在GMA/MMA微球表面同步合成与固载钴卟啉及其催化氧化特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属卟啉化合物能模拟细胞色素P-450,温和条件下活化分子氧,高效、高选择性地实现烃类物质的催化氧化,尤其是聚合物固载金属卟啉的催化氧化作用备受关注。本研究构思了一条制备聚合物固载金属卟啉催化剂的新途径:通过固-液间的Adler反应,实现卟啉在甲基丙烯酸缩水甘油酯(GMA)与甲基丙烯酸甲酯(MMA)的交联聚合物微球GMA/MMA表面的同步合成与固载,进而与金属钴配位,制得了固载化钴卟啉催化剂,深入地考察其对分子氧氧化乙苯以及β-萘酚的催化活性,本文的研究结果在非均相金属卟啉仿生催化剂领域具有明显的科学价值。
     本文首先采用悬浮聚合法制备了交联共聚微球GMA/MMA,由于微球表面含有大量的环氧基团,通过开环成醚反应,可将对羟基苯甲醛(HBA)顺利地键合在微球表面,制得改性微球HBA-GMA/MMA。考察了各种因素(温度、溶剂、投料比等)对化学改性过程的影响。研究结果表明,对羟基苯甲醛本身是一种Br?nsted酸,无需加入催化剂即可顺利地进行环氧键的SN2亲核取代反应;采用极性较强的溶剂并升高温度有利于改性反应的进行。在改性反应中,以DMF为溶剂,当微球表面环氧基团与HBA的摩尔投料比为1:1.8,在110℃下反应12小时可得到键合量为0.21g/g的改性微球。
     以改性微球HBA-GMA/MMA、吡咯、苯甲醛(或取代苯甲醛)为共反应物,采用固-液之间的Adler反应,使卟啉的合成与固载同步进行,成功制得了固载有苯基卟啉、对氯苯基卟啉与对硝基苯基卟啉的三种功能微球PP-GMA/MMA、CPP-GMA/MMA、NPP-GMA/MMA。重点研究了各种因素对同步合成与固载过程的影响规律。实验结果表明,溶剂的极性、催化剂的酸性以及苯甲醛衍生物的结构是主要的影响因素,选择较高的温度(130℃)、使用极性强的溶剂(二甲亚砜)与pKa在3.0-3.9范围的酸(乳酸),反应7h可制得卟啉固载量为7.86g/100g的功能微球。并且,在三种卟啉功能化共聚物中,采用对氯苯甲醛合成CPP-GMA/MMA是最易进行的,而采用对硝基苯甲醛合成NPP-GMA/MMA则最为困难。
     在实现卟啉的同步合成与固载后,实施了固载卟啉的微球与钴盐的配合反应,制备了固载有钴卟啉的三种固体催化剂CoPP-GMA/MMA、CoCPP-GMA/MMA、CoNPP-GMA/MMA,采用原子吸收光谱法测定了固体催化剂表面的钴含量。将其用于分子氧对乙苯的催化氧化,并考察了主要因素对催化活性的影响。实验结果表明,钴卟啉固体催化剂能有效地活化分子氧,具有优良的催化活性与选择性,120℃常压下通氧气反应12h,苯乙酮的得率可达21.5%。作为仿生催化剂的钴卟啉,过量的加入反而会抑制催化活性,且固载密度越小,催化活性越高;具有良好的重复使用性能。三种固体催化剂相比较,在芳环上具有强吸电子取代基硝基的CoNPP-GMA/MMA催化活性最高。
     采用三种固载钴卟啉为催化剂,在碱性甲醇溶液中以分子氧为氧化剂,实施了将β-萘酚氧化为2-羟基-1,4-萘醌(HNQ)的反应过程。实验结果表明,常压下于0℃通氧气反应2.5h,当氢氧化钠用量为5.0g且催化剂用量为0.231g时,可高选择性地合成HNQ,最高产率达30%。研究中发现,氢氧化钠对β-萘酚催化氧化反应起着重要作用,本身虽不起催化作用,但可以加快反应速率;在催化氧化体系中,苯基卟啉催化剂的苯环上取代基种类对其催化活性有很大的影响,具有斥电子的取代基反而能显著提高金属卟啉的催化氧化性能,有利于催化活性。
As models of cytochrome P-450, metalloporphyrins have been used to oxidate hydrocarbons with molecular oxygen under mild conditions. Especially, the catalytic oxidation of polymer immobilized metalloporphyrins has been paid more attention to. A new preparation method of metalloporphyrins catalyst has been designed in this paper, succeeding in realizing synchronistic synthesis and immobilization of porphyrins on crosslinked microspheres GMA/MMA via the Adler reaction. Then reacted with cobalt, producing cobalt porphyrins. The polymer-supported catalyst was used in the catalytic oxidation of ethyl benzene andβ-Naphthol with molecular oxygen as oxidant, and some valuable research results for the field of heterogeneous biomimetic catalyst were found.
