镉污染土壤的生物修复:热化学研究耐镉菌株抗性机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的提高,生态和环境保护日趋受到重视,国家每年都投入大量人力物力进行污染土壤的修复。去除土壤污染物以修复被污染的土地,成为土壤环境研究领域里一个非常重要的课题。与物理修复、化学修复相比,在被污染土壤的修复中,生物修复所具有的安全性、经济性和非破坏性的优点,使其成为最具有前途的修复技术。生物修复(Bioremediation)是针对土壤中重金属的生物迁移而提出的一项净化措施,是利用某些特定的动植物和微生物能够较快地吸走或降低土壤中的重金属污染物而达到净化土壤的目的,使生物的生命代谢活动减少土壤环境中有毒有害物的浓度或使其完全无害化,从而使污染了的土壤环境能够部分地或完全地恢复到原初状态的过程。
     土壤的污染是指人类活动产生的有害物质进入土壤,当其含量超过土壤本身的自净能力,并使土壤的成分,性质发生变异,降低农作物的产量和质量,并危害人体健康的现象,而重金属污染己成为当今最重要的环境问题之一,也是最重要的土壤污染物之一。重金属进入土壤后,对土壤微生物有一定的毒害作用。据报道,目前我国受镉、铬、铅等重金属污染的耕地面积近2000万公顷,约占总耕地面积的1/5;其中工业“三废”污染耕地1000万公顷,污水灌溉的农田面积已达330多万公顷。污水灌溉及废弃物等对农田已造成大面积的土壤污染。其中,重金属对土壤的污染基本上是一个不可逆转的过程,许多有机化学物质的污染也需要较长时间才能降解,被某些重金属污染的土壤甚至可能要100~200年时间才能够恢复,而且积累在污染土壤中的难降解污染物则很难靠稀释作用和自净化作用来消除。土壤污染一旦发生,往往很难恢复,其他治理技术可能见效较慢。因此,生物修复重金属污染土壤因其成本小、周期短、效果好等原因日益受到研究者们的关注。因此本实验研究就是针对被重金属污染的土壤进行生物修复的前期研究开展研究的,通过研究微生物代谢机制来讨论耐镉菌株的生物修复功能。
     本研究选用易在生命体内积累并会造成极大危害的重金属镉作为研究对象以探讨其对土壤微生物的毒理学影响,是因为镉是毒性最大的重金属元素之一,对土壤微生物种群的生长密度,生长活性,以及生物多样性都有着毒性危害作用。在自然界中,镉及其化合物的存在并在其迁移与转化过程化中会对植物、动物、微生物以及土壤酶活性产生不同程度的危害。镉会减少微生物的群体,降低呼吸率;镉污染对土壤酶活性的影响多表现为抑制作用,其抑制机理可能与酶分子的活性部位—巯基和含咪唑的配体等结合,形成稳定的络合物,产生了与底物的竞争性抑制作用有关或者可能由于重金属通过抑制土壤微生物的生长和繁殖,减少体内酶的合成和分泌,最后导致土壤酶活性下降。而土壤微生物作为自然环境中的主要分解者,在土壤沉积物的碳、氮、磷、硫的循环、无机营养的再生和营养物的转化等方面起着重要作用。
     本研究通过现代微量量热技术的开发与应用,可以让我们了解镉与土壤微生物的相互作用机理,通过分析放热曲线、生化需氧量、溶解氧含量并结合显微技术等生化分析对微生物代谢过程的分析,我们可以较系统的掌握镉对微生物生理代谢方面产生的毒理学作用和影响,以及土壤微生物对镉污染土壤的生物修复机理和抗性机制,所以选择微量热技术测定方法对进一步准确表征细菌的性质具有非常重要的意义,取得主要成果如下:
     (1)采用微量热法对镉与土壤微生物相互作用的毒理性影响,了解镉对不同微生物的剂量—反应规律,在此基础上,为利用所研究微生物处理镉污染提供必要的剂量参考;
     (2)由于土壤中微生物群落组成复杂,数量具大,无法了解土壤中常见单一菌种的代谢活动及其不同菌种共存时的相互作用机制,所以本研究旨在比较两种不同微生物(革兰氏阳性菌:枯草芽孢杆菌,真菌:假丝酵母菌)及其在混合条件下的热谱图的基础上,初步研究两种单一微生物在混合条件下的相互作用情况,为研究不同微生物间的相互作用提供可行的实验方案;
     (3)采用多渠道研究微生物方法,利用生物传感器研究在开放环境下分析纯镉污染物对两种土壤菌株的毒害作用及其代谢机制,讨论在好氧状态下土壤微生物对镉污染物的抗性机制,同时结合pH值测定分析以及紫外分光技术进一步对其机理进行研究,为镉污染土壤抗性机制研究提供可靠数据;
     (4)此次研究涉及到环境毒理学、环境微生物学、土壤学与生物热化学等方面的原理和理论,并且将形成环境毒理学、环境微生物学、土壤学与热力学的交叉渗透研究微生物对环境作用的一条新的途径;
     (5)利用显微技术和生物传感技术对重金属与土壤中的耐镉菌株的相互反应机制做同步实验监测,为多渠道研究耐镉菌株对重金属镉的抗性机制提供技术和方法
     (6)以微量热学为基础,结合HPLC,ICP-MS,GC-MS,LC-MS等光谱-质谱联用分析技术对微生物代谢过程的监测,研究被重金属镉所污染的土壤中耐镉菌株的抗性机制,为各学科的交叉融合提供新的技术支持,并在探讨微生物在重金属的地球化学循环中的作用机制的基础上,为我国大片重金属污染土地的修复提供科学依据和技术基础。
Since 1980s,methods for assessing heavy metal toxicity to microbes have been greatly advanced.It plaid significant roles in biochemical and physical chemistry field.Heavy metals are often a common cause of environmental pollutants and accumulate in soils due to their affinity for soil organic matter in general and humic acids in particular.Extensive data indicate that cadmium is the most toxic heavy metal and it is listed as a priority pollutant by the US Environmental Protection Agency.
