大厂100(105)号锡石多金属矿选矿关键技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广西大厂矿区所属100(105)号矿体是一个生成在生物礁灰岩内的锡石—硫化矿类型特富矿床。本文对锡石-铅锑锌多金属硫化矿的硫化矿物、锡石进行了浮选试验和理论研究。在此基础上,进行了硫化矿浮选、磁选和细粒锡石浮选流程结构的设计,实施了工业试验和现场流程改造。通过理论研究,开展大厂100(105)号矿选矿优化流程研究,总结了提高现场指标的多项关键技术。
     对100(105)号矿体特有的硫化矿物的浮选行为进行研究,在酸性条件下,脆硫锑铅矿、铁闪锌矿与磁黄铁矿、黄铁矿等四种矿物均有较好的可浮性,在强碱性介质中,矿物的可浮性都变差。少量的Cu~(2+)可强烈地活化铁闪锌矿;矿浆电位对四种矿物的浮选有明显的影响,不同硫化矿浮选有不同的电位区间。对于受Cu~(2+)活化和吸附有黄药的铁闪锌矿、磁黄铁矿和黄铁矿,采用高石灰用量、高pH矿浆和适当的电位环境,可有效地抑制磁黄铁矿、黄铁矿。
     应用浮选、磁选新工艺,进行大厂100(105)号特富矿铅(锑)锌硫化矿的分离研究。采用粗粒浮选工艺,将硫化矿脱除,然后采用重选回收锡石,硫化矿的浮选分离主要分为铅(锑)-锌硫浮选分离、锌硫浮选分离两大工艺。主要研究内容有:(1)矿浆pH值对锑铅浮选的影响;(2)焦亚硫酸钠、硫酸锌、CDP、对抑制锌硫的影响;(3)组合捕收剂对锑铅浮选的影响;(4)锌硫浮选分离。
     通过热力学计算,建立了几种硫化矿物在不同体系中的电位E—pH图,推测了各硫化矿物在水溶液体系中表面氧化产物类型,随着pH升高、电位Eh增加,其表面氧化产物由疏水性的元素S~0向亲水性的S_2O_3~(2-)、金属氢氧化物等转换。在不同的体系中,对导电性较好的硫化矿物进行了系统的电化学测试分析,推测矿物电极表面氧化反应历程和氧化产物类型,在不同的pH值条件和扫描电位下,表面氧化产物及捕收剂作用产物各不相同,可以推断其发生的反应历程与Eh-pH图的预测基本一致。
     结合现场生产工艺的不足,以药剂开发为主要手段,对100(105)号矿的微细粒锡石进行试验回收研究和理论探讨,重点研究了回收微细粒锡石的高效捕收剂-SR(一种烃基羟肟酸),借鉴凝聚浮选、分散、载体浮选等先进技术,开发合理的浮锡新工艺。根据大厂100(105)号矿石细粒锡石性质,采用新的组合药剂进行浮选,不脱出-10微米粒级的矿泥,使得细粒锡石选择性凝聚浮选。工业应用结果表明:应用新工艺和新药剂浮选锡石细泥,锡精矿品位达到11.43%,作业回收率达到88.72%,对原矿回收率达到4.05%,目前的工业应指标已经满足了市场的质量品级的要求。在理论上,用红外光谱、Zeta电位测定对SR在锡石上的作用进行了定性研究,查明SR在锡石表面作用机理。
     大厂100(105)号矿中有价主金属为锡锌铅锑银。本文在系统的理论和选矿小型试验、扩大试验基础上进行了选矿流程优化,其技术特点为:(1)采用预先筛分、阶段磨矿、新型的高频细筛和第二段磨矿用铸铁段代球等项技术减少锡石过粉碎,大幅度减少锡石泥化;(2)在流程前部用磁选(入选粒度为-1.43mm)选出产率约25%的磁性物,排除磁黄铁矿对浮选和摇床选别的干扰,并且提高选厂的处理能力;(3)采用、浮选流程强化脱硫,为重选回收锡石创造条件,并且选定入选粒度为-0.25mm兼顾硫化矿浮选和摇床收锡对粒度的要求;(4)采用国内外首创的高碱无氰从脆硫锑铅矿、铁闪锌矿、磁黄铁矿和黄铁矿的混合精矿中优先选铅锑精矿新工艺,铅硫分离作业回收率达到国际先进水平。现工艺流程基本解决的锡石与硫化矿和脉石的分离及硫化矿之间的分离的关键技术。指标为:原矿锡石品位1.96%,锌8.72%,铅3.74%,锑3.87%,银140g/t;精矿品位锡(粗砂)54.92%,锌45.12%,铅锑精矿含铅29.13%,含锑25.49%;锡锌铅锑银五种金属选矿综合回收率78.88%,其中锡回收率83.72%(主流程76.70%,尾矿再选7.02%)。伴生的铟富集于锌精矿中(铟品位0.094%),选矿废水全部回用,达到了国内外同类矿石选矿的先进水平。
Dachang Tin-polymetallic ore field is located in the northwestern part of Guangxi.No.100 and No.105 ore body of Dachang Tin-polymetallic deposit should be a ore body from everywhere,and sets up and testifies the new viewpoint.No.100(105)ore body of the Dachang mine is rich in Sn,Zn,Pb,Sb,Ag,In,Cd and Au,which are of great comprehensive recovering value.
