内蒙古龙头山Ag-Pb-Zn多金属矿床成矿模式及找矿模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来的研究表明,大兴安岭中南段成矿带具海西期和燕山期两期成矿特征,区内多数矿床与二叠系地层关系密切,2004年新发现的龙头山矿床即为产于其东坡二叠系地层的一个资源潜力可观的Ag-Pb-Zn多金属矿床。该矿床成矿区位优越,研究历史处于空白,具有重要研究价值。本论文在深入细致地野外地质工作基础上,确立了其“两期成矿,三类矿化”的地质特征,进而通过微量、稀土元素,硫、铅、锶同位素等矿床地球化学研究,以及流体包裹体岩相学、显微测温、激光拉曼分析和包裹体热力学计算等研究,探讨了其成矿物质和成矿流体的来源及特征,并且尝试将单颗粒Rb-Sr等时线测年新技术用于确定其成矿时代。在上述工作基础上,开展了比较矿床学研究,并总结了成矿控制因素和地质找矿标志,最后建立了该矿床的成矿模式和找矿模型,并据此提出下一步找矿工作方向。论文取得的主要成果如下:
     1、龙头山矿床经历了热水沉积-热液改造两期成矿作用,共发育(似)层状、脉状(透镜状)和筒柱状三类矿化,其主成矿期为热水沉积成矿期。
     2、矿床地球化学研究表明,金属硫化物具热水沉积成矿作用特征,但普遍受后期热液改造作用影响;重晶石矿物同位素组成均一,具海底热水沉积成因特征;灰岩、凝灰岩等围岩是成矿物质来源之一;Pb模式年龄以及Rb-Sr等时线研究均得出比地层更老的年龄值,可能是因为受热液改造期影响,并有古老基底物质带入。
     3、龙头山矿床重晶石矿物中的流体包裹体主要为富气相(C型)和富液相(D型)两种类型,大小均为2~7um,包裹体成分以H2O为主。两类包裹体冰点温度为-5.5℃~-0.3℃和-7.1℃~-2.4℃;盐度为0.5~8.5wt%和4.0~10.6wt%;均一温度为101.4℃~279.9℃和176.8℃~361.6℃,其峰值在170℃和270℃附近。成矿流体的密度为0.73~0.97g/cm3,成矿压力为62.3×105~377.9×105Pa,推测成矿深度为0.62~3.78Km。包裹体的上述特征与海底热水沉积型矿床的特征比较符合。
     4、通过比较研究,认为龙头山矿床具备热水沉积型矿床的主要特征,总结了矿床的控矿因素和找矿标志,建立成矿模式和找矿模型,最后提出了下一步找矿工作方向。
The recent years research indicated that middle-south section of Da Hinggan Mountains metallogenic belt has two periods(Hercynian and Yanshanian) characteristics of metallogenesis, as well as the most of ore deposits in the area closely relate to Permian strata. Longtoushan ore deposit discovered in 2004 is an Ag-Pb-Zn polymetallic ore deposit born in Permian and located in the east hillside of the metallogenic belt, which has considerable resources potentials. It has important research value for its good metallogenic location and blank research history. Base on the detail field geology studies, the geology characteristics of“two stages and three kinds of metallogensis”has established. According to further work through geochemistry research including trace element,REE, S, Pb and Sr isotope,as well as petrography, microtemperature measurement, Laser Raman analysis and thermodynamics calculation of fluid inclusion, origin and characteristic of the ore-forming material and fluid has been discussed. And a new technology of single pellet Rb-Sr isochrones has been tried for dating its born time. Base on above work, study of ore deposit comparison has been carried out, and metallogensis controlling factor and geological prospecting symbol have been summarized. Finally, metallogenic model and prospecting model have been established. According to above, the next step work direction has been proposed. Main achievement of the paper are listed as follow:
     1、Longtoushan ore deposit has experienced two metallogenic periods including hot-water sedimentation period and hydrothermal reformation period. There are three kinds of metallizing phase: bedded(or near-bedded) phase, vein-shaped phase and pipe-shaped phase. The main metallogenic period is hot-water sedimentation period.
