含杂原子介孔材料的合成及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1992年Mobil公司首次合成M41S系列介孔分子筛以来,引起了研究者的广泛关注。由于纯硅M41S的离子交换能力小、酸含量低及强度低、水热稳定性差及催化活性低,限制了它们在催化领域的应用,因此合成高质量、高稳定、强酸性的M41S系列介孔分子筛,对介孔分子筛在催化领域的应用,具有重要的理论和现实意义。
     本文采用微波法和水热法合成出了不同Si/Zr摩尔比的Zr-MCM-41介孔分子筛,并详细考察了两种方法所合成样品的热稳定性和水热稳定性。结果表明,两种方法所合成的样品结构性能相似,相比于水热法,微波法合成大大缩短了其晶化时间;两种方法所合成样品都具有很高的稳定性,样品经100℃水热处理6d或750℃焙烧4h后,仍然具有有序的介孔结构。
     通过直接将氟化钠加入起始凝胶内,水热法合成出含Zr-MCM-48介孔分子筛。并考察了加入不同F-的量,不同温度,不同时间,不同Si/Zr摩尔比对合成样品结构性能的影响。热和水热稳定性表明所合成的Zr-MCM-48介孔分子筛经800℃焙烧4h或100℃水热处理24h后,立方介孔结构仍被保持。F-的加入有效缩短了其晶化时间并增强了其水热稳定性。
     采用合成含Zr-MCM-48的方法,合成出了不同Si/Co和Si/Al摩尔比的Co-MCM-48和Al-MCM-48介孔分子筛,并研究了Co-MCM-48的热稳定和水热稳定性。所合成的样品具有MCM-48典型的三维立方结构。在经过800℃焙烧4h或100℃水热处理12h后,样品介孔有序性变差,但仍然保持MCM-48的立方介孔结构。
     通过NH4NO3和H2SO4溶液修饰M-MCM-48(M=Zr, Al)后得到H-M-MCM-48和SO42-/M-MCM-48强酸性介孔分子筛。实验结果表明,经过NH4NO3和H2SO4溶液修饰,并未使样品的结构造成完全破坏;修饰后的样品仍具有MCM-48的三维立方结构;修饰后的样品比未经修饰的样品具有更多强酸中心。
     以H-M-MCM-48和SO42-/M-MCM-48强酸性介孔分子筛做催化剂对苯酚与叔丁醇烷基化反应催化性能进行了研究,考察了催化剂的种类,反应温度,反应时间对反应结果的影响。实验结果表明,H-Al-MCM-48的催化活性要高于其它催化剂;H-Al-MCM-48和SO42-/Zr-MCM-48在反应8h后,仍然保持着较高的催化活性,体现了较高的稳定性;在相同反应条件下,H-Al-MCM-48和SO42+/Zr-MCM-48展示了较H-Zr-MCM-48和SO/42-/Al-MCM-48更高的苯酚转化率和2,4-二叔丁基苯酚选择性。
A series of M41S mesoporous molecular sievs were firstly discovered by Mobil in 1992.However, pure silica M41S possesses some disadvantages such as small ion-exchange capacity, low catalytic activity, weak surface acidity and poor hydrothermal stability, which limited their application in catalytic reactions. Enhancing its practicability and improving its hydrothermal stability and catalytic activity seemed to be a more interesting task.
     Zr-MCM-41 mesoporous molecular sieves with different Si/Zr ratios were successfully synthesized by microwave irradiation method and hydrothermal method. The thermal and hydrothermal stabilities of the as synthesized samples were investigated.The results show that the textural properties of the samples syntheszed via novel microvave method are similar to that of the samples by traditional hydrothermal method.By comparing with hydrothermal method, the microwave irradiation method needs short crystallization time.The thermal and hydrothermal stability experimental results show that the samples obtained by two different methods have highly thermal and hydrothermal stabilities, the mesoporous framework still retain even after of the two Zr-MCM-41 mesoporous molecular sieves were calcined at 750℃for 4h or hydrothermal treated at 100℃for 6d.