     Among heavy metals,cadmium(Cd),mercury(Hg),and copper(Cu) are known to have deleterious effects on the density,activity,and diversity of soil micro-flora.Heavy metal pollution(of Cd~(2+),Cd(NO_3)_2) has been shown to affect plant and soil microbial function.The toxic effects of Cd~(2+) on plant growth,metabolism and enzyme activity are well documented: Cd~(2+) inhibits plant growth and also disturbs photosynthesis,sugar metabolism,sulphate assimilation,and several enzyme activities even at low concentrations.In daily life,the main sources of cadmium are glaze,plastic,rubber,oil paint,printing and dyeing,nickel-cadmium batteries,electroplating and the liquid waste emissioned from the electroplating.If these liquid wastes contaminate a river,the pollutant emission will cause the contamination of the shellfish and fish,and also have toxic effect on the vegetables and rice which are irrigated by the river. Chronic intoxication of cadmium will cause damage of renal cells,the impediment of liver function,recurrent abortions,and antecedent prostatic carcinoma etc.Further more,older citizens have accumulated high contents of Cd~(2+) through their diet.
     This research was based on determining microbial activities,radioisotopes, chemical measurements and microelectrodes were used.However,most of the experiments dealing with the impact of metals on soil microorganisms have been field experiments,generally associated with inorganic nutrients and organic matter, which has made it difficult to distinguish the effect of one metal from the effect of another.Beside,with the development of microcalorimetric techniques,the investigations of living materials have been improved during the past 25 years.A wide range of practical applications of such techniques have been envisioned.In recent years,microcalorimetric techniques have been increasingly used to study microbial activities in soils.Microcalorimetry is a highly sensitive method to assess the overall biomass and activity of soil microorganisms.It can provide important quantitative indices of activities like microbial growth rate constant,heat evolution processes and heat yield of microbial growth.Another advantage of the calorimetric method is its simplicity and non-disturbance of samples.Ameliorating effects of organic matter on Cd toxicity have been reported for crops and herbaceous plants.
     In our study,a microcalorimetric technique based on the microbes heat-output was explored to evaluate the toxic effect of Cd(Ⅱ) on Bacillus subtilis and Candida humicola and to test their resistant mechanism.The power-time curves of the growth metabolism of Bacillus subtilis and Candida humicola and the effect of Cd(Ⅱ) on it were studied by using a TAMⅢmicrocalorimeter,ampoules method at 28℃.For the evaluation of toxic effect on pure microorganisms,the maximum peak-heat output power(P_(max)) in the growth phase,the growth rate constants(k),the log phase heat effects(Q_(log)),and the total heat effect(Q_T) for Bacillus subtilis and Candida humicola were determined.Dissolved oxygen and biochemical oxygen demand (BOD) were evaluated by a biosensor.