     In this thesis,the beneficiation of No.100 and No.105 ore body of Dachang tin-polymetallic deposit was studied.The beneflcation flow was designed,revised,and practical experiments were carried out.Based on the flotation theory of sulfide minerals,the mechanism of sulfide flotation and its practical application was studied.
     The flotation tests of jamesonite,marmatite,pyrite and pyrrhotite were performed.The relationship of pulp potential and the pulp pH value and the concentration of collector is the crux factor of flotation.The relationship between pH value and concentration of collector(C)and floatability of forth sulfide minerals,which include jamesonite,marmatite, pyrite and pyrrhotite,were discussed.When the pulp pH value range is lower than 7.0,sulfide minerals haves well floatability.When the pulp pH value is above 12,the pyrite and pyrrhotite cannot be floated easily in the presence of CuSO_4 and xanthate used as a activator and collector respectively.
     The dominant parameters of sulfide mineral floatation system were ascertained.Effective recovery of the valuable minerals can be achieved by processing the ore from No.100(105)ore body using the preferential-bulk flotation flowsheet.During the process of sulfide minerals of No.100 and No.105 ore body floatation,several important parameters including pulp pH value,depressers,collectors,flotation time and the flow structure were controlled and adjusted.
     Through the thermodynamic calculation,the Eh—pH equilibrium of jamesonite,marmatite,pyrite and pyrrhotite in the absence or presence of collector were set up.In acid solution,the oxidative product is neutral sulfur but S_2O_3~(2-)ion,Fe(OH)_2 etc.The Voltammogram measurement showed that the products formated by the surface oxidation of sulfide minerals were different,and the processes of the reaction were in keeping with the calculation results of the E—pH equilibrium.
     The cassiterite slime of Dachang industry contains a variety of sulfide minerals and gangues including quartz and calcite.A little of the ore particles of slime are minor than 10μm,in which the content of tin is large.Theory analysis and flotation test of slime,mineral and mixed ore were carried out in this thesis.A new kind of the collector of benzohydroxamic(SR),and the depressant of quartz and calcite and P86 were used in flotation separation of cassiterite from slime.It was shown that benzohydroxamic is a stronger collector for cassiterite,and the pH range of efficient flotation for cassiterite is much wide.P86 can improve the interaction of benzohydroxamic with cassiterite,and it reduce the consume of benzohydroxamic in flotation processing.The adsorption mechanism of benzohydroxamic on cassiterite was studied by the determination of the infraed spectra,zeta potential measurement.It was indicated that benzohydroxamic is chemically adsorbed on the surface of cassiterite.The grade of Sn concent ate is 11.43%with the recovery of 88.72%.
