNPs. Especially, CNPs can emit visible light via two-photon excitation by using near-infrared light. The two-photon excitation makes photodynamic therapy harmless to health tissue adjacent to the diseased target tissue.
引文
[1]刘吉平,孙洪强,碳纳米材料,北京:科学出版社,2004:1~30
    [2]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2002:51~65
    [3]沈曾民,新型碳材料,北京:化学工业出版社,2003:1~20
    [4]苟清泉,固体物理简明教程,北京:人民教育出版社,1978:55~61
    [5]时志强,王成扬,樊丽萍等,含菱形相的天然石墨用做锂离子电池负极材料,2005,38(2):154~158
    [6]邹芹,王明智,王艳辉,纳米金刚石的性能与应用前景,金刚石与磨料磨具工程, 2003,134(2):54~58
    [7]王光祖,张运生,纳米金刚石应用的潜在发展前景,工业金刚石,2002,6:68~71
    [8] Brunsman E. M., Sutton R., Bortz E. et al, Magetic properties of carbon coated, ferromagnetic nanoparticles produced by a carbon arc method, J. Appl. Phys., 1994, 75: 5882~5884
    [9] Kratschmer W., Lamb L. D., Foristopoulos K. et al, Solid C60: a new form of carbon, Nature, 1990, 347: 354~358
    [10] Du A.-B., Liu X.-G, Fu D.-J.et al., Onion-like fullerenes synthesis from coal, Fuel, 2007, 86: 294-298.
    [11]许并社,纳米洋葱状富勒烯的研究进展及动向,材料导报,2001,15(9):45~49
    [12]杨晓伟,姚廷立,郭俊杰等,Pt/洋葱状富勒烯复合纳米微粒的制备,电子显微学报,2006,25:64~64
    [13]符冬菊,杜爱兵,刘旭光等,由不同碳源合成洋葱状富勒烯,煤碳转化,2005,28(3):87~93
    [14] Qiao Z., Li J., Zhao, N. et al, Graphitization and microstructure transformation of nanodiamond to onion-like carbon, Scripta Materialia, 2006, 54: 225~229
    [15] He C., Zhao, N., Shi C. et al, A practical method for the production of hollow carbon onion particles, Journal of Alloys and Compounds, 2006, 425: 329~333
    [16] Yoshimoto M, Furusawa M, Nakajima K, et al. Diamond film growth in an oxygen atmosphere, Diam. Relat. Mater, 2001, 10 (3-7): 295-299
    [17] Konov VI, Uglov SA Laser-plasma synthesis of diamond films, Quantum Electronics, 1998, 28 (4): 281-282.
    [18] Hara T, Yoshitake T, Fukugawa T, et al. Ultrananocrystalline diamond preparedby pulsed laser deposition, Diam Relat Mater, 2006, 15 (4-8): 649-653.
    [19] Zhao YF, Chen CZ, Chen LB, et al. Development of preparation of the functional thin films by pulsed laser deposition, Surface Review and Letters 2005, 12 (4): 597-604.
    [20] Balon F, Stolojan V, Silva SRP, et al. Diamond-like carbon thin films for high-temperature applications prepared by filtered pulsed laser deposition, Vacuum 2005, 80 (1-3): 163-167.
    [21] Hara T, Yoshitake T, Fukugawa T, et al. Nanocrystalline diamond film prepared by pulsed laser deposition in a hydrogen atmosphere, Daim Relat Mater, 2004, 13 (4-8): 679-683.
    [22] ElShall MS, Li S, Turkki T,et al. Synthesis and Photoluminescence of Weblike Agglomeration of Silica Nanoparticles, J Phys Chem B, 1995, 99 (51):17805-17809.
    [23] Burr TA, Seraphin AA, Werwa E, et al. Carrier transport in thin films of silicon nanoparticles, Phys Rev B, 1997, 56 (8): 4818-4824.
    [24] Geohegan DB, Puretzky AA, Duscher G, et al. Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation, Appl Phys Lett, 1998, 72 (23): 2987-2989.
    [25] Geohegan DB, Puretzky AA, Duscher G, et al. Photoluminescence from gas-suspended SiOx nanoparticles synthesized by laser ablation, Appl Phys Lett, 1998, 73 (4): 438-440.
    [26] Becker MF, Brock JR, Cai H, et al. Metal nanoparticles generated by laser ablation, Nanostruct Mater, 1998, 10 (5): 853-863.
    [27] Geohegan DB, Puretzky AA, Rader DJ. Gas-phase nanoparticle formation and transport during pulsed laser deposition of Y1Ba2Cu3O7– d, Appl Phys Lett, 1999, 74 (25): 3788-3790.
    [28] Lowndes DH, Rouleau CM, Thundat TG, et al. Silicon and zinc telluride nanoparticles synthesized by low energy density pulsed laser ablation into ambient gases [J]. J Mater Res 1999, 14 (2): 359-370.