     Through the experiments,it shown that cadmium has been regarded as the essential biological trace element.Cd(Ⅱ) solutions of different concentration have different effects on Bacillus subtilis and Candida humicola growth metabolism.The higher concentrations of Cd(Ⅱ) inhibit the growth of Candida humicola(1600-3200μg.mL~(-1)),Bacillus subtilis(240-480μg.mL~(-1));the lower concentrations can promote the growth of both microorganisms.The values of cell dry weight is also showed in conformity in the cell dry weight changes to the microorganisms' growth time.Comparison of growth curves of two microorganisms showed that both the trends of biochemical oxygen demand were exhibiting regressive changes with the passage of time during their generation times(t_G).The value of the result by ultraviolet spectrophotometer and precision pH meter all showed that the control growth curves were visioning same trends with the thermodynamic curves of microorganisms measured by microcalorimeter.
引文
[1]M.Alexander,Biodegradation of chemicals of environmental concern.Science 1981[J].211,132-138.
    [2]H.Babich,G.Stotzky,Heavy metal toxicity to microbe-mediated ecologic processes:a review and potential application to regulatory policies[J].Environmental Research 1985,36,111-137.
    [3]P.Benoit,E.Barriuso,Ph.Vidon,B.Real,Isoproturon sorption and degradation in soil from grassed buffer strip[J].Journal of Environmental Quality 1999,28,121-129.
    [4]L.Cox,A.Walker,S.J.Welch,Evidence for the accelerated degradation of isoproturon in soils[J].Pesticide Science 1996,48,253-260.
    [5]S.Dahlin,E.Witter,A.Martensson,A.Turner,E.B(?)th,Where's the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination[J].Soil Biology & Biochemistry 1997,29,1405-1415.
    [6]N.Degraffenreid,G.S.Shreve,The effect of cadmium on the kinetics of trichloroethylene biodegradation by Pseudomonas(Burkholderia) picketti PK01 under denitrifying conditions [J].Water Resource 1998,32,3398-3402.
    [7]P.E.Flathman,G.R.Lanza,Phytoremediation:current views on an emerging green technology[J].Journal of Soil Contamination 1998,7,415-432.
    [8]J.C.Fournier,G.Soulas,G.Catroux,De'gradation microbienne de l'isoproturon dans des mode'les de laboratoire[J].Chemosphere 1975,4,207-214.
    [9]M.Gillings,M.Holley,Repetitive element PCR fingerprinting(rep-PCR) using enterobacterial repetitive intergenic consensus(ERIC) primers is not necessarily directed at ERIC elements[J].Letters in Applied Microbiology 1997,25,17-21.
    [10]H.Grcman,J.Persolja,F.Lobnik,D.Lestan,Modifying lead,zinc and cadmium bioavailability in soil by apatite and EDTA addition[J].Fresenius Environmental Bulletin 2001,10,727-730.
    [11]P.Malakul,K.R.Srinivasan,H.Y.Wang,Metal toxicity reduction in naphthalene biodegradation by use of metal-chelating adsorbents[J].Applied and Environmental Microbiology 1998,64,4610-4613.
    [12]B.J.Presley,J.H.Trefry,Heavy metal inputs to Mississippi delta sediments[J].a historical view.Water,Air and Soil Pollution,1980,13,481-494
    [13]T.P.Williams,Metal accumulation within salt marsh environment:a review[J].Marine Pollution Bulleetin,1994,28,277-290.
    [14]K.Dilip,V.Datta,Distribution and fractionation of heavy metals in the surface sediments of the Ganges-Brahmaputra-Meghna river system in the Bengal basin[J].Environmental Geology,1998,36,93-101.
    [15]S.V.Lee,A.B.Cundy,Heavy metal contamination and mixing processes in sediments from the humber estuary,eastern England.Estuarine [J].Coastal and Shelf Science,2001,53,619-636.
    [16]M.Suhadolc,R.Schroll,A.Gattinger,M.Schloter,J.C.Munch,D.Lestan.Effects of modified Pb2”,Zn2”,and Cd2” availability on the microbial communities and on the degradation of isoproturon in a heavy metal contaminated soil [J].2004,36,1043-1954.
    [17]T.I.Stuczynski,G.W.McCarty,and G.Siebielec.Response of soil microbiological activities to cadmium,lead,and zinc salt amendments [J].Journal of Environmental Quality,2003,32,1346-1355.
    [18]W.A.Said,D.L.Lewis,Quantitative assessment of the effects of metals on microbial degradation of organic chemicals [J].Applied and Environmental Microbiology 1991,57,1498-1503.