     No.100 and No.105 ore body of Dachang is tin-polymetallic ore.In the new process,the grinding size is controlled at - 0.25mm and the principle p rocess f low is magnetic separation flotation-gravity separation.In magnetic separation,magnetite is separated out to eliminate its effect on sulfide flotation;in flotation,the selective flotation of Pb, Sb-bulk flotation-separation of Zn from S is applied;in gravity separation, concentrating table is applied to recover cassiterite in tailings from flotation.Application of this process in Bali Mineral Processing Plant indicates that the technology is reasonable and production indexes have reached design requiremen t.When the original grade of metals were: Pb3.74%,Sb3.87%,Zn8.72%and Sn1.96%,the grade of Sn concentrate is 54.92%with the recovery of 83.72%;the Pb,Sb concentrate contains 29.13%Pb,25.49%Sb,recovery 84.78%and the grade of Zn concentrate is 445.12%w ith the recovery 82.10%.Waste water was recycled in the flow.By adding flocculate reagents with high molecular weight in the major flow,the water was purified and recycled.The recycling rate was over 100%.
引文
[1]胡为柏,浮选,北京:冶金工业出版社,1982年
    [2]大厂矿物局,大厂锡石-多金属硫化矿浮选分离的新工艺报告,1998年
    [3]柳州华锡集团,中南大学,大厂贫锡多金属硫化矿选矿关键技术研究与应用研究报告,2004年
    [4]王濮等,系统矿物学(上册),北京:地质出版社,1982年
    [5]Lager T,Forssberg E,Comparative study of the flotation properties ofjamesonite and stibnite,Scandinavian Journal of Metallurgy,1989,18(3):122-130
    [6]Lager T,Forssberg E,Beneficiation characteristics of antimony minerals,Mineral Engineering,1989,2(3):321-336
    [7]邓海波,许时,脆硫锑铅矿的浮选机理和铁闪锌矿的分离,有色金属(选矿部分),1988(5):32-35
    [8]冯其明.硫化矿物浮选矿浆电化学理论和工艺研究[D].长沙:中南工业大学博士论文,1990年
    [9]刘如意等,锑铅锌多金属硫化矿综合利用工艺的研究与实践,有色金属(选矿部分),1994(4):34-36
    [10]Qiu Guanzhou,Yu Runlan,Hu Yuehua,Qin Wenqing,Corrosive electrochemistry of jamesonite,Trans.Nonferrous Met.Soc.China,2004,14(6):1169-1173
    [11]余润兰、邱冠周、胡岳华、覃文庆,脆硫锑铅矿在乙硫氮-饱和Ca(OH)_2体系中的电化学,中国有色金属学报,2004,14(10):1763-1769
    [12]张起钻,广西大厂锡多金属矿田100号矿地质特征及成矿机理探讨,矿产与地质,1999(6):34-36
    [13]王群,亚硫酸盐对铜离子活化的闪锌矿及铁闪锌矿抑制作用的研究,中南矿冶学院学报,1985(3):126-134
    [14]苏思平,吴伯增,车河选矿工艺流程改造实践,有色金属(选矿部分),2001(1):5-8
    [15]吴伯增,邱冠周,覃文庆,陈建明,丁黄药体系铁闪锌矿的浮选行为与电化学研究,矿冶工程,,2004,6:35-39
    [16]宋卫锋,(铁)闪锌矿铜离子活化的电化学研究,中南工业大学硕士学位论文,1999年
    [17]浦家杨等,闪锌矿的物理化学特性及其浮选行为的研究,国外金属矿选矿,1985(5):33-42
    [18]Marouf B and Solecki J,Copper ion activation of synthetic sphalerite with various ion contents,International Journal of Mineral Processing,1982(4):38-52
    [19]张芹,胡岳华,顾帼华,徐竞,铁闪锌矿的浮选行为及其表面吸附机理,中国有色金属学报,2004,4:456-459
    [20]W·Z·申,李长根,林森,亚硫酸钠存在时闪锌矿和黄铁矿的浮选,国外金属矿选矿,2003,11:23-30
    [21]广西大厂矿务局,大厂100号特富矿矿体选矿优化流程研究报告,广西大厂矿务局,1995
    [22]王群,关于黄原酸盐-亚硫酸盐体系中闪锌矿及铁闪锌矿浮选行为的研究,中南工业大学硕士论文,1985
    [23]Marouf B,Solecki J,Copper ion activation of synthetic sphalerite with various ion contents,International Journal of Mineral Processing,1982(4):38-52
    [24]Popov S R et al.The ethylxanthate adsorption on copper-activated sphalerite under flotation-related and it ions in alkaline media,International Journal of Mineral Processing,1990(3):229-244
    [25]T·N·赫麦列娃,陈云,李长根,亚硫酸氢钠对被铜离子活化的闪锌矿无捕收剂浮选的抑制机理,国外金属矿选矿,2005,11:12-18
    [26]余润兰,邱冠周,胡岳华,乙硫氮在铁闪锌矿表面吸附的电化学行为及机理,中国有色金属学报,2005年,9:989-992
    [27]胡锦华,国外无氰浮选现状,国外金属矿选矿,1990(10):35-42
    [28]冯其明,陈荩,硫化矿物浮选电化学,长沙:中南工业大学出版社.1992年
    [29]Hamilton I C and woods R,Proceedings of the International Symposium on Electrochemistry in Mineral and Metal Processing,Electro.Chem.Soc.,1985,84-10:259-285.