     2、Ore deposit geochemistry research indicated that the metal sulfides have characteristic of hot-water sedimentation metallogensis, but generally suffered later hydrothermal transformation. The barite mineral isotopic content is homogeneous, showing the seabed hot-water sedimentation origin characteristic. Wall rock, such as limestone and tuff are one of metallogenic material origins. Both of Pb model age and Rb-Sr isochrone research obtained older age value than that of strata, possibly for been influenced by hydrothermal transformation, and interfusion of ancient basis material.
     3、There are two kinds of main metallogenic fluid inclusion in barite of the Longtoushan ore deposit, which are rich gas phase(C type) and liquid phase (D type) . Their size is 2~7 um, and principal components is H2O. Both kinds fluid inclusion have freezing point temperature -7.1℃~-2.4℃and -5.5℃~-0.3℃, salinity 4.0~10.6wt% and 0.5~8.5wt%, homogeneous temperature 176.8℃~361.6℃and 101.4℃~279.9℃,which peak value around 270℃and 170℃, respectively. Density of the ore-forming fluid is 0.73~0.97g/cm3, and metallogenic pressure is 62.3×105~377.9×105Pa. Above characteristic of the fluid inclusion are well geared to that of ore deposit originated in seabed hot-water sedimentation.
     4、Through the comparison research, that Longtoushan ore deposit has main characteristics of hot-water sedimentation ore deposit has been indicated. Ore-forming control factor and prospecting symbol of it has been summarized, as well as metallogenic model and prospecting model. Next step work direction about prospecting has also been proposed finally.
引文
[1] 刘洪涛,刘建明等. 内蒙古阿鲁克沁旗龙头山银铅锌多金属矿床地质-地球物理勘查报告[R]. 2004. 1-81.
    [2] 芮宗瑶,施林道,方如恒等. 华北陆块北缘及邻区有色金属矿床地质[M]. 北京: 地质出版社, 1994. 1-476.
    [3] 赵一鸣,张德全. 大兴安岭及其邻区铜多金属矿床成矿规律与远景评价[C]. 北京: 地震出版社, 1997. 1-161.
    [4] 杨国富. 内蒙古大兴安岭南段二叠系的地质建造与控矿作用[J]. 矿产与地质, 1996, 10(2): 120-125.
    [5] 任耀武. 大兴安岭中南段铜多金属矿床的重要矿源层[J]. 华北地质矿产杂志, 1994, 9(3): 313-316.
    [6] 范书义,毛华人,张晓东,孙秀丽,李颖. 大兴安岭中段二叠系地球化学特征及其成矿意义[J]. 中国区域地质, 1997, 16(1): 89-97.
    [7] 王长明, 张寿庭, 邓军. 大兴安岭南段铜多金属矿成矿时空结构[J]. 成都理工大学学报(自然科学版), 2006, (05).
    [8] 任耀武. 大兴安岭中南段铜多金属矿床的重要矿源层[J]. 华北地质矿产杂志, 1994, 9(3): 313-316.
    [9] 李德亭,刘建明,袁怀雨. 关于建立大兴安岭固体矿产资源基地的探讨[J]. 中国矿业, 2004, 13(7): 1-4.
    [10] 刘光鼎,涂光炽,刘东生等. 大兴安岭中南段——一个重要的有色金属资源基地[J]. 中国科学院院刊, 2003, 5.
    [11] 刘建明,张锐,张庆洲. 大兴安岭地区的区域成矿特征[J]. 地学前缘(中国地质大学,北京), 2004, 11(1): 269-277.
    [12] 裴荣富,吴良士. 矿物共生和矿物共生组合研究与成矿年代学[J]. 矿床地质, 1995, 14(2): 185-188.