    [19]F.Widmer,A.Fliebbach,E.Laczko,J.Schulze-Aurich,J.Zeyer,Assessing soil biological characteristics:a comparison of bulk soil community DANN-,PLFA-,and Biologe-analyses [J].Soil Biology & Biochemistry 2001,33,1029-1036.
    [20]P.Zhang,J.A.Ryan,In vitro soil Pb solubility in the presence of hydroxyapatite [J].Environmental Science & Technology 1998,32,2763-2768.
    [21]P.G.C.Campbell,P.M.Stokes,J.N.Galloway,‘The effect of atmospheric deposition on the geochemical cycling and biological availability of metals’,Proceedings of the International Conference on Heavy Metals in the Environment [M],Heidelberg,Germany,CEP Consultants,Edinburgh,UK,1983,760-763.
    [22]M.J.Wilson,N.Bell,Acid deposition and heavy metal mobilization [J].Appl.Geochem.1996,11,133-137.
    [23]M.J.Mench,Cadmium availability to plants in relation to major long-term changes in agronomy systems [J].Agric.Ecosyst.Environ.1998,67,175-187.
    [24]A.Huttermann,I.Arduini,D.L.Godbold,Metal pollution and forest decline in Heavy Metal Stress in Plants [P].Eds.M N V Prasad and J Hagemeyer.pp.,Springer,Berlin 1999.,1999,253-272.
    [25]J.E.Gawel,B.A.Ahner,A.J.Friedland,F.M.M.Morel,Role for heavy metals in forest decline indicated by phytochelatin measurements [J].Nature 1996,381,64-65.
    [26]S.Astolfi,S.Zuchi,C.Passera,Effects of cadmium on the metabolic activity of Avena sativa plants grown in soil or hydroponic culture [J].Biol.Plantarum 2004,3,413-418.
    [27]M.M.Bradford,A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding [J].Anal.Biochem.1976,72,248-254.
    [28]G.G.Fox,R.G.Ratcliffe,S.A.Robinson,G.R.Stewart,Evidence for the determination by glutamate dehydrogenase in higher plants:commentary [J].Can.J.Bot.1995,73,1112-1115.
    [29]M.Majewska,E.Kurek,Effect of microbial activity on Cd Sorption/Desorption processes in soil polluted with various Cd sources [J].Geophys Res.2005,7,304-332.
    [30]O.V.Singh,S.Labana,G.Pandey,R.Rudhiraja,R.K.Jain,Phytoremediation:an overview of metallic ion decontamination from soil [J].Appl.Microbiol.Biotechnol.2003,61,405-412.
    [31]V.N.Pishchik,N.I.Vorobyev,I.Chernyaeva,S.V.Timofeeva,A.P.Kozhemyakov,Y.V.Alexeev,S.M.Lukin,Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress [J].Plant Soil 2002,243,173-186.
    [32]E.Kurek,R.Kaczorowska,I.Nadulska,E.Ochal,Retention of Cd by soil constituents conditions [J].Chemosphere 1996,33,277-284.
    [33]A.Sayari,S.Hamoudi,Y.Yang,Applications of pore-expanded mesoporous silica.1.Removal of heavy metal cations and organic pollutants fromwastewater [J].Chem.Mater.17(2005)212-216.
    [34]K.K.Krishnani,X.Mengb,C.Christodoulatos,V.M.Bodduc,Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk [J].J.Hazard.Mater.2008,153 1222-1234.
    [35]V.Radhika,S.Subramanian,K.A.Natarajan,Bioremediation of zinc using Desulfotomaculum nigrificans:bioprecipitation and characterization studies [J].Water Res.2006,40,3628-3636.
    [36]S.Comte,G.Guibaud,M.Baudu,Biosorption properties of extracellular polymeric substances (EPS)towards Cd,Cu and Pb for different pH values [J].J.Hazard.Mater.2008,151,185-193.
    [37]E.D.Van Hullebusch,M.H.Zandvoort,P.N.L.Lens,Metal immobilization by biofilms:mechanisms and analytical tools [J].Rev.Environ.Sci.Bio/Technol.2003,2,9-33.
    [38]A.Omoike,J.Chorover,Spectroscopic study of extracellular polymeric substances from Bacillus subtilis:aqueous chemistry and adsorption effects [J].Biomacromolecules 2004,5,1219-1230.
    [39]K.E.Eboigbodin,C.A.Biggs,Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic,proteomic,and aggregation studies [J].Biomacromolecules 2008,9,686-695.