    [30]Poling G W,Beattie M J V,Selective depression in complex sulphide flotation.In "Principle of flotation ",The walk symposium,Jones,M.H.,woodcock,J.T.,eds:Proceedings of Austrian institute of mining and metallurgy.Parkville,Vie,Australia,1984,137-146.
    [31]孙水裕、李柏淡、王淀佐,硫化矿浮选抑制的电化学研究,有色矿冶,1990,2:16-19
    [32]孙水裕,王淀佐,李柏淡,闪锌矿的电化学调控浮选,中国有色金属学报,1992,2(2)21-25
    [33]Rao S R ahd Finch J A,Electrochemical studies on the flotation of sulphide minerals with special reference to pyrite-sphalerite,Ⅱ.Flotation studies.Can.Metall.Q.,1987,26:173-175
    [34]芦荫芝,探讨铜锌分离电化学新工艺,国外金属矿选矿,1994,1:1-3
    [35]松全元.二氧化硫对闪锌矿可浮性影响的研究,国外金属矿选矿,1983(1):51-58
    [36]Trahar W J,Senior G.D,Heyes G.W and Creed M D,The activation of sphalerite by lead--a flotation perspective,Int.J.Miner.Process,1997,49:121-148.
    [37]Mory M S,Grano S R,Ralston J,Prestidge,C.A.and Verity,B.,The Electrochemistry of Pb ~ⅡActivated Sphalerite in Relation to Flotation,Minerals Engineering,2001,14(9):1009-1017
    [38]Andrea P G.,Angela G L,Athryn E P K and Roger C S,The mechanism of copper activation of sphalerite
    [39]Perry D L,Tsao L and Tayolr L A,Surface studies of the Inter- action of Copper ions with metal sulfide minerals[A].Proceedings-The Electrochemical Society,1984(10):169-184
    [40]石桂珍等,提高大厂矿务局车河选矿厂锌选别指标的研究报告,广州有色金属研究院,1992
    [41]覃文庆等,对黄药在磁黄铁矿电极表面的电化学形成及吸附研究,中国矿业,1999,8(1):73-76
    [42]覃文庆等,黄药体系磁黄铁矿电极表面双黄药的稳定性及其浮选研究,中国矿业,1999,8(4):47-49
    [43]Steger H F,Oxidation of sulfide minerals,Ⅶ.Effect of Temperature and Relative Humidity On the Oxidation in of Pyrrhotite,Chem.Geol.,1982,35:281-295
    [44]Heyes G.W and Trahar W J,The Flotation of Pyrite and Pyrrhotite in the Absence of Conventional Collectors,Proceeding-The electrochemical society,1984,10:219-232
    [45]Qin Wenqing,Li Quan,Qiu Guanzhou,Xu Benjun,Electrochemical oxidation of pyrrhotite in aqueous solution,Trans.Nonferrous Met.Soc.China,2005,15(4):922-925
    [46]Li Weizhong,Qin Wenqing,Qiu Guanzhou,Dong Qinghai,Electrode process of diethyldithiocarbamate on surface of pyrrhotite,Journal of Central South University of Technology,2005,12(4):416-419
    [47]杨菊,吴熙群,李成必,难选磁黄铁矿浮选工艺研究,有色金属(选矿部分),2002(4):11-13
    [48]克利伯克等,使用二氧化硫一二乙撑三胺组合药剂选择性抑制磁黄铁矿,国外金属矿选矿,1997(6):20-27
    [49]张芹,胡岳华,顾帼华,磁黄铁矿与乙黄药相互作用电化学浮选红外光谱的研究,矿冶工程,2004(5):42-44