     Zr-MCM-48 mesoporous molecular sieves were synthesized hydrothermal by directly adding fluoride ions to the initial gel.The influences of various factors, such as the amount of NaF addition, the Si/Zr molar ratios,crystallization temperature and crystallization time, on the crystalline structure and textural property of Zr-MCM-48 were investigated in detail.The thermal and hydrothermal stabilities results show that Zr-MCM-48 still maintains the Ia3d mesoporous structure after calcination at 800℃for 4h or hydrothermal treatment at 100℃for 24h.The addition of fluoride ions results in short crystallization time and highly hydrothermal stability.
     Co-MCM-48 and Al-MCM-48 mesoporus molecular sieves were prepared by the above method.The experimental results show that the as synthesized samples possess typical Ia3d cubic mesoporous structure of MCM-48.The thermal and hydrothermal stabilities of Co-MCM-48 mesoporous molecular sieves were also investigated.The results show that the Co-MCM-48 sample still maintains the Ia3d cubic mesoporous framework even after calcination at 800℃for 4h or hydrothermal treatment at 100℃for 12h.The mesoporous structure has completely collapsed after Co-MCM-48 was hydrothermal treated at 100℃for 24h, and the mesoporous ordering becomes poor.
     SO42-/M-MCM-48 and H-M-MCM-48 (M=Zr, Al) molecular sieve catalyst were prepared by the wet impregnation method with H2SO4 and NH4NO3 solution. Compared with M-MCM-48, the mesoporous ordering of SO42-/M-MCM-48 and H-M-MCM-48 becomes poor, but the cubic structure of MCM-48 still retains.The NH3-TPD profiles suggest the amount of the strong acid and weak acid for SO42-/M-MCM-48 and H-M-MCM-48 are obviously more than these for M-MCM-48.
     In the alkylation reaction of phenol with tert-butanol, the effects of the different catalysts, reaction temperature and reaction time on the reaction results were examined.The experimental results show that the phenol conversion is higher for the H-Al-MCM-48 than the other catalysts. In addition, the H-Al-MCM-48 and SO42-/Zr-MCM-48 catalyst still maintain higher catalytic activity and hydrothermal stability after alkylation reaction of phenol with tert-butanol for 8h. Compared with H-Zr-MCM-48 and SO42-/Al-MCM-48, we found that the catalytic activities of H-Al-MCM-48 and SO42-/Zr-MCM-48 were enhanced and exhibit higher catalytic activity in the phenol alkylation with tert-butanol under the same conditions.
引文
[1]Kresge C T, Leonowicz M E, Roth W J, et al.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.Nature.1992,359, 710-712.
    [2]Beck J S, Vartulli J C, Roth W J, et al.A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am.Chem.Soc.1992,114, 10834-10843.
    [3]Edle K J, White J W. Room-temperature formation of molecular sieve MCM-41. J. Chem. Soc. Chem. Commun.1995,155-156.
    [4]Wu C G,Bein T. Microwave synthesis of molecular sieve MCM-41.J. Chem. Soc. Chem. Commun.1996,925-926.
    [5]Lin W, Chen J, Sun Y, et al.Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel.J. Chem. Soc. Chem. Commun. 1995,2367-2368.
    [6]Gallis K W, Landry C C.Synthesis of MCM-48 by a Phase Transformation Process.Chem. Mater.1997,9,2035-2038.
    [7]Yang P D, Zhao D Y,Margolese D I,et al.Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks.Nature.1998,396, 152-155.
    [8]Stucky G D, Huo Q, Firouzi A, et al.Directed synthesis of organic/inorganic composite structures.Stud.Surf. Sci. Catal.1997,105,3-28.
    [9]Chen C Y, Burkett S L, Li H X, et al.Studies on mesoporous materials Ⅱ. Synthesis mechanism of MCM-41.Microporous.Mater.1993,2,27-34.
    [10]Monnier A, Schuth F,Huo Q,et al.Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructure.Science.1993,261, 1299-1303.