    [40]S.Comte,G.Guibaud,M.Baudu,Biosorption properties of extracellular polymeric substances (EPS)resulting from activated sludge according to their type:soluble or bound [J].Process Biochem.2006,41,815-823.
    [41]E.F.Covelo,F.A.Vega,M.L.Andrade,Competitive sorption and desorption of heavy metals by individual soil components [J].J.Hazard.Mater.2007,140,308-315.
    [42]Y.Asc,i,M.Nurbas,Y.Sag Ac,ikel,Sorption of Cd(Ⅱ)onto kaolin as a soil component and desorption of Cd(Ⅱ)from kaolin using rhamnolipid biosurfactant [J].J.Hazard.Mater.B2007,139,50-56.
    [43]T.Ohnuki,T.Yoshida,T.Ozaki,N.Kozai,F.Sakamoto,T.Nankawa,Y.Suzuki,A.J.Francis,Chemical speciation and association of plutonium with bacteria,kaolinite clay,and their mixture [J].Environ.Sci.Technol.2007,41,3134-3139.
    [44]C.Quintelas,T.Tavares,Removal of chromium (Ⅵ)and cadmium (Ⅱ)fromaqueous solution by a bacterial biofilm supported on granular activated carbon [J].Biotechnol.Lett.2001,23,1349-1353.
    [45]C.Quintelas,T.Tavares,Lead (Ⅱ)and iron (Ⅱ)removal from aqueous solution:biosorption by a bacterial biofilm supported on granular activated carbon [J].J.Res.Environ.Biotechnol.2002,3,196-202.
    [46]C.Quintelas,E.Sousa,F.Silva,S.Neto,T.Tavares,Competitive biosorption of ortho-cresol,phenol,chlorophenol and chromium (Ⅵ)from aqueous solution by a bacterial biofilm supported on granular activated carbon [J].Process Biochem.2006,41,2087-2091.
    [47]C.Quintelas,B.Fernandes,J.Castro,H.Figueiredo,T.Tavares,Biosorption of Cr (Ⅵ)by a Bacillus coagulans biofilm supported on granular activated carbon (GAC)[J].Chem.Eng.J.2008,136,195-203.
    [48]C.Quintelas,B.Fernandes,J.Castro,H.Figueiredo,T.Tavares,Biosorption of Cr (Ⅵ)by three different bacterial species supported on granular activated carbon—a comparative study [J].J.Hazard.Mater.2008,153,799-809.
    [49]S.Lameiras,C.Quintelas,M.T.Tavares,Development of a biosorption system for chromium (VI)using a Arthrobacter viscosus biofilm supported on granular activated carbon and on natural zeolites [J].Bioresour.Technol.2008,99,206-801.
    [50]B.Silva,H.Figueiredo,C.Quintelas,T.Tavares,I.C.Neves,Zeolites as supports for the biorecovery of hexavalent and trivalent chromium [J].Micropor.Mesopor.Mater.2008,116,555-560.
    [51]L.Ranjard,L.Lignier,R.Chaussod,Cumulative effects of short-term polymetal contamination on soil bacterial community structure [J].Appl.Environ.Microbiol.2006,72 (2),1684-1687.
    [52]I.Wads(?),Microcalorimetric techniques for characterization of living cellular systems.Will there be any important practical applications? [J].Thermochim.Acta.1995,47,337-350.
    [53]C.G.Kim,S.A.Power,J.N.B.Bell,Effects of cadmium and soil type on mineral nutrition and carbon partitioning in seedlings of pinus sylvestris [J],Water Air Soil Poll.2003,145,253-266.
    [54]F.Haghiri,Plant uptake of cadmium as influenced by cation exchange capacity,organic matter,zinc,and soil temperature [J].J.Environ.Qual.1974,3,180-183.
    [55]R.C.Strickland,W.R.Chaney,RJ.Lamoreaux,Organic matter influences phytotoxicity of cadmium to soybeans [J].Plant Soil 1979,52,393-402.
    [56]Q.B.He,B.R.Singh,Effect of organic matter on the distribution,extractability and uptake of cadmium in soils [J].J.Soil Sci.1993,44,641-650.
    [57]#12
    [58]R.L.Chaney,P.G..Reeves,J.A.Ryan,R.W.Simmons,R.M.Welch,J.S.Angle,An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks [J].Biometals.2004,17,549-553.
    [59]K.Perronnet,C.Schwartz,J.L.Morel,Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil[J].Plant Soil 2003,249,19-25.