    [50]周廷熙,都龙矽卡岩型锌锡多金属硫化矿选矿工艺研究,国外金属矿选矿,1998(5):25-26
    [51]Qin Wen-qing,Qiu Guan-zhou and Xu Jing,Electrodeposition of dixanthogen on surface of pyrrhotite electrode,Trans.Nonferrous Met.Soc.China,2000,Vol.10:61-64
    [52]陈金中,宣道中,铁闪锌矿与磁黄铁矿浮选分离新方法研究,有色金属,1994,46(1):34-39
    [53]Qin Wenqing,Qiu Guan-zhou,Xu Jing,Hu Yuehua,Electrochemical interaction of contacting sulfide particle and its effect on flotation,40~(th)annual Conference of Metallurgists in Toronto,Canada Aug 2001:36-39.
    [54]Qin Wen-qing,Qiu Guan-zhou,Hu Yue-hua,Galvanic interaction of contacting sulfide particle and its effect on flotation,Trans.Nonferrous Met.Soc.China.1998,8(4):456-459
    [55]Hamilton C and Woods R,An investigate of surface oxidation of pyrite and pyrrhotite by linear potential sweep voltammetry.Journal of electroanalytical chemistry,1981,118:327-343
    [56]Valli M,Persson I,A vibration and X-ray photoelectron spectroscopic study of the interaction between chalcopyrite,marcasite,pentlandite,pyrrhotite and troilite,and ethylxanthate and decylxanthate ions in aqueous solution,Colloids and Surfaces A:Physicochemical and Engineering Aspects,1994,83(3):207-217
    [57]Browner R E and Lee K H,Effect of pyrrhotite reactivity on cyanidation of pyrrhotite produced by pyrolysis of a sulphide ore,Mineral Engineering,1998,11(9):813-817
    [58]Pratt A R,Muir I J and Nesbitt H W,X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation,Geochimica et Cosmochimica Acta,1994,58(2):827-833
    [59]Buswell A M,Bradshaw D J,Harris P J and Ekmekci Z,The use of electrochemical measurements in the flotation of a platinum group minerals(PGM)bearing ore,Minerals Engineering,2002,15(6):395-404
    [60]Buckley A N and Woods R,An investigation of surface oxidation of pyrite and pyrrhotite by linear sweep voltammetry.J.Eletroanal Chem.,1981,327:118-125
    [61]Derek J and Ome y.锡、钨、铌和钽矿石重选中的技术、经济的和其它因素, 国外金属矿选矿,1983(8):16-22
    [62]张文彬,非硫化矿与复合矿的浮选,国外金属矿选矿,1992(8):24-30
    [63]喻坚意,微细粒锡石回收工艺,矿产综合利用,1994(3):12-15
    [64]卢寿慈,翁达,界面分选理论与应用,北京:冶金工业出版社,1992年
    [65]王淀佐.浮选药剂作用原理及应用[M].北京:冶金工业出版社,1982年
    [66]王淀佐,林强,蒋玉仁.冶金药剂的分子设计[M].北京:冶金工业出版社,1996年
    [67]戴子林,朱建光,锡石与方解石的分选研究,中南工业大学硕士学位论文,1987年
    [68]Collins D N,Investigation of collector systems for the flotation of cassiterite,Trans.Instn.Min.Metall.,1967(76):77-93