    [29] Wu KT, Yao YD, Wang CRC, et al. Magnetic field induced optical transmission study in an iron nanoparticle ferrofluid, J Appl Phys, 1999, 85 (8): 5959-5961.
    [30] Link S, El-Sayed MA. Shape and size dependence of radiative, nonradiative and photothermal properties of gold nano- crystals, Int Rev Phys Chem, 2000, 19: 409-453.
    [31] Marine W, Patrone L, Luk’yanchuk B, et al. Production of iron-oxide nanoparticles by laser-induced pyrolysis of gaseous precursors, Appl Surf Sci, 2000, 154-155: 345-352.
    [32] Hata K, Fujita M, Yoshida S, et al. Selective adsorption and patterning of Si nanoparticles fabricated by laser ablation on functionalized self-assembled monolayer, Appl Phys Lett, 2001, 79 (5): 692-694.
    [33] Belomoin G, Therrien J, Smith A, et al. Observation of a magic discrete family of ultrabright Si nanoparticles, Appl Phys Lett, 2002, 80 (5): 841-843.
    [34] Nakata Y, Muramoto J, Okada T,et al. Particle dynamics during nanoparticle synthesis by laser ablation in a background gas, J Appl Phys, 2002, 91 (3):1640-1643.
    [35] Yang GW. Laser ablation in liquids: Applications in the synthesis of nanocrystals [J]. Progress in Materials Science, 2007, 52: 648–698.
    [36] Sakka T, Takatani K, Ogate YH, et al. Laser ablation at the solid-liquid interface : transient absorption of continuous spectral emission by ablated aluminum atoms. J Phys D: Appl. Phys, 2002, 35 (1), 65-73.
    [37] Sakka T, Saito K, Ogata YH. Emission spectra of the species ablated from a solid target submerged in liquid: vibrational temperature of C2 molecules in water-confined geometry, Appl Surf Sci, 2002, 197 -198 (1-4): 246-250
    [38] Saito K, Takatani K, Sakka T, et al. Observation of the light emitting region produced by pulsed laser irradiation to a solid–liquid interface, Appl Surf Sci, 2002, 197-198 (1-4): 56-60.
    [39] Saito K, Sakka T, Ogata YH. Rotational spectra and temperature evaluation of C2 molecules produced by pulsed laser irradiation to a graphite–water interface, J Appl Phys, 2003, 94 (9) : 5530-5536.
    [40] Furusawa H, Sakka T, Ogata YH. Characterization of ablated species in laser-induced plasma plume, J Appl Phys, 2004, 96 (2):975-982.
    [41] Henley S.J., Carey J. D., Silva, S. R. P., Dynamics of confined plumes during short and ultrashort pulsed laser ablation of graphite, Phys. Rev. B, 2005, 72 : 205413-1-13
    [42] Ashfold MNR, Claeyssens F, Fuge GM, et al. Pulsed laser ablation and deposition of thin films. Chem Soc Rev, 2004, 33 (1): 23-31.
    [43] Pola J., UrbanováM., Bastl Z. et al, Laser photolysis of liquid benzene and toluene: Graphitic and polymeric carbon formation at ambient temperature,Carbon, 35(5): 605~611
    [44] Wood R. F., Leboeuf J. N., Chen K. R. et al, Dynamics of plume propagation, splitting, and nanoparticle formation during pulsed-laser ablation, Appl. Surf. Sci. 1998, 127-129: 151~158
    [45] Romero A. H., Jeschke, H. O., Garcia, M. E., Laser manipulation of nanodiamonds, Computational Materials Science, 2006, 35: 179~182
    [46] Palau J., Serra P., Aguiar R. et al., Evolution of the plumes produced by laser ablation of a carbon target, Diamond and Related Materials, 1995, 4: 337~341
    [47] Abdellatif G., Imam H., A study of the laser plasma parameters at different laser wavelengths, Spectrochimica Acta Part B, 2002, 57: 1155-1165
    [48] Conesa S., Palanco S., Laserna J. J., Acoustic and optical emission during laser-induced plasma formation, Spectrochimica Acta Part B, 2004, 59: 1395~1401
    [50] Aguilera J. A., Aragón C., Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions, Spectrochimica Acta Part B, 2004, 59: 1861~1876
    [51] Kim K. R., Farson D. F., CO2 laser-plume interaction in materials processing, Journal of Applied Physics, 2001, 89: 681-688
    [52] Gnedovets A. G., Gusarov A. V., Smurov I., Submicron particles synthesis by laser evaporation at low power density: a numerical analysis, Applied Surface Science, 2000, 154-155: 508~513
    [53] Angleraud B, Girault C, Champeaux C, et al. Study of the expansion of the laser ablation plume above a boron nitride target, Appl Surf Sci, 1996, 96-98:117-121.