    [13] 郭桂红,韩锋. 地质定年方法综述与地球物理定年[J]. 地球物理学进展, 2007, 22(1): 87-94.
    [14] 刘建明,沈洁,赵善仁. 金属矿床同位素精确定年的方法和意义[J]. 有色金属矿产与勘查, 1998, 7(2): 107-113.
    [15] 刘建明,赵善仁,沈洁. 地质流体活动的同位素定年方法评述[A]. 欧阳自远. 世纪之交矿物学岩石学地球化学的回顾与展望[M]. 北京: 原子能出版社, 1998. 275-278.
    [16] 刘建明,赵善仁,沈洁,姜能,霍卫国. 成矿流体活动的同位素定年方法评述[J]. 地球物理学进展, 1998, 13(3): 46-55.
    [17] 胡达骧,罗桂玲. 河北张宣金矿区石英脉Ar-Ar年龄[J]. 地质科学, 1994, 29(2): 158-191.
    [18] 骆万成,伍勤生. 应用蚀变矿物测定胶东金矿的成矿年龄[J]. 科学通报, 1987, 32(16): 1245-1248.
    [19] Kerrich R, Kyser T K. 100 Ma Timing Paradox of Archean Gold, Abitibi Greenstone Belt(Canada): New Evidence From U-Pb and Pb-Pb Evaporation ages of Hydrothermal Zirons[J]. Geology, 1994, 22: 1131-1134.
    [20] Wang J W., Mitsunobu, Tatsumoto, Li X B., Wayne R P., Edward C T. A Precise 232Th/208Pb Chronology of Fine-grained Monazite: Age of The Bayan Obo REE-Fe-Nb Ore Deposit, China[J]. Geochimica et Cosmochimica Acta, 1994, 58: 3155-3169.
    [21] Clarke M E., Krogh T E., Archibald D A. U-Pb Zircon and Rutile Ages and 40Ar/39Ar Biotite Ages for the Victory Mine, Kambalda, Western Australia: Constraints on the Age and P-T-time Conditions of Mineralization.[C]. Vald'Or Quebec: 1990. 144-145.
    [22] Mcnaughton N J., Rasmussen B., Fletcher I R. SHRIMP Uranium-lead Dating of Diagenetic Xenotime in Silliciclastic Rocks[J]. Science, 1999, 285: 78-80.
    [23] Chesley J T., Halliday A N., Scrivener R C. Samarium-Neodymium Driect Dating ofFluortie Mineralization[J]. Science, 1991, 252: 949-951.
    [24] Anglin C D., Jonasson I R, Frankin J M. Sm-Nd Dating of Scheelite and Toourmaline: Implications for the Genesis of Archean Gold Deposits, Vald'Or Chanada[J]. Economic Geology, 1996, 91: 1372-1382.
    [25] Peng J T., Hu R Z., Burnard P G. Sanarium-Neodymium Isotope Systematics of Hydrothermal Calcites from the Xikangshan Antimony Deposit(Hunan, China): The Potential of Calcite as a Geochronometer[J]. Chemical Geology, 2003, 200: 129-136.
    [26] 李文博. 云南会泽超大型铅锌矿床成矿时代及地球化学[D]. 贵阳: 中国科学院研究生院, 2004. 127.
    [27] 彭建堂,胡瑞忠,林源贤. 锡矿山锑矿床热液方解石的Sm-Nd同位素定年[J]. 科学通报, 2002, 47(10): 789-792.
    [28] Shepherd T J., Darbyshire D P F. Fluid inclusion Rb-Sr isochrons for dating mineral deposits[J]. Nature, 1981, 290: 854-863.
    [29] Pettke T., Diamond L W. Rb-Sr isotope analysis of fluid inclusions in quartz: Evaluation of bulk extraction procedures and geochronometer systematics using synthetic fluid inclusions[J]. Geochim Cosmochim Acta, 1995, 59: 4009-4027.