    [69]Gutierez G and Prommier L W,Studies on cassiyerite flotation from Bolivia ores,A Second Technical Conference on Tin,1969(3):917-935
    [70]荷倚夫,利用络合烷基羟肟酸的作用特性改进莱比稀有金属矿石的选矿工艺,国外金属矿选矿,1972(2):14-2
    [71]罗家柯,异羟肟酸合成及其在浮选中的应用,国外金属矿选矿,1983(2):7-17
    [72]Fuerstenau D W etal.,Mineral flotation with hyclroxamate collectors,Reagents in the Mineral Industru,IMM,Edited by Jones M J and Oblatt R,1984,161-168
    [73]陈竞清等,锡石捕收剂-水杨羟肟酸,有色金属(选矿部分),1987(3):26-30
    [74]刘捷芳,细粒锡石浮选的新药剂,浮选理论与实践学术会议论文集,1988,61-63
    [75]大厂矿物局试验所,大厂锡石浮选实践,有色金属(选矿部分),1979(6):34-40
    [76]伍喜庆,锡石、菱锌矿捕收剂羟肟酸的研究,中南工业大学硕士学位论文,1988年
    [77]Vivian A C,Flotation of tin ores,Mineral Engineering,1977(36):348-352
    [78]大厂细泥锡石回收新技术研究工业试验报告,北京有色金属研究总院,2000年
    [79]刘如意,周为吉,李高轩,吴胜儒,袁邦锑,杨祖谦,低品位锑铅锌多金属硫化矿选矿研究与生产实践,有色金属(选矿部分),1994(6):1-6
    [80]刘亮,伍平,银铅锑和锌的无氰浮选分离工艺研究,有色金属(选矿部分),1994(3):45-48
    [81]黎性海,巴里硫化矿物浮选分离工艺研究,有色金属(选矿部分),1992(2):22-25
    [82]张芹,胡岳华,顾国华.脆硫锑铅矿与磁黄铁矿在石灰介质中的浮选分离研究.矿冶工程,2004,24(2):30-32
    [83]广西大厂矿务局,大厂100号特富矿+400m矿体选矿优化流程研究报告,1996
    [84]姚意莎,覃朝春,广西大厂锡石.多金属硫化物矿床100号矿体物质成分研究,矿产与地质,2002,16(5)281-286
    [85]Paulica etal,在铅锌优化浮选中使用FeSO_4/NaCN,国外金属矿选矿,1992(2):34-37
    [86]J 张兴琼,提高大厂91号富矿铟锌精矿质量的研究及应用,矿冶,2000,9(4):1-4
    [87]大厂矿物局,巴里选矿厂锡石-多金属硫化矿浮选分离的新工艺报告,1998年
    [88]广西大厂矿务局,大厂100号特富矿+400m矿体选矿优化流程研究报告,1996
    [89]张兴琼,大厂100号矿体硫化矿浮选的合理工艺,矿冶工程,2000,20(1):26-28
    [90]吴伯增,大厂贫锡多金属硫化矿选矿关键技术研究及应用,中南大学博士学位论文,2005年
    [91]王淀佐,浮选理论的新进展,北京:科学出版社,1992年
    [92]王淀佐,浮选工艺及浮选剂的发展和新概念,湖南冶金,1983(5):8-14
    [93]蓝方钊等,硫酸锌和氯化铵在铅锌分离中的应用,有色金属(选矿部分),1991(1):11-16
    [94]Paulica J et al,在铅锌优化浮选中使用FeSO_4/NaCN,国外金属矿选矿,1992(2):34-37
    [95]李正勤,铅锌硫化矿无氰浮选分离实践,有色金属(选矿部分),1986(6):3-5
    [96]王淀佐,林强,选矿、冶金药剂的分子设计,长沙:中南工业大学出版社,1998年
    [97]哈兹米哈诺布尔,利用浮选新药剂YYYK制定多金属矿选矿无氰工艺,矿冶,1994(4):23-27
    [98]浮选分离多金属硫化矿石用的抑制剂,美国专利,No.504961
    [99]Bessonov S V,应用碳酸钙作调整剂混合浮选铜锌矿石,国外金属矿选矿,1994(7):22-25
    [100]张芹,胡岳华,顾国华.铁闪锌矿的浮选行为及其表面吸附机理.中国有色金属学报,2004,14(4):676-680
    [101]D K Sengupta等,用阴离子和阳离子染料浮选硫化矿物,国外金属矿选矿,1989(8):33-35
    [102]李波,234捕收剂浮选闪锌矿实践,有色金属(选矿部分),1985(6):58-60
    [103]P Solozhenkin.复杂锑矿石的浮选[J].国外金属矿选矿,1993,2:15-19
    [104]吴若琼,加温通二氧化硫浮选锌精矿,有色金属(选矿部分),1991(1):43-46
    [105]Finkelstein N P,Addendum to:the activation of sulphide minerals for flotation:a review,International Journal of mineral processing,1999,55:283-286