    [54] Balasz L, Gijbels VA. Expansion of laser-generated plumes near the plasma ignition threshold, Anal Chem, 1991, 63 (4):314-320.
    [55]陆建,倪晓武,贺安之,激光与材料相互作用物理学,北京:机械工业出版社,1996:50~90
    [56] Peyer P, Scherpereel X, Fabbro R. Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour, J Mater Sci, 1998, 33 (6): 1421-1429.
    [57] Berthe L, Fabbro R, Peyer P, et al. Wavelength dependent of laser shock-wave generation in the water-confinement regime, J Appl Phys, 1999, 85 (11): 7552-7555.
    [58] Berthe L, Sollier A, Fabbro R, et al. The generation of laser shock waves in awater-confinement regime with 50 ns and 150 ns XeCl excimer laser pulses, J Phys D: Appl Phys, 2000, 33 (17): 2142-2145.
    [59] Peyer P, Berthe L, Fabbro R, et al. Experimental determination by PVDF and EMV techniques of shock amplitudes induced by 0.6-3 ns laser pulses in a confined regime with water, J Phys D: Appl Phys, 2000, 33 (5): 498-503.
    [60] Sollier A, Berthe L, Fabbro R. Numerical modeling of the transmission of breakdown plasma generated in water during laser shock processing, Eur Phys J Appl Phys, 2001, 16:131-139.
    [61] Yavas O, Leiderer P, Park HK, et al. Enhanced acoustic cavitation following laser-induced bubble formation: Long-term memory effect, Phys Rev Lett, 1994, 72 (3): 2021-2024.
    [62] Yavas O, Leiderer P, Park HK, et al. Optical and acoustic study of nucleation and growth of bubbles at a liquid-solid interface induced by nanosecond-pulsed-laser heating [J]. Appl Phys A, 1994, 58 (4): 407-415.
    [63] Park HK, Grigoropoulos CP, Poon CC, et al. Optical probing of the temperature transients during pulsed-laser induced boiling of liquids, Appl Phys Lett, 1996, 68 (5): 596-598.
    [64] Park HK, Kim D, Grigoropoulos CP, et al. Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface, J Appl Phys, 1996, 80 (7): 4072-4081.
    [65] Sakka T, Iwanage S, Ogata YH, et al. Laser ablation at solid–liquid interfaces: An approach from optical emission spectra, J Chem Phys, 2000, 112 (19): 8645-8653.
    [66] Patil PP, Phase DM, Kulkarni SA, et al. Pulsed-laser–induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron, Phys Rev Lett, 1987, 58 (3): 238-241.
    [67] Dobbins T. A., Poondi D., Singh J., Synthesis of micron and submicron nickel and nickel oxide particles by a nobel laser-liquid interaction process, Journal of Materials Synthesis and Processing, 1999, 7(5): 261-272
    [68] Yang GW, Wang JB. Carbon nitride nanocrystals having cubic structure using pulsed laser induced liquid-solid interfacial reaction , Appl Phys A, 2000, 71 (3): 343-344.
    [69] Lu YF, Huang SM, Wang XB, et al. Laser-assisted growth of diamond particulates on a silicon surface from a cyclohexane liquid, Appl Phys A, 1998,66 (5): 543-547.
    [70] Lyalin AA, Simakin AV, Shafeev GA. Laser deposition of diamond-like films from liquid aromatic hydrocarbons, Appl Surf Sci, 2000, 154-155: 405-410.
    [71] Huang SM, Lu YF, Sun Z. Conversion of diamond clusters from a polymer by Nd:YAG pulsed laser (532 nm) irradiation, Appl Surf Sci, 1999, 151 (3-4): 244-250.
    [72] Simakin AV, Obraztsova ED, Shafeev GA. Laser-induced carbon deposition from supercritical benzene [J]. Chem Phys Lett, 2000, 332 (3-4): 231-235.
    [73] Inoue W, Okoshi M, Inoue N. Fabrication of diamond-like carbon thin films by femtosecond laser ablation of frozen acetone, Appl Phys A, 2004, 79 (4-6): 1457-1460.
    [74] Yeh MS, Yang YS, Lee YP, et al. Formation and Characteristics of Cu Colloids from CuO Powder by Laser Irradiation in 2-Propanol, J Phys Chem B, 1999, 103 (33): 6851-6857.
    [75] Poondi D, Singh J. Synthesis of metastable silver-nickel alloys by a novel laser-liquid-solid interaction technique, J Mater Sci, 2000, 35 (10):2467-2476.
    [76] Simakin AV, Voronov VV, Shafeev GA,et al. Nanodisks of Au and Ag produced by laser ablation in liquid environment, Chem Phys Lett, 2001, 348 (3-4):182-186.