     Firstly, the crosslinked copolymer microspheres GMA/MMA were prepared in a suspension polymerization system. The microspheres were chemically modified using p-hydroxyl benzaldehyde (HBA) as reagent via the ring-opening reaction of the epoxy groups on the surface of microspheres, resulting in the modified microspheres HBA-GMA/MMA on which HBA was chemically bound. The effects of main factors such as reaction temperature, solvent variety and the feed ratio on the modification reaction were investigated emphatically. The experimental results show that p-hydroxyl benzaldehyde is a Br?nsted acid itself, and it can effectively be bound onto the surface of microspheres without the addition of catalyst via SN2 nucleophilic substitution reaction. It is advantageous to the modification reaction to use the solvent with stronger polarity and enhance temperature. In the modification reaction, a maximum bonding capacity of 0.21g/g of the modified microspheres can be achieved with DMF as the solvent, the feed ratio of epoxy group to HBA as 1:1.8 at 110℃under 12 hours.
     Subsequently, Adler reaction was performed at the interface of solid/solution by using microspheres HBA-GMA/MMA, derivant of benzaldehade and pyrrole in solution as co-reactants, so that the synchronistic synthesis and immobilization of porphyrins on the microspheres GMA/MMA were realized successfully, resulting in porphyrin- supported microspheres PP-GMA/MMA, CPP-GMA/MMA and NPP-GMA/MMA. In this investigation, the effects of the main factors on the process of synchronistic synthesis and immobilization of porphyrins were studied. The experimental results show that the acidity of the catalysts, the polarity of the solvents and substituent on phenyl porphyrins affect the reaction greatly. As the temperature is 130℃, the stronger polarity solvent DMSO and catalyst with a pKa value in the region of 3.0-3.9 is used, the porphyrin microspheres with a higher immobilization amount of 7.86g/100g will be obtained. In comparison, the synthesis of CPP-GMA/MMA using chlorobenzaldehyde is carried out most easily, while the synthetic NPP-GMA/MMA using nitrobenzaldehyde most difficult.
     Via the coordination reaction between the functional microspheres and cobalt salt, polymer-supported cobaltporphyrins CoPP-GMA/MMA、CoCPP-GMA/MMA and CoNPP-GMA/MMA were prepared. The cobalt content of solid catalyst was determined by the atomic absorption spectrometry. The catalytic activities of the solid catalysts were tested in the catalytic oxidation reaction of ethyl benzene by dioxygen, and the main factors on the catalytic activity were studied. The experimental results show that the cobaltporphyrin catalyst can effectively activate dioxygen, has excellent catalytic activity and fine selectivity. The yield of acetophenone at ordinary pressure of oxygen and 120℃in 12h can get up to 21.5%. As the biomimetic catalyst, excess addition will inhibit the catalyst activity; the smaller the immobilization density on the surface of microspheres, the higher the catalyst activity is; and the catalyst has a good reuse performance. In comparison, the catalytic activity of CoNPP-GMA/MMA is the highest. Using the solid catalysts on which cobaltporphyrins (CoP) were loaded as catalyst, the catalytic oxidation ofβ-Naphthol to 2-hydroxy-1,4-naphthoquinone was performed in methanol solution of NaOH, and with molecular oxygen as oxidant. The experimental results show that as the amount of NaOH is 5.0g and the used amount of cobaltporphyrin is 0.231g, the product nearly is 2-hydroxy-1,4-naphthoquinone, and the yield can get up to 30%. It is found that sodium hydroxide plays an important role, though not as a catalyst itself, but it can accelerate the reaction rate; In the catalytic oxidation system, the substituent types on phenyl porphyrin affect the reaction greatly, the catalytic activity of metalloporphyrin can be significantly improved with the exclusion of the electron substituents and thus a higher yield.
引文
[1] Dolphin, D. The porphyrins[M]. Academic press: New York, 1978: 79.