    [60]C.G.Kim,S.A.Power,J.N.B.Bell,Effects of cadmium and soil type on mineral nutrition and carbon partitioning in seedlings of pinus sylvestris[J].Water Air Soil Poll.2003,145253-266.
    [61]A.R.Barbhuiya,A.Arunachalam,H.N.Pandey,K.Arunachalam,M.L.Khan,P.C.Nath,Dynamics of soil microbial biomass C,N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest[J].Eur.J.Soil Biol.2004,40,113-121.
    [62]S.A.M.Critter,S.S.Freitas,Claudio airold,Comparison of microbial activity in some Brazilian soils by microcalorimetric and respirometric methods[J].Thermochim.Acta.2004,410,35-46.
    [63]K.Vig,M.Megharaj,N.Sethunathan,R.Naidu,Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review[J].Adv.Environ.Res.2003,8,121-135.
    [64]H.Babich,G.Stotzky,Effect of cadmium on fungi and on interactions between fungi and bacteria in soil,influence of clay minerals and pH[J].Appl.Environ.Microbiol.1977,33,1059-1066.
    [65]J.Bauhus,P.K.Khanna,Carbon and nitrogen turnover in two acid forest soils of southeast Australia as affected by phosphorus addition and drying and rewetting cycles[J].Biol.Fertil.Soils 1994,17,212-218.
    [66]R.J.F.Bewley,G.Stotzky,Effects of cadmium and zinc on microbial activity in soil;influence of clay minerals.Part Ⅱ,Metals added simultaneously[J].Sci.Tot.Environ.1983,31,57-69.
    [67]T.G.Kazi,M.K.Jamali,G.H.Kazi,M.B.Arain,H.I.Afridi,A.Siddiqui,Evaluating the mobility of toxic metals in untreated industrial wastewater sludge using a BCR sequential extraction procedure and a leaching test[J].Anal.Bioanal.Chem.2005,383,297-304.
    [68]V.Andreoni,L.Cavalca,M.A.Rao,G.Nocerino,S.Bernasconi,E.D.Amico,M.Colombo,L.Gianfreda,Bacterial communities and enzyme activities of PAHs polluted soils[J].Chemosphere 2004,57,401-412.
    [69]N.S.Bolan,R.Naidu,M.A.R.Khan,R.W.Tillman,J.K.Syers,The effects of anion sorption on sorption and leaching of cadmium[J].Aust.J.Soil Res.1999,37,445-460.
    [70]K.E.Giller,E.witter,S.P.Mcgrath,Toxicity of heavy meatals to microorganisms and microbial processes in agricultural soils:a review[J].Soil Biol.Biochem.1998,30,1389-1414.
    [71]A.Fuentes,M.Llorens,J.Saez,A.Soler,M.I.Aguilar,J.F.Ortuno,V.F.Meseguer,Simple and sequential extractions of heavy metals from different sewage sludges[J].Chemosphere 2004,54,1039-1047.
    [72]O.Reddlich,D.L.Peterson,A useful adsorption isotherm[J].J.Phys.Chem.63,1959-1024.
    [73]K.N.Ghimire,K.Inoue,K.Ohto,T.Hayashida,Adsorption study of metal ions onto crosslinked seaweed Laminaria japonica,Bioresour.Technol[J].2008,99,32-37.
    [74]A.Hetzer,C.J.Daughney,H.W.Morgan,Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G.thermocatenulatus [J],Appl.Environ.Microbiol.2006,72,4020-4027.
    [75]N.Rangsayatom,P.Pokethitiyook,E.S.Upatham,G.R.Lanza,Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silicagel [J],Environ.Int.2004,30,57-63.
    [76]A.Sari,M.Tuzen,Biosorption of cadmium(Ⅱ)from aqueous solution by red algae (Ceramium virgatum):equilibrium,kinetic and thermodynamic studies [J],J.Hazard.Mater.2008,157,448-454.
    [77]A.Sari,M.Tuzen,O.D.Uluozlu,M.Soylak,Biosorption of Pb(Ⅱ)and Ni(Ⅱ)from aqueous solution by lichen (Cladonia furcata)biomass [J],Biochem.Eng.J.2007,37,151-158.
    [78]L.Yang,J.P.Chen,Biosorption of hexavalent chromium onto rawand chemically modified Sargassum sp [J],Bioresour.Technol.2008,99,297-307.
    [79]K.G.Bhattacharyya,S.Sen Gupta,Adsorption of chromium(VI)from water by clays [J],Ind.Eng.Chem.Res.2006,45,7232-7240.