    [77] Compagnini G, Scalisi AA, Puglisi O. Ablation of noble metals in liquids: a method to obtain nanoparticles in a thin polymeric film, Phys Chem Chem Phys, 2002, 4:2787-2791.
    [78] Liang CH, Shimizu Y, Sasaki T,et al. Synthesis of Ultrafine SnO2-x Nanocrystals by Pulsed Laser-Induced Reactive Quenching in Liquid Medium, J Phys Chem B, 2003, 107 (35): 9220-9225.
    [79] Liu QX, Wang CX, Zhang W,et al. Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction, Chem Phys Lett, 2003, 382 (1-2):1-5.
    [80] Zhu S, Lu YF, Hong MH, et al. Laser ablation of solid substrates in water and ambient air, J Appl Phys, 2001, 89 (4): 2400-2403.
    [81] Zhu S, Lu YF, Hong MH. Laser ablation of solid substrates in a water-confined environment, Appl Phys Lett, 2001, 79 (9): 1396-1398.
    [82]朱永伟,王柏春,陈立舫等,纳米金刚石的应用现状和发展前景,材料导报,2002,16(12):27~30
    [83]周刚,利用炸药中的碳爆轰合成超细金刚石的研究:【博士学位论文】,北京:北京理工大学,1995。
    [84] Rebello JHD, Subramaniam V. V., Sudarshan T. S., Diamond growth by laser-driven reactions in a CO/H2 mixture, Appl. Phys. Lett., 1993, 62: 899~901
    [85] Molian P. A., Waschek A., CO2 laser deposition of diamond thin films on electronic materials, J. Mater. Sci., 1993, 28: 1733~1737
    [86] Fedoseev D. V., Varshavskaya I. G., Lavrent’ev A. V. et al., Phase transformations in highly disperse powders during their rapid heating and cooling, Powder. Technol., 1985, 44: 125~129
    [87] Fedoseev D. V., Bukhovets V. L., Varshavskaya I. G. et al., Transition of graphite into diamond in a solid phase under the atmospheric pressure, Carbon, 1983, 21: 237~241
    [88] Alam M., Debroy T., Roy R. et al., Diamond formation in air by the Fedoseev-Derjaguin laser process, Carbon, 1989, 27: 289~294
    [89] Ogale S. B., Malshe A. P., Kanetkar S. M. et al., Formation of diamond particulates by pulsed ruby laser irradiation of graphite immersed in benzene, Solid. State. Commun., 1992, 84: 371~373
    [90] Yang GW, Wang JB, Liu QX, et al. Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching, J Phys: Condensed. Matter 1998, 10: 7923–7927.
    [91] Yang GW, Wang JB. Pulsed-laser-induced transformation path of graphite to diamond via an intermediate rhombohedral graphite, Appl Phys A, 2001, 72: 475–479
    [92] Wang JB, Zhang CY, Zhong XL, et al. Cubic and hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid–solid interfacial reaction, Chem. Phys Lett 2002, 361: 86–90.
    [93] Wang J. B., Yang G. W., Phase transformation between diamond and graphite in preparation of diamonds by pulsed-laser induced liquid-solid interface reaction, J. Phys.:Condes. Matter., 1999, 11(37): 7089~7094
    [94] Pearce SRJ, Henley SJ, Claeyssens F, et al. Production of nanocrystalline diamond by laser ablation at the solid/liquid interface, Diam Relat Mater, 2004, 13: 661-665.
    [95] Wang C. X., Yang Y. H., Liu Q. X. et al., Phase stability of diamond nanocrystals upon pulsed-laser-induced liquid-solid interfacial reaction: Experiments and abinitio calculations, Appl. Phys. Lett., 2004, 84(9): 1471~1473
    [96] Wang C X, Liu P, Cui H et al, Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid, Appl. Phys. Lett., 2005, 87: 201913
    [97] Wang C X, Yang Y H, Yang G W, Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid, J. Appl. Phys. 2005, 97: 066104
    [98]孙景,翟琪,杜海燕,等,碳原料的结构对激光法合成纳米金刚石的影响,纳米技术与精密工程,2006, 4(3): 217~220
    [99]孙景,翟琪,江雷等,激光照射石墨悬浮液制备纳米金刚石的研究,金刚石与磨料磨具工程,2006, 5: 24~27
    [100] Sun J., Lei Y., Zhai Q.et al, Preparation of nanodiamonds by laser irradiation of graphite, Chinese Optics Letters, 2005, 3(5): 287~288
    [101]孙景,雷贻文,杜希文等,纳米金刚石的激光法合成与拉曼表征,材料研究学报, 2006, 20(1): 1~4
    [102]孙景,杨星,雷贻文等,激光诱导固态转变合成金刚石研究进展,金刚石与磨料磨具工程,2005,2: 7~9
    [103] Sun J., Lei Y., Zhai Q. et al, HRTEM study of nanocrystalline diamonds prepared by laser irradiation,纳米技术与精密工程, 2005, 3(3) : 181~184
    [104] Shechtman D, Hutchison JL, Robins LH, Farabaugh EN, Feldman A. Growth defects in diamond films. J. Mater. Res. 1993, 8(33): 473-79.