    [2] Meunier, B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage[J]. Chemical Reviews. 1992, 92(6): 1411-1456.
    [3] Po?towicz, J.; Pamin, K.; Haber, J. Influence of manganese tetraarylporphyrins sub- stitutents on the selectivity of cycloalkanes oxidation with magnesium monoperoxy- phthalate[J]. Journal of Molecular Catalysis A: Chemical. 2006, 257(1-2): 154-157.
    [4]佘远斌,王兰芝,宋旭锋,等.金属卟啉类仿生催化剂的合成、构效关系及在催化氧化碳氢化合物中的应用[J].精细化工. 2005, 22(6): 401-408.
    [5]刘育,尤长城,张衡益.超分子化学[M].天津:南开大学出版社, 2001: 131.
    [6] Adler, A.D.; Longo, F.R. A simplified synthesis for meso-tetra-phenylporphin[J]. Journal of Organic Chemistry. 1967, 32: 476.
    [7] Rothemund, P. A new porphyrin synthesis[J]. Journal of the American Chemical Society. 1936, 58: 625.
    [8] Wagner, R.W.; Lawrence, D.S.; Jonathan, S; et al. An improved synthesis of tetra- mesiporphyrin[J]. Tetrahedron Letters. 1987, 28: 3069-3070.
    [9]雷裕武,郭灿城,曾得璋.取代四苯基卟啉的催化合成[J].化学试剂. 1994, 16(2): 105-106.
    [10] Kim, J.B.; Leonard, J.J.; Longo, F.R. Mechanistic study of the synthesis and spec- tral properties of meso-tetraarylporphyrins[J]. Journal of the American Chemical Society. 1972, 94(11): 3986-3992.
    [11]王莉红,汤福隆,陈恒武.芳醛上的取代基对卟啉的合成及其性质的影响[J].分析化学. 1993, 21(6): 665-668.
    [12] Collman, J.P.; Venteicher, R.F.; Spliburg, C.A.; et al. Oxidation of Ruthenium(III) porphyrins crystal structures of u-oxo-bis[p-methy(phenoxo) (meso-tetrapheny (porphyrinato)-Ruthenium(IV)]and ethoxo(meso-tetrapheny(porphyrinato)-lethanol) Ruthenium(III)-bisethanol [J]. Journal of the American Chemical Society. 1984,106:5152-5163.
    [13]程海斌,潘志权,任建国,等.两种新型水溶性卟啉的合成、表征及其酸碱平衡[J].化学世界. 1991, 13(5): 280-282.
    [14] Higgins, R.W.T.; Monkman, A.P.; Nothofer, H.G.;et al. Energy transfer to porphyrin derivative dopants in polymer light-emitting diodes[J]. Applied Physics Letters. 2002, 91(1): 99-105.
    [15] Li, B.; Li, J.; Fu, Y.; et al. Porphyrins with Four Monodisperse Oligofluorene Arms as Efficient Red Light-Emitting Materials[J]. Journal of the American Chemical Society. 2004, 126(11): 3430-3431.
    [16]谢腾峰,王德军,王瑛,等.四甲基-四乙基钯卟啉的表面光伏特性[J].高等学校化学学报. 1999, 20(16): 937-940.
    [17] Guo, C.C.; Liu, X.Q.; Liu, Y.; et al. Studies of simpleμ-oxo-bisiron(III)porphyrin as catalyst of cyclohexane oxidation with air in absence of cocatalysts or coreductants[J]. Journal of Molecular Catalysis A: Chemical. 2003, 192: 289-294.
    [18]傅伟昌,彭清静,欧阳玉祝. TPPMnCl催化空气直接氧化乙苯的研究[J].化学研究与应用. 2002, 14(2): 237-238.
    [19]祖凤华,刘彦钦,韩士田.四氯苯基卟啉锰配合物催化苯乙烯不对称环氧化反应[J].应用化学. 2002, 19(2): 184-186.
    [20]周贤太,纪红兵,裴丽霞,等.金属卟啉催化剂应用于均相氧化反应的研究进展[J].有机化学. 2007, 27(9): 1039-1049.
    [21] Yan,Y.; Kang, E.H.; Yang, K.E.; et al. High activity in selective catalytic oxidation of naphthol to 2-hydroxy-1,4-naphthoquinone by molecular oxygen under air pressure over recycled iron porphyrin catalysts[J]. Catalysis Communications. 2004, 5(8):387-390.