    [11]Firouzi A, Kumar D,Bull L M, et al.Cooperative organization of inorganic surfactant and biomimetic assembles.Science.1995,267,1138-1143.
    [12]Attard G S,Glyde J C,Gltner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature.1995,378,366-368.
    [13]Tanev P T, Pinnavaia T J.A neutral templating route to mesoporous molecular sieves.Science.1995,267,865-867.
    [14]Tanev P T, Pinnavaia T J.Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templating:a comparison of physical properties.Chem. Mater.1996,8,2068-2079.
    [15]Tanev P T, Pinnavaia T J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science.1996,271,1267-1269.
    [16]Bagshaw S A, Prouzet E, Pinnavaia T J.Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants.Science.1995,269, 1242-1244.
    [17]Morey M, Davidson A, Stucky G D.A new step toward transition metalin corporationin cubic mesoporous materials:preparation and characterization of Ti-MCM-48.Microp. Mater.1996,6(2),99-104.
    [18]Corma A, Kan Q, Rey F.Synthesis of Si and Ti-Si-MCM-48 mesoporous materials with controlled pore sizes in the absence of polar organic additives and alkali metalions.Chem. Commun.1998,998(5),579-580.
    [19]Morey M, Davidson A, Eckert H, et al.Pseudotetrahedral O; nV=O centers immbilized on the walls of a mesoporous,cubic MCM-48 support:preparation, characterization, and reactivity toward water as investigated by S'V NMR and UV Vis spectroscopies.Chem. Mater.1996,8(2),486-492.
    [20]Kawi S,Te M. MCM-48 supported chromium catalyst for trichloroethylene oxidation.Catal. Today.1998,44,101-109.
    [21]Sakthivel A, Dapurkar S E, Selvam P.Mesoporous (Cr)MCM-41 and (Cr)MCM-48 molecular sieves:promising heterogeneous catalysts for liquid phase oxidation reactions. Catal.Let.2001,7:155-158.
    [22]Zhao D, Goldfarb D. Synthesis of manganese containing mesoporous molecular sieve Mn-MCM-41,Mn-MCM-48 and Mn-MCM-L. Chem. Commun.1995, 875-876.
    [23]Romero A A, Alba M D.Aluminosilicate mesoporous molecular sieve MCM-48. J. Phys.Chem.B.1998,102(1),123-128.
    [24]Kosslick H, Lischkeq Landmesser H, Parlitz B,et al.Acidity and Catalytic behavior of substituted MCM-48.J. Catal.1998,176,102-114.
    [25]Ehchahed B,Moen A.Iron-modified MCM-48 mesoporous molecular sieves. Chem.Mater.1997,9(8),1716-1719.
    [26]Artmann M, Racouchot S.Synthesis and redox properties of MCM-48 containing copper and zinc.Chem. Commun.1997,997(24),2367-2368.
    [27]Morey M, Stucky G D.Isomorphic substitution and postsynthesis incorporation of zirconium into MCM-48 mesoporous silica. J. Phys. Chem. B.1999,103(12), 2037-2041.
    [28]Zheng Y, Li Z H, Zheng Y, et al.Synthesis and characterization of Fe-Ce-MCM-41.Mater. Let.2006,60(27),3221-3223.
    [29]Yao W H, Chen Y J, Min L, et al.Liquid oxidation of cyclohexane to cyclohexanol over cerium-doped MCM-41.J. Mot. Catal. A.Chem.2006,246 (1-2),162-166.
    [30]Chien S H, Kuo M C, Chen C L.Synthesis, characterization and catalysis of Ce-MCM-41.J. Chin. Chem. Soc.2005,52(4),733-740.
    [31]Kadgaonkar M D, Laha S C, Pandey R K. Cerium-containing MCM-41 materials as selective acylation and alkylationc atalysts.Catal. Today.2004,97 (4), 225-231.
    [32]Wallau M, Melo, Urqueita-Gonzalez E A.Influence of aluminium, lanthanum and cerium on the thermal and hydrothermal stability of MCM-41 type silicates. Stud. Surf. Sci. Catal.2003,146,303-306.