    [30] 李华芹,刘家齐,杜国民,魏林. 内生金属矿床成矿作用年代学研究——以西华山钨矿为例[J]. 科学通报, 1992, 12: 1109-1112.
    [31] 杨进辉,周新华. 胶东地区玲珑金矿矿石和载金矿物Rb-Sr等时线年龄与成矿时代[J]. 科学通报, 2000, 45(14): 1547-1553.
    [32] Nakai S., Halliday A N. Rb-Sr dating of sphalerites from Mississippe Valley-Type ore deposits[J]. Geochimica et Cosmochimica Acta, 1993, 57: 417-427.
    [33] Nakai S., Halliday A N., Kesler S E. Rb-Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley-Type ore deposits[J]. Nature, 1990, 346: 354-357.
    [34] Brannon J.c., Pldosek F.a., Mclimans R.k. Alleghenian age of the Upper Mississippi Valley zinc-lead deposit determined by Rb-Sr dating of sphalerite[J]. Nature, 1992, 356: 509-511.
    [35] Christensen J N., Halliday A N. Direct dating of sulfides by Rb-Sr: A critical test using the Polaris Mississippi Valley-Type Zn Pb deposit[J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5191-5197.
    [36] Christensen J N., Halliday A N. Testing models of large scale crustal fluid flow using direct dating of sulfides: Rb-Sr evidence for early dewatering and formation of Mississippi Valley-Type deposits, Canning Basin, Australia[J]. Economic Geology, 1995, (90): 877-884.
    [37] Christensen J N., Halliday A N., Leigh K E. Direct dating of sulfides by Rb-Sr: A critical test using the Polaris Mississippi Valley-type Zn-Pb deposit[J]. Geochim Cosmoehim Acta, 1995, 59: 5191-5197.
    [38] 姚军明,华仁民,林锦富. 湘南宝山矿床REE、Pb-S同位素地球化学及黄铁矿Rb-Sr同位素定年[J]. 地质学报, 2006, 80(7): 1045-1054.
    [39] Jiang S. Y., Slack J. F., Falmer M. R. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia[J]. Geology, 2000, 28: 751-754.
    [40] Bell K., Anglin C D., Franklin J M. Sm-Nd and Rb-Sr isotope systematics of scheelites: Possible implications of the age and genesis of vein-hosted gold deposit[J]. Geology, 1989, 17: 500-504.
    [41] 杜安道,何红蓼,殷万宁. 辉钼矿的铼-锇同位素地质年龄测定方法研究[J]. 地质学报, 1994, 68(4): 339-347.
    [42] Freydier C., Ruiz J. Re-Os isotope systematics of sulfides from felsic igneous rocks application to base metal porphyry mineralization in Chile[J]. Geology, 1997, 25(9): 775-778.
    [43] Barra F., Ruiz J., Mathur R., Titley S. A Re-Os study of sulfide minerals from the Bagdad porphyry Cu-Mo deposit, northern Arizona, USA[J]. Mineralium Deposita, 2003, 38: 585-596.
    [44] Mccandless R. E., Ruiz J., Campbell A. R. Rhenium behavior in molybdenite in hypogene and near-surface environments: implications for Re-Os geochronometry[J]. Geochimica et Cosmochimia Acta, 1993, 57: 889-905.
    [45] Lambert D. D., Foster J. D., Frick L. R. Re-Os isotope geochemistry of magmatic sulfide ore systems[J]. Reviews in Economic Geology, 1999, 12: 29-57.
    [46] Morelli R. M., Creaser R. A., Selby D., Kelley K. D., Leach D. L., King A. R. Re-Os sulfide geochronology of the Red Dog sediment-hosted Zn-Pb-Ag deposit, Brooks Range, Alaska[J]. Economic Geology, 2004, 99: 1569-1576.
    [47] Stein H. J., Sundblack K., Markey R. J. Re-Os ages for Archean molybdenite and pyrite, Kuttila, Finland and Proterozoic molybdenite, Kabeliai, Lithuania: testing the chronometer in a metamorphic and metasomatic setting[J]. Mineral Deposit, 1998, 33: 329-345.