    [22]李臻,景震强,夏春谷.金属卟啉配合物的催化氧化应用研究进展[J].有机化学. 2007, 27(1): 34-44.
    [23] Melo, A.J.B.; Iamamoto, Y.; Maestrin, A.P.J.; et al. Biomimetic oxidation of prazi- quantel catalysed by metalloporphyrins[J]. Journal of Molecular Catalysis A:Chemical. 2005, 226(1): 23-31.
    [24] Nasr-Esfahani,M.; Moghadam,M.; Tangestaninejad,S.; et al. Biomimetic oxidation of Hantzsch 1,4-dihydropyridines with tetra-n-butylammonium periodate catalyzed by tetraphenylporphyrinatomanganese(III) chloride [Mn(TPP)Cl] [J]. Bioorganic & Medicinal Chemistry Letters. 2005, 15(13): 3276-3278.
    [25] Dorota, R.Z.; Malgorzata, W. Following nature-theoretical studies on factors mod- ulating catalytic activity of porphyrins[J]. Journal of Molecular Catalysis A: Chemical. 2006, 258: 376-380.
    [26] Paulson, D.R.; Ullman, R.; Sloane, R.B.; et al. Catalysis of autoxidation by metal- loporphyrins[J]. Journal of the Chemical Society, Chemical Communications. 1974, (5): 186-187
    [27] Groves, J.T.; Kruper, W.J.; Nemo, T.E.; et al. Hydroxylation and expoxidation reactions catalyzed by synthetic metalloporphyrinates-models related to the active oxygen species of cytochrome P-450[J]. Journal of Molecular Catalysis A: Chemical. 1980, 7(2): 169-177.
    [28] Rebelo, S.L.H.; Sim?es , M.M.Q.; Neves, M.G.P.M.; et al. Oxidation of alkyl- aromatics with hydrogen peroxide catalysed by manganese(III) porphyrins in the presence of ammonium acetate[J]. Journal of Molecular Catalysis A: Chemical. 2003, 201(1-2): 9-22.
    [29] Rismayani, S.; Fukushima, M.; Sawada, A.; et al. Effects of peat humic acids on the catalytic oxidation of pentachlorophenol using metalloporphyrins and metallo- phthalocyanines[J]. Journal of Molecular Catalysis A: Chemical. 2004, 217(1-2): 13-19.
    [30] Ferreira, A.D.Q.; Vinhado, F.S.; Lamamoto, Y. Characterization of Mn(III) porphyrin immobilized on modified silica surfaces by EXAFS spectroscopy: A promising tool for analysis of supported metalloporphyrin catalysts[J]. Journal of Molecular Catalysis A: Chemical. 2006, 243(1-2): 111-119.
    [31] Fu, B.; Yu, H.C.; Huang, J.W.; et al. Mn(III) porphyrins immobilized on magneticpolymer nanospheres as biomimetic catalysts hydroxylating cyclohexane with molecular oxygen[J]. Journal of Molecular Catalysis A: Chemical. 2009, 298(1-2): 74-80.
    [32] Smith, J.R.L.; Lamamoto, Y.; Vinhado, F.S. Oxidation of alkanes by iodosyl- benzene (PhIO) catalysed by supported Mn(III) porphyrins: Activity and mecha- nism[J]. Journal of Molecular Catalysis A: Chemical. 2006, 252(1-2): 23-30.
    [33] Vinhado, F.S.; Prado-Manso, C.M.C.; Sacco, H.C.; et al. Cationic manganese(III) porphyrins bound to a novel bis-functionalised silica as catalysts for hydrocarbons oxygenation by iodosylbenzene and hydrogen peroxide[J]. Journal of Molecular Catalysis A: Chemical. 2001, 174: 279-288.
    [34] Rebelo, S.L.H.; Gon?alves, A.R.; Pereira, M.M.; et al. Epoxidation reactions with hydrogen peroxide activated by a novel heterogeneous metalloporphyrin catalyst[J]. Journal of Molecular Catalysis A: Chemical. 2006, 256: 321-323.
    [35]李守贵,房铭,庞文琴,等.钌卟啉/MCM-41催化剂的制备、表征及性质[J].催化学报. 1999, 20(2): 161-165.
    [36] Nakagaki, S.; Benedito, F.L.; Wypych, F. Anionic iron(III) porphyrin immobilized on silanized kaolinite as catalyst for oxidation reactions[J]. Journal of Molecular Catalysis A: Chemical. 2004, 217: 121-131.