    [33]Laha S C, Mukherjee P, Sainkar S R. Cerium containing MCM-41-type mesoporous materials and their acidic anderdox catalytic properties.J. Catal. 2002,207(2),213-223.
    [34]Parvulescu V, Tablet C,Anastasescu C,et al.Activity and stability of bimetallic Co(V, Nb,La)-modified MCM-41 catalysts.Catal. Today.2004,93(5),307-313.
    [35]Parvulescu V,Anastasescu C,Su B L.Bimetallic Ru-(Cr, Ni,or Cu)and La-(Co or Mn) incorporated MCM-41 Molecular sieves as catalysts for oxidation of aromatic hydrocarbons.J. Mol. Catal. A. Chem.2004,211(1-2),143-148.
    [36]Luan Z, Hartmann M.Alumination and ion exchange of mesoporous SBA-15 molecular sieves.Chem.Mater.1999,11(6),1621-1627.
    [37]Newalkar B L, Komameni S,Katsuki H.Rapid synthesis of mesoporous SBA-15 molecular sieve by microwave-hydrothermal process.Phys. Chem. Chem. Phys. 2000,2,2389-2390.
    [38]Gallis K W, Landry C C.Synthesis of MCM-48 by a phase transformation process.Chem. Mater.1997,9(10),2035-2038.
    [39]Ryoo R, Jun S.Improvement of hydrothermal stability of MCM-41 using salt effects during the crystallization process.J. Phys. Chem. B.1997,101(3), 317-320.
    [40]Zhao X S,Lu G Q.Modification of MCM-41 by surface silylation with trime thylchlorosilane and adsorption study. J. Phys. Chem. B.1998,102 (9), 1556-1561.
    [41]Chen L Y, Horiuchi T, Mori T, et al.Postsynthesis hydrothermal restructuring of M41S mesoporous molecular sieves in water. J. Phys.Chem. B.1999,103(8), 1216-1222.
    [42]Kim J M, Jun S,Ryoo R. Improvement of hydrothermal stability of mesoporous silica using salts:reinvestigation for time-dependent efects.J. Phys. Chem. B. 1999,103(30),6200-6205.
    [43]Ryoo R, Kim J M. Disordered molecular sieve with branched mesoporous channel network. J. Phys. Chem.1996,100(45),17718-17721.
    [44]Das D, Tsai C M, Cheng S F.Improvement of hydrothermal stability of mesoporous molecular sieve. Chem. Commun.1999,999(5),473-474.
    [45]Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds.J. Am. Chem. Soc.2000,122(36), 8791-8792.
    [46]Liu Y, Zhang W Z, Pinnavaia T J.Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds.Angew. Chem. Int. Ed.2001,40(7),1255-1258.
    [47]Xia Y D, Mokaya R. On the hydrothermal stability of mesoporous aluminosilicate MCM-48 materials.J. Phys. Chem.2003,107(29),6954-6960.
    [48]Xia Q H, Hidajat K, Kawi S.Improvement of the hydrothermal stability of siliceous MCM-48 by fluorination. Chem. Let.2001,7,654-655.
    [49]Kim W J, Yoo J C, Hayhurst D T. Synthesis of MCM-48 via phase transformation with direct addition of NaF and enhancement of hydrothermals tability post-treatmentin NaF solution.Micropor. Mesopor. Mater.2001,49 (1-3),125-137.
    [50]Kageyama K, Ogino S,Aida T. Mesoporous zeolite as a new class of catalyst for controlled polymerization of lactones.Macromolucules.1998,31,4069-4073.
    [51]Abeki-Fattah T T, Pinavaia T J. Tin-substituted mesoporous silica molecular sieve (Sn-HMS):synthesis and properties as a heterogeneous catalyst for lactide ring-opening polymerization.J. Chem. Soc. Chem. Commun.1996,5,665-666.