    [80]H.L.Chen,J.Yao,YX Wang,L.Tian,F.Wang,A.Djak,M.M.F.Choi,E.Bramanti,A microcalorimetric method for studying toxic effect of different diphenol species on the growth of Escherichia coli [J],J.Environ.Sci.Health,Part A.2007,42 (5),613-620.
    [81]F.Wang,J.Yao,Y.X.Wang,L.Tian,H.L.Chen,A.Djak,M.M.F.Choi,J.Stupar,Microcalorimetric investigation of the toxic effect of iron species on Escherichia coli [J],Toxicol.Mech.Method.2007,17,325-330.
    [82]G.Mathe-Gaspar,P.Mathe,L.Szabo,B.Orgovanyi,N.Uzinger,A.Anton,After-effect of heavy metal pollution in a brown forest soil [J].Acta.Biol.Szeged.2005,49,71-72.
    [83]B.L.Wu,G.M.Zhang,S.M.Shuang,C.Dong,M.M.F.Choi,A.W.M.Lee,A biosensor with myrosinase and glucose oxidase bienzyme system for determination of glucosinolates in seeds of commonly consumed vegetables [J].Sensor.Actuat.B-Chem.2005,106,700-707.
    [84]G.M.Zhang,D.S.Liu,S.M.Shuang,M.M.F.Choi,A homocysteine biosensor with eggshell membrane as an enzyme immobilization platform [J].Sensor.Actuat.B-Chem.2006,114,936-942.
    [85]D.Ivnitski,I.Abdel-Hamid,P.Atanasov,E.Wilkins,Biosensors for detection of pathogenic bacteria [J].Biosens.Bioelectron.1999,14,599-624.
    [86]X..F.Yang,Z.D.Zhou,D.Xiao,M.M.F.Choi,A fluorescent glucose biosensor based on immobilized glucose oxidase on bamboo inner shell membrane.Biosens [J].Bioelectron.2006,21,1613-1620.
    [87]Z.D.Nan,Y.Xiang,Z.Y.Wang,L.Lib,X.C.Zeng,H.L.Zhang,H.T.Sunc,L.Yu,Microcalorimetric investigation of growth conditions of petroleum bacteria [J].Thermochim.Acta.1999,338,1-6.
    [88]Z.Y.Li,Y.F.Qu,H.Q.Li,J.M.Yuan,Truncations of gelonin lead to a reduction in its cytotoxicity [J].Toxicology.2007,231,129-136.
    [89]J.W.McGrath,A.N.Kulakova,L.A.Kulakov,J.P.Quinn,In vitro detection and characterisation of a polyphosphate synthesising activity in the yeast Candida humicola G-1 [J].Res.Microbiol.2006,156,485-491.
    [90]M.V.Rouxa,M.Temprado,P.Jimenez,C.Foces-Foces,M.V.Garc'ia,M.Redondo,I.2-and 3-furancarboxylic acids:a comparative study using calorimetry,IR spectroscopy and X-ray crystallography [J].Thermochim.Acta.2004,420,59-66.
    [91]J.Liu,J.M.Yao,Study on mutagenic breeding of bacillus subtilis and properties of its antifungal substances [J].Plasma Science & Technology,2004,4 (6),2433-2436.
    [92]K.Vig,M.Megharaj,N.Sethunathan,R.Naidu,Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review [J].Adv.Environ.Res.2003,8,121-135.
    [93]R.G.Martinek,A rapid ultraviolet spectrophotometric lactic dehydrogenase assay [J].Clin.Chim.Acta.1972,40,91-99.
    [94]G.S.Wang,S.T.Hsieh,Monitoring natural organic matter in water with scanning spectrophotometer [J].Environ.Int.2001,26,205-212.
    [95]J.C.R.Garcia,J.B.Garcia,C.H.Latorre,M.F.Rodriguez,S.G.Martin and R.M.P.Crecente,Comparison of palladium-magnesium nitrate and ammonium dihydrogenphosphate modifiers for cadmium determination in honey samples by electrothermal atomic absorption spectrometry [J].Talanta.2003,61 509-517.
    [96]P.Vi(?)as,M.Pardo-Martinez,M.Hernandez-Cordoba,Rapid determination of selenium,lead and cadmium in baby food samples using electrothermal atomic absorption spectrometry and slurry atomization [J].Anal.Chimica Acta.2000,412,121-130.