    [106]Mory,M.S.,Grano,S.R.,Ralston,J.,Prestidge,C.A.and Verity,B.,The Electrochemistry of Pb~Ⅱ Activated Sphalerite in Relation to Flotation,Minerals Engineering,2001,14(9):1009-1017
    [107]覃文庆,硫化矿颗粒的电化学行为与电位调控浮选技术,北京,高等教育出版社,2001
    [108]王淀佐,矿物浮选与浮选剂,长沙:中南工业大学出版社,1986年
    [109]孙水裕,硫化矿的浮选电化学及无捕收剂浮选,中南工业大学博士学位论文,1991年
    [110]王淀佐.浮选捕收剂发展的三个阶段及其特征规则.中国矿冶学院学取.1983年,增刊第1期
    [111]Taggart A F,Guidice G R M and Ziehl O A.The case of the chemical theory of flotation[J].Trans.Inst.Min.Metall.,1934,112:348-381
    [112]孙水裕,电位控制下黄铜矿和黄铁矿的无捕收剂浮选分离,中南矿冶学院学报,1993,24(4):466-471
    [113]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988
    [114]Woods R,Richardson P E,The Flotation of Sulphide Minerals-electrochemical Aspects.In:P.Somasundaran(ed.)Advance in Mineral Processing,SME.1986,154-170
    [115]Labonte C,Sandoval I,Some Observation on Copper-Zinc Separation from Complex Ores.In:G.S.Dobby and S R.Rao(eds.),Processing of Complex Ores,Pergamon Press.New York.1989,193-202
    [116]孙水裕,黄铜矿-方铅矿浮选分离的电化学,中南工业大学硕士学位论文,1987年
    [117]Hu Qingchun,Wang Dianzuo and Li Baidan,Electrochemical-investigation of the diethyldithiocarbamate-galena flotation system,International Journal of Mineral Processing,1992,34(4):289-305
    [118]Palsson B anf Forssbery E,Computer Assisted Calculation of Thermodynamic Equilibrium in Galena-Ethyl Xanthate System,Int.J.Min.Proess,1988(23):93-121
    [119]俞瑞,电化学处理在选矿工艺中的应用,国外金属矿选矿,1996,10:1-7
    [120]Salamy S G et al.The application of electrochemical methods to flotation research,Recent developments in mineral dressing(Institution of Mining and Metallurgy)London,1953:503-509.
    [121]孙水裕等,方铅矿自诱导浮选的电化学和量子化学研究,有色金属(季刊),1993,45(2):32-36
    [122]孙水裕,王淀佐,李柏淡,黄铜矿自诱导浮选的研究,有色金属(季刊),992,44(2):17-29
    [123]王淀佐,顾帼华,高碱乙硫氮体系方铅矿的电位调控浮选,中国有色金属学报,1998,8(2):322-326
    [124]顾帼华,刘如意,电位调控浮选技术提高北山铅锌矿指标的研究,矿冶工程,1997,17(3):27-31
    [125]顾帼华.硫化矿磨矿-浮选体系中的氧化-还原反应与原生电位浮选{D}.中南工业大学博士论文,1998年
    [126]柳州华锡集团,中南大学,降低硫化矿含锡提高选矿回收率工业试验及应用报告,2004年
    [127]柳州华锡集团,中南大学,车河选厂微细粒铅锌浮选回收研究及工业试验报告,2004年
    [128]余润兰、邱冠周、胡岳华、覃文庆,脆硫锑铅矿在乙硫氮-饱和Ca(OH)_2体系中的电化学,中国有色金属学报,2004,14(10):1763-1769
    [129]柳州华锡集团,中南大学,提高大厂锡细泥回收指标研究工业试验报告,2003年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700