    [37] Brulé, E.; Miguel, Y.R.; Hiic, K.K. Chemoselective epoxidation of dienes using polymersupported manganese porphyrin catalysts[J]. Tetrahedron. 2004, 60: 5913- 5918.
    [38] Moghadam, M.; Tangestaninejad, S.; Habibi, M.H.; et al. A convenient preparation of polymer-supported manganese porphyrin and its use as hydrocarbon monooxygenation catalyst[J]. Journal of Molecular Catalysis A: Chemical. 2004, 217 (1-2): 9-12.
    [39] Mukherjee, M.; Alok, R. Biomimetic oxidation of l-arginine with hydrogen per- oxide catalyzed by the resin-supported iron (III) porphyrin[J]. Journal of Molecular Catalysis A: Chemical. 2007, 266(1-2): 207-214.
    [40] Viana, I.L.; Manso, C.M.C.P.; Serra, O.A.; et al. Biomimetical catalytic activity of iron(III)/porphyrins encapsulated in the zeolite X[J]. Journal of Molecular Catalysis A: Chemical. 2000, 160: 199-208.
    [41]王旭涛,褚明福,郭灿城.咪唑修饰硅胶配位固载锰(Ⅲ)卟啉对环己烷空气氧化的催化作用[J].高等学校化学学报. 2005, 26(1): 64-67.
    [42] Benaglia, M.; Danelli, T.; Fabris, F.; et al. Poly(ethylene glycol)-supported tetra- hydroxyphenyl porphyrin: A convenient recyclable catalyst for photooxidation reactions[J]. Organic Letters. 2002, 4: 4229-4232.
    [43] Balasubramaniam, E.; Natarajan, P. Photophysical properties of protoporphyrin IX and thionine covalently attached to macromolecules[J]. Journal of Photochemistry and Photobiology A: Chemistry. 1997, 103: 201-211.
    [44]任红霞,卢小泉,王云普.高分子键联金属卟啉的合成及催化性能[J].应用化学. 2005, 22:259-263.
    [45] Yu, X.Q.; Huang, J.S.; Yu, W.Y.; et al. Polymer-supported Ruthenium porphyrins: versatile and robust epoxidation catalysts with unusual selectivity[J]. Journal of the American Chemical Society. 2000, 122: 5337-5342.
    [46] Kamachi, M.; Cheng, X.S.; Aota, H.; et al. Preparation and properties of magne- tically interacting polymer with Copper(Ⅲ) and Vanadyl(Ⅱ) poporphyrins[J]. Chemistry Letters. 1987, 16(12): 2331-2334.
    [47] Guillet, J.E.; Takahashi, Y.; McIntosh, A.R.; et al. A new polymeric model for the active site in artificial photosynthesis[J]. Macromolecules. 1985, 18(9): 1788-1790.
    [48] Nestler, O.; Severin, K.A. Ruthenium porphyrin catalyst immobllized in a highly cross-linked polymer[J]. Organic Letters. 2001, 3(24): 3907-3909.
    [49] Mori, T.; Santa, T.; Hirobe, M. Synthesis and cytochrome P-450-like reactivity of polypeptide-bound porphinatoiron(Ⅲ)[J]. Tetrahedron Letters. 1985, 26(45): 5555- 5558.
    [50] Nowakowska, M.; Karewicz, A.; Kloe, M.; et al. Synthesis and properties of water soluble poly(sodium styrenesulfonate-block-5-(4-acryloy-loxyphenyl)-10,15,20-tritolylporphyrin) by nitroxide-mediated free radical polymerization[J]. Macromole- cules, 2003, 36(11): 4134-4139.
    [51] Kartal, F.; Akkaya, A.; Kilinc, A. Immobilization of porcine pancreatic lipase on glycidyl methacrylate grafted poly vinyl alcohol [J]. Journal of Molecular Catalysis B: Enzymatic. 2009, 57(1-4): 55-61.
    [52] Bicak, N.; Gazi, M.; Senkal, B.F. Polymer supported amino bis-(cis-propan 2,3 diol) functions for removal of trace boron from water[J]. Reactive and Functional Polymers. 2005, 65(1-2): 143-148.
    [53] Bai, Y.X.; Li, Y.F.; Wang, M.T. Study on synthesis of a hydrophilic bead carrier containing epoxy groups and its properties for glucoamylase immobilization[J]. Enzyme and Microbial Technology. 2006, 39(4): 540-547.