    [48] Stein H. J., Morgan J. W., Schersten A. Re-Os dating of low-level highly radiogenic(LLHR) sulfides: the Harnas gold deposit, Southwest Sweden, records continental-scale tectonic events[J]. Economic Geology, 2000, 95: 1657-1671.
    [49] Suzuki K., Lu Q., Shimizu H., Masuda A. Reliable Re-Os age for molybdenite[J]. Geochimica et Cosmochimica Acta, 1993, 57: 1625-1628.
    [50] Suzuki K, Shimizu H M A. Re-Os dating of molybdenites from ore deposits in Japan: implation for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdnite ore deposits[J]. Geochimica Et Cosmochimica Acta, 1996, 60: 3151-3159.
    [51] Trista Aguilera D., Barra F., Ruiz J., Morata D., Talaera Mendoza O., Kojima S., Feraris F. Re-Os isotope systematics for the Lince-Estefania deposit: constraints on the timing and source of copper mineralization in a stratabound copper deposit, Coastal Cordillera of Northern Chile [J]. Mineralium Deposita, 2006, 41: 99-105.
    [52] 黄典豪,杜安道,吴澄宇. 华北地台钼(铜)矿床成矿年代学研究[J]. 矿床地质, 1996, 15(4): 365-373.
    [53] Pettke T., Diamond L W. Rb-Sr dating of sphalerite based on fluid inclusion-host mineral isochrons: A clarification of why it works[J]. Economic Geology, 1996, 91: 951-956.
    [54] 安伟,曹志敏,郑健斌. 成矿年龄的测定方法及其新进展[J]. 地质找矿从论, 2004, 19(3): 196-203.
    [55] 蒋少涌,杨竞红,赵奎东,于际民. 金属矿床Re-Os同位素示踪与定年研究[J]. 南京大学学报(自然科学), 2000, 36(6): 669-677.
    [56] 李发源,顾雪祥,付绍洪,章明. MVT铅锌矿床定年方法评述[J]. 地质找矿论丛, 2003, 18(3): 163-167.
    [57] 李发源,顾雪祥,付绍洪,章明,司荣军. 铅锌矿床定年方法评述[J]. 世界地质, 2003, 22(1): 57-63.
    [58] 李华芹,刘家齐,魏林. 热液矿床流体包裹体年代学研究及其地质应用[M]. 北京: 地质出版社, 1993. 1-99.
    [59] 李文博,黄智龙,许德如,陈进,许成,管涛. 铅锌矿床Rb-Sr定年研究综述[J]. 大地构造与成矿学, 2002, 26(4): 436-441.
    [60] 李献华. Sm-Nd模式年龄和等时线年龄的适用性和局限性[J]. 地质科学, 1996, 31(1): 97-104.
    [61] 陆松年. Sm-Nd等时线年龄合理性判别[J]. 中国区域地质, 1994, 13(2): 148-159.
    [62] 陆松年,李怀坤,李惠民. 成矿地质事件的同位素年代学研究[J]. 地学前缘, 1999, 6(2): 335-342.
    [63] 邱华宁,彭良. 40Ar-39Ar年代学与流体包裹体定年[M]. 合肥: 中国科学技术大学出版社, 1997. 1-125.
    [64] 谭俊,魏俊浩,杨春福,冯波,李闫华. 矿床同位素定年方法的应用现状[J]. 地质与勘探, 2006, 42(3): 61-66.
    [65] 魏俊浩,刘丛强,刘国春. 金矿测年方法讨论及定年中存在的问题[J]. 地学前缘, 2003, 10(2): 319-326.
    [66] 谢桂青,胡瑞忠. 金矿床测年方法的某些进展[J]. 地质地球化学, 2001, 29(1): 57-62.