    [97]J.P.Xu,Microbial ecology in the age of genomics and metagenomics,concepts,tools,and recent advances [J].Mol.Ecol.2006,15 (7),1713-1731.
    [98]R.M.Zhao,Y.Liu,Z.X.Xie,P.Shen,S.S.Qu,A microcalorimetric method for studying the biological effects of La~(3+)on Escherichia coli [J].Biochem.Biophys.Methods.2000,46,1-9.
    [99]W.T.Qi,W.T.Yu,Y.B.Xie,X.J.Ma,Optimization of Saccharomyces cerevisiae culture in alginate-chitosan-alginate microcapsule [J].Biochem.Eng.J.2005,25,151-157.
    [100]M.Ramadas,W.Paul,K.J.Dileep,Y.Anitha,C.P.Sharma,Lipoinsulin encapsulated alginate-chitosan capsules:intestinal delivery in diabetics rats [J].J.Microencapsul.2000,17,405-411.
    [101]M.V.Sefton,R.M.Dawson,R.L.Broughton,J.Blysniuk,M.E.Sugamori,Micro-capsulation of mammalian cells in a water insoluble polyacylate by coextrusion and interfacial precipitation [J].Biotechnol.Bioeng.1987,29,1135-1143.
    [102]V.Andreoni,L.Cavalca,M.A.Rao,G.Nocerino,S.Bernasconi,E.D.Amico,M.Colombo,Gianfreda,L.Bacterial communities and enzyme activities of PAHs polluted soils [J].Chemosphere 2004,57,401-412.
    [103]S.Astolfi,S.Zuchi,C.Passera,Effects of cadmium on the metabolic activity of Avena sativa plants grown in soil or hydroponic culture [J].Biol.Plantarum 2004,3,413-418.
    [104]M.M.Bradford,A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding [J].Anal.Biochem.1976,72,248-254.
    [105]G.G.Fox,R.G.Ratcliffe,S.A.Robinson,G.R.Stewart,Evidence for the determination by glutamate dehydrogenase in higher plants:commentary [J],Can.J.Bot.1995,73,1112-1115.
    [106]M.Majewska,E.Kurek,Effect of microbial activity on Cd Sorption/Desorption processes in soil polluted with various Cd sources [J].Geophys Res.2005,7,304-332.
    [107]O.V.Singh,S.Labana,G.Pandey,R.Rudhiraja,R.K.Jain,Phytoremediation:an overview of metallic ion decontamination from soil.Appl.Microbiol [J].Biotechnol.2003,61,405-412.
    [108]V.N.Pishchik,N.I.Vorobyev,I.I.Chernyaeva,S.V.Timofeeva,A.P.Kozhemyakov,Y.V.Alexeev,S.M.Lukin,Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress [J].Plant Soil 2002,243,173-186.
    [109]E.Kurek,RKaczorowska,I.Nadulska,E.Ochal,Retention of Cd by soil constituentsconditions [J].Chemosphere 1996,33,277-284.
    [110]R.Maso,M.Silvia,B.Claudia,T.Lorenza,S.Annalisa,R.Claudio,Inhibition elects of ethanol on the kinetics of glucose metabolism by S.cerevisiaevisiae:NMR and modelling study [J].Chem.Phys.Lett.2004,387,377-382.
    [111]C.A.McKnight,A.Ku,M.F.A.Goosen,D.Sun,C.J.Penney,Synthesis of chitosan-alginate microcapsule membrane [J].J.Bioact.Compat.Polym.1988,3,34-55.
    [112]S.Prakash,T.M.S.Chang,In vitro and in vivo uric acid lowering by artificial cells containing microencapsulated genetically engineered E.coli DH5 cells [J].Int.J.Artif.Organs 2000,23,429-435.
    [113]W.T.Qi,J.Ma,Y.W.Liu,X.D.Liu,Y.Xiong,Y.B.Xie,Insight into permeability of protein through microcapsule membranes [J].J.Membrane Sci.2006,269 (1-2),126-132.
    [114]W.T.Qi,W.T.Yu,Y.B.Xie,X.J.Ma,Optimization of Saccharomyces cerevisiae culture in alginate-chitosan-alginate microcapsule [J].Biochem.Eng.J.2005,25,151-157.
    [115]M.Ramadas,W.Paul,K.J.Dileep,Y.Anitha,C.P.Sharma,Lipoinsulin encapsulated alginate-chitosan capsules:intestinal delivery in diabetics rats [J].J.Microencapsul 2000,17,405-411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700