    [52]Abe T, Tachibana Y, Uematsu T, Iwamoto M.Preparation and characterization of Fe2O3 nanoparticles in mesoporous silicate. J. Chem. Soc. Chem. Commun.1995, 16,1617-1618.
    [53]Dag O,Ozin G A, Yang H, Reber C.Photoluminescent silicon clusters in oriented Hexagonal mesoporous silica film. Adv. Mater.1999,11,474-480.
    [54]Coleman N R B,Morris M A, Spalding T R, Holmes J D.The formation of dimensionally ordered silicon nanowires within mesoporous silica. J. Am. Chem. Soc.2001,123,187-188.
    [55]Wu C G, Bein T. Conducting polyaniline filaments in a mesoporous channel host. Science.1994,264,1757-1759.
    [56]Wu C G, Bein T. Conducting carbon wires in ordered nanometer-sized channels. Science.1994,266,1013-1015.
    [57]Kageyama K, Tamazawa J I, Aida T. Extrusion polymerization:catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science.1999,285,2113-2115.
    [58]Valet-Regi M, Ramila A, De-Real R P, et al.A new property of mcm-41:drug delivery system. Chem. Mater.2001,13,308-311.
    [59]Stein A, Melde B J, Schroden R C,Hybrid inorganic-organic mesoporous silicates-Nanoscopic reactors coming of age.Adv. Mater.2000,12,1403-1419.
    [60]Marlow F, Mcgehee M, Zhao D, et al.Doped mesoporous silica fibers:A new laser material.Adv. Mater.1999,11,632-636.
    [61]Yang P, Wimsberger G, Huang H, et al.Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science.2000,287,465-467.
    [62]Ye B,He X, Trudeau M, Antonelli D.Observation of a double maximum in the dependence of conductivity on oxidation state in potassium fulleride nanowires supported by a mesoporous niobium oxide host lattice.Adv. Mater.2001,13, 561.
    [63]He X, Antonelli D.Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves.Angew. Chem. Int. Ed. Engl. 2002,47,214.
    [64]Han Y, Stucky G,Butter A. Mesoporous silicate sequestration and release of proteins.J. Am. Chem. Soc.1999,121,9897-9898.
    [65]Zhao J, Gao F, Fu Y L, et al. Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography. Chem. Commum.2002,7,752-753.
    [66]He J, Li X, Evans D G, et al.A new support for the immobilization of penicillin acylase.J. Mod. Catat. B.2000,11,45-53.
    [67]Xu J, Luan Z H, Hartmann M, et al.Synthesis and characterization of Mn-containing cubic mesoporous MCM-48 and AlMCM-48 molecular sieves. Chem. Mater.1999,11,2928-2936.
    [68]Shao Y F,Wang L Z, Zhang J L, Anpo M. Synthesis of hydrothermally stable and long-range ordered Ce-MCM-48 and Fe-MCM-48 materials.J. Phys. Chem. B.2005,109,20835-20841.
    [69]Poppl A, Baglionl P, Kevan L. Electron spin resonance and electron spin echo modulation studies of the incorporation of macrocyclic-complexed cupric ions into siliceous MCM-41.J. Phys.Chem.1995,99,14156-14160.
    [70]Luan Z H, Xu J, He H Y, et al.Synthesis and spectroscopic characterization of vanadosilicate mesoporous MCM-41 molecular sieves.J. Phys. Chem.1996,100, 19595-19602.
    [71]Antonio A, Romero, Mara D, et al.Aluminosilicate mesoporous molecular sieve MCM-48.J. Phys. Chem. B.1998,102,123-128.
    [72]Xie C X, Liu F S,Yu S T, et al.Catalytic cracking of polypropylene into liquid hydrocarbons over Zr and Mo modified MCM-41 mesoporous molecular sieve.Catal. Commun.2008,10,79-82.
    [73]Wang J A, Chen L F,Noren L E, et al.Mesoporous structure, surface acidity and catalytic properties of Pt/Zr-MCM-41 catalysts promoted with 12-tungstophosphoric acid. Micropor. Mesopor. Mater.2008,112,61-76.