    [105] Wang L, John CA, David A. Morphology of twinned diamond particles. J. Mater. Res. 1995, 10(12): 3037-40.
    [106] Narayan J, Srivatsa AR, Rai KV. Mechanism of formation of <110> oriented fivefold microcrystallites in diamond films. App. Phys. Lett. 1989, 54(17): 1659-61.
    [107] Tamor MA, Everson MP. On the role of penetration twins in the morphological development of vapor-grown diamond films. J Mater. Res. 1994, 9(7):1839-48.
    [108] Bühler J, Prior Y. Study of morphological behavior of single diamond crystals. J. Cryst. Growth 2000; 209: 779-88.
    [109] Mani RC, Sunkara MK. Kinetic faceting of multiply twinned crystals during vapor phase synthesis. Diam. Relat. Mater. 2003, 12(3-7): 324-29.
    [110] Badzian A, Badzian T. An intermediate hybridization in diamond: edge-shared tetrahedral. Thin Solid Films 2004, 447-448: 163-8.
    [111] Delclos S, Dorignac D, Phillipp F, Silva F, Gicquel A. Ultra-high resolutionelectron microscopy investigation of growth defects in CVD diamond films: twin interactions and fivefold twin centres. Diam. Relat. Mater. 2000, 9(3-6): 346-50.
    [112] Yagi K, Takayanagi K, Kobayashi K, Honjo G. In-situ observations of growth processes of multiply twinned particles. J. Cryst. Growth 1975, 28:117-24.
    [113] Hofmeister H. Habit and internal structure of multiply twinned Gold particles on silver bromide film. Thin Solid Films 1984, 116: 151-62.
    [114] Marks LD. Experimental studies of small particle structures. Rep. Prog. Phys. 1994, 57: 603-49.
    [115] Hofmeister H. Forty years study of fivefold twinned structures in small particles and thin films. Cryst. Res. Technol. 1998, 33(1):3-25.
    [116] Li BQ, Zuo JM. Structure and shape transformation from multiply twinned particles to epitaxial nanocrystals: importance of interface on the structure of Ag nanoparticles. Phys. Rev. B 2005, 72: 085434-1-7.
    [117] Howie A, Markes LD. Elastic strains and the energy balance for multiply twinned particles. Phil. Mag. A. 1984, 49(1): 95-109.
    [118] Lu JP. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 1997, 79(77): 1297-300.
    [119] Keblinski P, Phillpot SR, Wolf D, Gleiter H. On the nature of grain boundaries in nanocrystalline diamond. Nanostruct. Mater. 1999, 12(1): 339-44.
    [120] Jiang Q, Li JC, Wilde G. The size dependence of the diamond-graphite transition. J. Phys. : Condens . Matter 2000, 12: 5623-7.
    [121] Ino S. Epitaxial growth of metals on rocksalt faces cleaced in vacuum.Ⅱ. Orientation and structure of gold particles formed in ultrahigh vacuum. J. Phys. Soc. Japan 1966, 21(2): 346-62.
    [122] Iijima S., Direct observation of the tetrahedral bonding in graphitized carbon black by high-resolution electronmicroscopy, J. Cryst. Growth, 1980, 50(3): 675~683
    [123] Cui S., Scharff P., Siegmund C. et al, Formation and subsequent inclusion of fullerene-like nanoparticles in nanocomposite carbon thin film, Carbon, 2004, 42: 1651~1656
    [124] Lange H., Sioda M., Huczko A. et al, Nanocarbon production by arc discharge in water, Carbon, 2003, 41: 1617~1623
    [125] Sano N., Wang H., Alexandrou I. et al, Properties of carbon onions produced byan arc discharge in water, J. Appl. Phys., 2002, 92(5): 2783-2789
    [126] Sano N., Wang, H., Chhowalla M et al, Synthesis of carbon onions in water, Nature, 2001, 414(29): 506-507
    [127] Noriaki S., Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benezene, Materials Chemistry and Physics, 2004, 88: 235~238
    [128] Tomita S, Burian S, Dore J. C. et al, Diamond nanoparticles to carbon onions transformation: X-ray diffraction studies, Carbon, 2002, 40: 1469~1474
    [129] Gubarevich A. V., Kitamura J., Usuba S et al, Onion-like carbon deposition by plasma spraying of nanodiamond, Carbon, 2003, 41: 2601~2606
    [130] Dubrovsky R., Bezmelnitsyn V, Eletskii, Plasma fullerene production from powdered carbon black, Carbon, 2004, 42: 1063~1066
    [131] Cabioc’h T., Jaouen M, Thune E. et al, Carbon onions formation by high-dose carbon ion implantation into copper and silver, Surface and Coating Technology, 2000(128-129): 43-50
    [132]李天保,王晓敏,张艳等,纳米结构洋葱状富勒烯的CCVD法制备,电子显微学报,2004,23(4):384
    [133]杨杭生,张孝彬,陈抗生等,一种生长巴基洋葱的新方法-射频CVD法,化学物理学报,1999,12(6):646-650
    [134] Sano N, Akazawa H, Kikuchi T et al, Separated synthesis of iron-included carbon nanoparticles and nanotubes by pyrolysis of ferrocene in pure hydrogen, Carbon, 2003, 41: 2159~2179
    [135] Vander Wal R. L., Tomasek A. J., Synthesis, laser processing, and flame purification of nanostructured carbon, Nano Letters, 2003, 3(2): 223-229
    [136] Lee D., Yang, S., Choi M., Controlled formation of nanoparticles utilizing laser irradiation in a flame and their characteristics, Appl. Phys. Lett., 2001, 79(15): 2459-2462
    [137] Choi M., Altman, I. S., Kim Y.-J. et al, Formation of shell-shaped carbon nanoparticles above a critical laser power in irradiated acetylene, Advanced Materials, 2004, 16(19): 1721~1725.