    [54] Hérault, D.; Saluzzo, C.; Duval, R.; et al. Enantiopure beads: a tool for asymmetric heterogeneous catalysis[J]. Journal of Molecular Catalysis A: Chemical. 2002, 182- 183: 249-256.
    [55] Atia, A.A.; Donia, A.M.; Shahin, A.E. Studies on the uptake behavior of a magnetic Co3O4-containing resin for Ni(II), Cu(II) and Hg(II) from their aqueous solutions [J]. Separation and Purification Technology. 2005, 46(3): 208-213.
    [56] Liu, C.K.; Bai, R.B.; Hong, L. Diethylenetriamine-grafted poly(glycidyl methacry- late) adsorbent for effective copper ion adsorption[J]. Journal of Colloid and Interface Science. 2006, 303(1): 99-108.
    [57] Babazadeh, M. Synthesis and study of controlled release of ibuprofen from the new acrylic type polymers[J]. International Journal of Pharmaceutics. 2006, 316(1-2): 68-73.
    [58]庄儒彬,高保娇.悬浮聚合法制备PGMA/MMA/EGDMA共聚物交联微球[J].过程工程学报. 2008, 8(5): 1013-1017.
    [59] Zhang, A.H.; Liu, K.; Wang, C.X.; et al. Theoretical study on the ring-opening hydrolysis reaction of cAMP[J]. Journal of Molecular Structure: Theochemistry. 2005, 719(1-3): 149-152.
    [60] Ribeiro, S.M.; Serra, A.C.; Gonsalves, A.M.D'A.R. Covalently immobilized por- phyrins as photooxidation catalysts [J]. Tetrahedron. 2007, 63(33): 7885-7891.
    [61] Halma, M.; Bail, A.; Wypych, F.; et al. Catalytic activity of anionic iron(III) por- phyrins immobilized on grafted disordered silica obtained from acidic leached chrysotile[J]. Journal of Molecular Catalysis A: Chemical. 2006, 243(1): 44-51.
    [62]张国海,高保娇,王蕊欣,等.在交联聚苯乙烯微球表面实现苯基卟啉的同步合成与固载[J].高等学校化学学报. 2009, 30(3): 607-612.
    [63]王君文,何明威.高纯度meso-四苯基卟啉的合成[J].化学试剂. 2001, 23(1):9-11.
    [64]章艳,高保娇,王蕊欣.固载MnP-PGMA/SiO2催化剂的制备及其对乙苯氧化反应的催化性能[J].催化学报. 2008, 29(3): 247-252.
    [65] Andrew, M.; Kurt, H. High-performance liquid chromatography of some naturally occurring naphthoquinones [J]. Journal of Chromatography A. 1984, 295: 526-529.
    [66] Brinkworth, R.I.; Fairlie, D.P. Hydroxyquinones are competitive nonpeptide inhi- bitors of HIV-1 proteinase[J]. Biochimicaet Biophysica Acta. 1995, 1253(1): 5-8.
    [67] Liu, S.T.; Reddy, K.V.; Lai, R.Y. Oxidative cleavage of alkenes catalyzed by a water/organic soluble manganese porphyrin complex[J]. Tetrahedron. 2007, 63(8): 1821-1825.
    [68] Yan, Y.; Xiao, F.S.; Zheng, G.D.; et al. Selective catalytic oxidation of naphthol to 2-hydroxyl-1,4-naphthoquinone by hydrogen peroxide over metallo-porphyrin catalysts[J]. Journal of Molecular Catalysis A: Chemical. 2000, 157: 65-72.
    [69]阎雁,佟珊玲,郭魁,等.金属卟啉催化氧化萘酚Ⅰ.2-羟基-1,4-萘醌的制备[J].应用化学. 1999, 16(4): 28-32.
    [70] Sotiriou, C.; Lee, W.; Giese, R.W. Superoxide oxidation: a novel route to aromatic 1,2-dicarboxylic acids [J]. Journal of Organic Chemistry. 1990, 55(7): 2159-2164.
    [71] Zheng, G.D.; Yan, Y.; Gao, S.; et al. The reaction mechanism of alkyl halides with carbon dioxide catalyzed by 5,10,15,20-tetraphenyl porphyrin cobalt (CoTPP)[J]. Electrochimica Acta. 1996, 41(1): 177-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700