    [74]Abdelhamid Sayari.Novel Synthesis of High-Quality MCM-48 Silica. J. Am. Chem. Soc.2000,122,6504-6505.
    [75]Yu J Q, Li C,Xu L, et al.Synthesis of Ti-MCM-41 using colloidal silica and titanium trichloride.J. Chin. Catal.2001,22(4),331-334.
    [76]Yang X M, Zhou L P, Chen C,Xu J. Synthesis of Zr-MCM-41 by the assistance of sodium chloride in the self-generated acid conditions.Mater.Chem.Phys. 2010,120,42-45.
    [77]Martinez A, Lopez C, Marquez F,Diaz I.Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts:the influence of metal loading, cobalt precursor, and promoters.J. Catal.2003,220(2),486-499.
    [78]Elkabouss K, Kacimi M, Ziyad M, et al.Cobalt-exchanged hydroxyapatite catalysts:Magnetic studies, spectroscopic investigations,performance in 2-butanol and ethane oxidative dehydrogenations.J. Catal.2004,226(1), 16-24.
    [79]Corberan V C, Jia M J, Valenzuela R X, et al.Oxidative dehydrogenation of isobutane over Co-MCM-41 catalysts.Catal. Today.2004,91,127-130.
    [80]Bulanek R, Novoveska K, Wichterlova B.Oxidative dehydrogenation and ammoxidation of ethane and propane over pentasil ring Co-zeolites.Appl. Catal. A.2002,235(122),181-191.
    [81]Vanoppen D L, Jacobs P A. Cobalt-containing molecular sieves as catalysts for the low conversion autoxidation of pure cyclohexane.Part Ⅱ.A kinetic study. Catal. Today.1999,49(123),177-183.
    [82]Sangyun Lim, Dragos Ciuparu, Chanho Pak. Synthesis and characterization of highly ordered Co-MCM-41 for production of aligned single walled carbon nanotubes (SWNT).J. Phys. Chem. B.2003,107,11048-11056.
    [83]Lim S,Ciuparu D, Yang Y H, et al.Improved synthesis of highly ordered Co-MCM-41.Micropor. Mesopor. Mater.2007,101(1/2),200-206.
    [84]Tang Q H, Zhang Q H, Wu H L, et al.Epoxidation of styrene with molecular oxygen catalyzed by cobalt(II)-containing molecular sieves.J. Catal.2005, 230(2),384-397.
    [85]Lim S Y,Yang Y H, Ciuparu D, et al.The effect of synthesis solution pH on the physicochemical properties of Co substituted MCM-41. Topics in Catal.2005, 34(1/4),31-40.
    [86]Mathew T, Rao B S,Gopinath C S,Tertiary butylation of phenol on Cu1-xCoxFe2O4:catalysis and structure activity correlation.J. Catal.2004,222, 107.
    [87]Chandler K, Deng F,Dillow A K, et al.Alkylation reactions in Near-Critical water in the absence of acid catalysts.Ind. Eng. Chem. Res.1997,36, 5175-5181.
    [88]Chandra K G,Sharma M M.Alkylation of phenol with MTBE and other tert-butylethers:Cation exchange resins as catalysts.Catal. Lett.1993,19, 309-317.
    [89]Krishnan A V, Ojha K, Pradhan N C.Alkylation of phenol with tertiary butyl alcohol over zeolites, Org. Process Res. Dev.2002,6,132-137.
    [90]Sakthivek A, Badamali S K, Selvam P. Para-selective t-butylation of phenol over mesoporous H-AlMCM-41.Micropor. Mesopor.Mater.2000,39,457-463.
    [91]Anand R, Maheswari R, Gore K U, et al.Tertiary butylation of phenol over HY and dealuminated HY zeolites.J. Mol. Catal. A.,2003,193,251-257.
    [92]Savidha R, Pandurangan A, Palanihamy M, et al.A comparative study on the catalytic activity of Zn and Fe containing Al-MCM-41 molecular sieves on t-butylation of phenol.J. Mol. Catal. A.2004,211,165-177.