    [138] Altman I.S., Choi M., Analysis of the mechanism of the critical transition in irradiated acetylene that leads to generation of shell-shaped carbon nanoparticles, Carbon, 2005, 43: 2693-2700
    [139] Gorelik T, Urban S, Falk F et al, Carbon onions produced by laser irradiation of amorphous silicon carbide, Chemical Physics Letters, 2003, 373: 642~645
    [140] Huh S. H., Nakajima A., Laser synthesis and magnetism of amorphous iron and cobalt carbide nanoparticles with carbon onion, J. Appl. Phys., 2006, 99: 064302-1-5
    [141] Liu Y, Vander Wal R L, Khabashesku V N, Functionalization of carbon nano-onions by direct fluorination, Chem. Mater., 2007, 19: 778~786
    [142] Rettenbacher A S, Elliott B, Hudson J S et al, Preparation and functionalization of multilayer fullerenes(Carbon nano-onions), Chem. Eur. J. 2006, 12: 376~387
    [143] Georgakilas V, Guldi D M, Signorini R et al, Organic functionalization and optical properties of carbon onions, J. Am. Chem. Soc., 2003, 125: 14268~14269
    [144] Rettenbacher A S, Perpall MW, Echegoyen L et al, Radical addition of a conjugated polymer to multilayer fullerenes (carbon nano-onions), Chem. Mater., 2007, 19: 1411~1417
    [145] Gao XH, Cui YY, Levenson RM et al, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 2004, 22(8): 969-76.
    [146] Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271: 933-37.
    [147] Li FZ, Ruckenstein E. Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 2004, 4(8): 1463-7.
    [148] Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Fertig N, Parak WJ. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 2005, 5(2): 331-8.
    [149] Sun Y-P, Zhou B, Lin Y et al, Quantum-sized carbon dots for bright and colourful photoluminescence, J. Am. Chem. Soc. 2006, 128: 7756~7757
    [150] Zhou J, Booker C., Li R. et al, An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs), J. Am. Chem. Soc. 2007, 129: 744~745
    [151] Liu H, Ye T, Mao C, Fluorescent carbon nanoparticles derived from candle soot, Angew. Chem. Int. Ed., 2007, 46: 6473~6475
    [152] Yu S.-J., Kang M-W, Chang H.-C. et al, Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity, J. Am. Chem. Soc., 2005, 127: 17604-17605
    [153] Fu C.-C., Lee H.-Y., Chen K. et al, Characterization and application of singlefluorescent nanodiamonds as cellular biomarkers, P Natl. Acad Sci. U.S.A. 2007, 104: 727-732
    [154] Gruber A., Dr?benstedt A, Tietz C. et al, Scanning confocal optical microscopy and magnetic resonance on single defect centers, Science, 1997, 276: 2012~2014
    [155]梁勇,冯钟潮.激光制备纳米材料·膜及应用.北京:化学工业出版社,2006. 1-3
    [156] Ferro S, Battisti A. D., The 5-V window of polarizability of fluorinated diamond electrodes in aqueous solutions, Anal. Chem. 2003, 75: 7040~7042
    [157] Wang G. T., Bent S. F., Russell J. N. et al, Functionalization of diamond(100) by diels-alder chemistry, J. Am. Chem. Soc., 2000, 122, 744~745
    [158] Liu Y, Khabashesku V N, Halas N. J. et al, Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface, J. Am. Chem. Soc., 2005, 127: 3712~3713
    [159] Liu Y, Gu Z., Margrave J. L. et al, Functionalization of nanoscale diamond powder: Fluoro-, Alkyl-, Amino-, and Amino Acide-nanodiamond derivatives, Chem. Mater. 2004, 16: 3924~3930
    [160] Li L, Davidson J. L., Lukehart C. M., Surface functionalization of nanodiamond particles via atom transfer radical polymerization, Crabon, 2006, 44: 2308-2315
    [161] Miller J. B., Brown D. W., Photochemical modification of diamond surfaces, Langmuir 1996, 12: 5809~5817
    [162] Yang W, Auciello O, Butler, J. E. et al, DNA-modified nanocrystalline diamond thin films as stable, biologically active substrates, Nature Materials, 2002, 1: 253~257
    [163] Ogale S B, Patil P P, Phase D M, Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces, Phys Rev B, 1987,36(16):8237~8241
    [164] Houska C.R., Warren B.E., X-ray studies of the graphitization of carbon black. J Appl. Phys., 1954, 25:1503~1509
    [165] Jawhari T., Roid A., Casado J., Raman spectroscopic characterization of some commercially available carbon black materials, Carbon, 1995, 33: 1561~1565
    [166] Tuinstra F., Koenig J. L., Raman spectrum of graphite. Journal of Chemical Physics, 1970, 53:1126~1130
    [167] Sadezky, A., Muckenhuber H., Grothe H. et al, Raman microspectroscopy ofsoot and related carbonaceous materials: spectral analysis and structural information, Carbon, 2005, 43: 1731~1742
    [168] Huang SM, Sun Z, Lu YF et al, Ultraviolet and visible raman spectroscopy characterization of chemical vapour deposition diamond films, Surface and Coatings Technology, 2002(151~152): 263~267
    [169] Prawer S, Nugent K W, Jamieson D N et al, The raman spectrum of nanocrystalline diamond, Chemical Physics Letters, 2000, 332: 93~97
    [170]中华人民共和国国家质量监督检验检疫总局,GB/T 13221-2004,中华人民共和国国家标准,北京:中国标准出版社,2004-09-29
    [171]文潮,李讯,孙德玉等,纳米金刚石颗粒粒度的测量,西安交通大学学报,2003,37(9): 984~985
    [172] Musella M., Ronchi C., Brykin M., The molten state of graphite: an experimental study, J. Appl. Phys., 1998, 84(5): 2530-2537
    [173] Savvatimskiy A. I., Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963-2003), Carbon, 2005, 43: 1115~1142
    [174]林奎,激光辐照石墨悬浮液的温度压力计算,硕士学位论文,天津大学,2007。
    [175] Badziag P, Verwoerd W S, Ellis W P et al, Nanometre-sized diamonds are more stable than graphite, Nature, 1990, 343: 244~245
    [176]Barnard A S, Russo S P, Snook I K, Size dependent phase stability of carbon nanoparticles nanodiamond versus fullerenes, J. Chem. Phys., 2003, 118(11): 5094~5097
    [177] Winter N W, Ree, F H, Carbon particle phase stability as a function of size, Journal of Computer-Aided Materials Design, 1998, 5: 279~294
    [178] Gusarov A V, Gnedovets A G, Smurov I, et al, Simulation of nanoscale particles elaboration in laser-produced erosive flow, Appl. Sur. Sci., 2000, 154-155: 331-336.
    [179] Whittaker A G, Carbon: a new view of its high-temperature behaviour. Science, 1978, 200(4343): 763
    [180] Wang C X, Yang G W, Thermodynamics of metastable phase nucleation at the nanoscale, Materials Science and Engineering R 2005, 49: 157~202
    [181] Jiang Q, Li J C, Wilde G, The size dependence of the diamond-graphite transition, J. Phys.: Condens. Matter, 2000, 12: 5623~5627
    [182] Wang C. X., Yang Y H, Xu N S et al, Thermodynamics of diamond nucleation on the nanoscale, J. Am. Chem. Soc., 2004, 126: 11303~11306
    [183] Zhao D S, Zhao M, Jiang Q, Size and temperature dependence of nanodiamond-nanographite transition related with surface stress, Diamond and Related Materials, 2002, 11: 234~236
    [184] Zhang C Y, Wang C X, Wang J B et al, Homogeneous nucleation of diamond in the gas phase : a nano-scale thermodynamic approach, Carbon, 2004, 42: 585~590
    [185] Zhang C Y, Wang C X, Yang Y H et al, A nanoscaled thermodynamic approach in nucleation of CVD diamond on nanodiamond surfaces, J. Phys. Chem. B, 108, 2589~2593
    [186] Barnard A S, Russo S P, Snook I K, Structural relaxation and relative stability of nanodiamond morphologies, Diamond and Related materials, 2003, 12: 1867~1872
    [187] Quchi, A.; Tsunoda, T.; Bastl, Z. et al, Solution photolysis of ferrocene into Fe-based nanoparticles, J. Photoch. Photobio. A, 2005, 171, 251~256.