    [93]Badamali S K, Sakthivel A, Selvam P. Tertiary butylation of phenol over mesoporous H-FeMCM-41.Catal. Lett.2000,65,153-157.
    [94]Sakthivel A, Saritha N, Selvam P. Vapour phase tertiary butylation of phenol over sulfated zirconia Catalyst. Catal. Lett.2001,72,225-228.
    [95]Vinu A, Nandhini K U, Murugesan V, et al.Mesoporous FeAlMCM-41:an improved catalyst for the vapor phase tert-butylation of phenol. Appl.Catal. A. 2004,265,1-10.
    [96]Morey M, Davidson A, Eckert H, et al.Pseudotetrahedral O3/2V=O centers immobilized on the walls of a mesoporous, Cubic MCM-48 support:preparation, characterization, and reactivity toward water as investigated by 51V NMR and UV-Vis spectroscopies.Chem. Mater.1996,8,486-492.
    [97]Xue P, Lu G, Guo Y, et al.A novel support of MCM-48 molecular sieve forimmobilization of penicillin G acylase. J. Mol. Catal. B.2004,30,75-81.
    [98]Isabel I B,A'frica M, Antonio L D, et al.Release evaluation of drugs from ordered three-dimensional silica structures.Eur. J. Pharm. Sci.2005,26, 365-373.
    [99]Shen J L,Lee Y C,Liu Y L,et al.Photoluminescence sites on MCM-48. Micropor. Mesopor. Mater.2003,64,135-143.
    [100]Go'mez S,Garces L J, Villegas J, et al.Synthesis and characterization of TM-MCM-48 (TM=Mn, V, Cr) and their catalytic activity in the oxidation of styrene. J. Catal.2005,233,60-67.
    [101]Krithiga T, Vinu A, Ariga K, et al.Selective formation 2,6-diisopropy lnaphthalene over mesoporous Al-MCM-48 catalysts.J. Mol. Catal. A:Chem. 2005,237,238-245.
    [102]Subrahmanyam C, Viswanathan B, Varadarajan T K. Alkylation of naphthalene with alcohols over acidic mesoporous solids.J. Mol. Catal. A:Chem.2005,226, 155-163.
    [103]Sakthivel A, Badamali S K, Selvam P.para-Selective t-butylation of phenol over mesoporous H-AlMCM-41.Micropor. Mesopor. Mater.2000,39, 457-463.
    [104]Dapurkar S E, Selvam P. Mesoporous H-AlMCM-48:highly efficient solid acid catalyst. Appl. Catal. A.General.2003,254,239-249.
    [105]Yamamoto T, Tanaka T, Funabiki T, et al.Acidic Property of FSM-16. J.Phys.Chem.B.1998,102,5830-5839.
    [106]Love B,Massengale J T. The ortho-Alkylation of Phenols. J. Org. Chem.1957, 22,642-646.
    [107]Goldsmith E A, Shclatter M J, Toland W G. Uncatalyzed thermal ortho-alkylation of phenols.J. Org. Chem.1958,23,1871-1876.
    [108]Subramanian S,Mitra A, Satyanarayana C V V, et al.Para-selective butylation of phenol over silicoaluminophosphate molecular sieve SAPO-11 catalyst. Appl. Catal. A.1997,159,229-240.
    [109]Selvam P, Dapurkar S E.Tertiary butylation of phenol over mesoporous MeMCM-48 and MeMCM-41 (Me=Ga, Fe, Al or B) solid acid catalysts. Catal. Today.2004,96,135-141.
    [110]Parton R F, Jacobs J M, Ootehem H V, et al.Comparison of the alkylation of anisole and phenol with methanol on pentasil and ultrastable zeolites.Stud. Surf. Sci. Catal.1989,46,211-221.
    [111]Li L,Yu S T,Liu F T,et al.Reactions of turpentine using Zr-MCM-41 family mesoporous molecular sieves.Catal. Lett.2005,100,227-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700