    [188] Stankovich, S.; Piner, R.D.; Chen, X. et al, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), J. Mater. Chem., 2006, 16: 155~158
    [189] Ago, H.; Kugler, T.; Cacialli, F. et al, Work functions and surface functional groups of multiwall carbon nanotubes, J. Phys. Chem. B, 1999, 103, 8116~8121.
    [190] Pinault M, Mayne-L’Hermite M, Reynaud C et al, Growth of multiwalled carbon nanotubes during the initial stages of aerosol-assisted CCVD, Carbon, 2005, 43: 2968~2976
    [191] Kerber S J, Bruckner J J, Wozniak K et al, The nature of hydrogen in x-ray photoelectron spectroscopy general patterns from hydroxides to hydrogen bonding, J. Vac. Sci. Technol. A, 1996, 14(3): 1314~1320
    [192] Nagano Y, Gouali M, Monjushiro H. et al, Air oxidation of carbon soot generated by laser ablation, Carbon, 1999, 37: 1509~1515
    [193] Hueso J L, Espinós J P, Caballero A et al, XPS investigation of the reaction of carbon with NO, O2, N2, and H2O plasmas, Carbon, 2007, 45: 89~96
    [194] Michelsen H. A., Understanding and predicting the temporal response oflaser-induced incandescence from carbonaceous particles, J. Chem. Phys., 2003, 118(15): 7012~7045
    [195] Fried L. E., Howard W. M., Explicit gibbs free energy equation of state applied to the carbon phase diagram, Phys, Rev. B, 1999, 8734~8743
    [196] Chen H. X., Dobbins R. A., Crystallogenesis of particles formed in hydrocarbon combustion, Combusion Science and Technology, 2000, 159(1): 109~128
    [197] Ugarte D., High-temperature behaviour of fullerence black, Carbon, 1997, 32(7): 1245~1248
    [198] Wang B-C, Wang H-W, Chang J-C et al, More spherical large fullerences and multi-layer fullerence cages, Journal of Molecular Structure: theochem, 2001, 540(1-3,4): 171-176
    [199] Vander Wal R L, Choi M Y, Pulsed laser heating of soot: morphological changes, 1999, 37(2): 231~239
    [201] Wu C.H., Mazanowski U., Martin J.M. L., The impact of larger clusters formation C1, C2 , C3 , C4, C5 and C6 on the rates of carbon sublimation at elevated temperatures, Journal of Nuclear Materials, 1998, 258-263: 782~786
    [202] Du Z., Sarofim A. F., Longwell J. P., Kinetic measurement and modelling of carbon oxidation, Energy & fuels, 1991, 5: 214~221
    [203] Gozzi D, Guzzardi G, Salleo A, High-temperature reactivity of different forms of carbon at low-oxygen fugacity, Solid State Ionics, 1996, 83(3-4): 177~189
    [204] Chen J, Hamon M A, Hu H et al, Solution properties of single-walled carbon nanotubes, Science, 1998, 282(2): 95~98
    [205] Sun C Q, Size dependence of nanostructures: impact of bond order deficiency, Progress in Solid State Chemistry, 2007, 35: 1~159
    [206] Xu C, Zipfel W, Shear J B et al, Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy, Proc. Natl. Acad. Sci. USA, 1996, 93: 10763?10768
    [207] Larson D R, Zipfel W R, Williams, R M et al, Water-soluble quantum dots for multiphoton fluorescence imaging in vivo, Science, 300(30): 1434~1436
    [208] Zipfel W R, Williams R M, Webb W W, Nonlinear magic: multiphoton microscopy in the biosciences, Nature Biotechnology, 2003, 21(11): 1369~1377
    [209] Helmchen F, Denk W, Deep tissue two-photon microscopy, Nature Methods, 2005, 2(2):932~940
    [210] Cao D X, Fang Q, Wang D et al, Synthesis and two-photon-excited fluorescenceof benzothiazole-based compounds with variousл-electron donors, Eur. J. Org. Chem., 2003, 3628~3636
    [211] Pu S-C, Yang M-J, Hsu C-C et al, The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots, Small, 2006, 2(11): 1308~1313
    [212] Lakowicz, R. Z. Principles of fluorescence spectroscopy (2nd Ed), Klumer Academic/Plenum Publisher: New York, 1999
    [213] Xu X, Ray R, Gu Y et al, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc., 2004, 126, 12736~12737
    [214] Cao, L, Wang X, Meziani M J et al, Carbon dots for multiphoton bioimaging, J. Am. Chem. Soc., 2007, 129: 11318~11319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700