    [67] 杨进辉,周新华. 金矿床的定年方法评述[J]. 地质科技情报, 1999, 18(1): 85-88.
    [68] 姚海涛,郑海飞. 流体包裹体Rb-Sr等时线定年的可靠性[J]. 地球化学, 2001, 30(6): 507-511.
    [69] 张自超,丁悌平. 关于同位素地质测试数据的数据处理及结果表示[J]. 岩矿测试, 2000, 19(1): 77-79.
    [70] 赵葵东,蒋少涌. 金属矿床的同位素直接定年方法[J]. 地学前缘, 2004, 11(2): 425-434.
    [71] 陈福坤,李秋立,李潮峰,李向辉,王秀丽,王芳. 高精度质谱计在同位素地球化学的应用前景[J]. 地球科学-中国地质大学学报, 2005, 30(6): 639-645.
    [72] 李秋立,陈福坤,王秀丽,李向辉,李潮峰. 超低本地化学流程和单颗粒云母Rb-Sr等时线定年[J]. 科学通报, 2006, 51(3): 321-325.
    [73] 韩以贵,李向辉,张世红,张元厚,陈福坤. 豫西祈雨沟金矿单颗粒和碎裂状黄铁矿Rb-Sr等时线定年[J]. 科学通报, 2007, 52(11): 1307-1311.
    [74] 杨奎峰,范宏瑞,胡芳芳,李向辉,柳建勇,赵永岗,刘爽,王凯怡. 白云鄂博巨型REE-Nb-Fe矿区夕卡岩化时代:单颗粒金云母Rb-Sr法定年[J]. 岩石学报, 2007, 23(5): 1018-1022.
    [75] Qiu-li Li, Fukun Chen, Jin-hui Yang, Hong-rui Fan. Single grain pyrite Rb-Sr dating of the Linglong gold deposit, eastern China[J]. Ore Geology Reviews, 2007, : 1-8.
    [76] 李文炎,余洪云. 中国重晶石矿床[M]. 北京: 地质出版社, 1991. 1-90.
    [77] 陈先沛. 中国矿床[M]. 北京: 地质出版社, 1989. 1-544.
    [78] 王大勇,陆现彩,徐士进,杨杰东. 深海沉积重晶石在古海洋研究中的应用[J]. 海洋地质与第四纪地质, 2006, 26(4): 67-71.
    [79] 朱维光,李朝阳,邓海琳. 四川西部呷村银多金属矿床硫铅同位素地球化学[J]. 矿物学报, 2001, 21(2): 219-224.
    [80] 李之彤,赵春荆. 内蒙古中部古生代花岗岩类的成因类型及其产出的构造环境[J]. 中国地质科学院沈阳地质矿产研究所所刊, 1987, 16: 68-83.
    [81] 内蒙古区调队. 1/20万区域地质调查报告[M]. 1979.
    [82] 朱维光, 李朝阳, 邓海琳. 四川西部呷村银多金属矿床硫铅同位素地球化学[J]. 矿物学报, 2001, 21(2): 219-224.
    [83] 张理刚. 稳定同位素在地质科学中的应用——金属活化热液成矿作用及找矿[M]. 西安: 陕西科学技术出版社, 1985. 1-266.
    [84] 李文炎,余洪云. 中国重晶石矿床[M]. 北京: 地质出版社, 1991. 1-90.
    [85] 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京: 地质出版社, 1991. 1-725.
    [86] 内蒙古自治区地质矿产局. 内蒙古自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1996. 137-142.
    [87] 杨国富. 内蒙古大兴安岭南段二叠系的地质建造与控矿作用[J]. 矿产与地质, 1996, 10(2): 120-125.
    [88] 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京: 地质出版社, 1991. 1-725.
    [89] 胡云中,邓坚,袁宁. 桂北地区地层及锡矿带地球化学[M]. 北京: 科学技术出版社, 1990. 3-44.
    [90] 张泰,刘运纪. 内蒙古驼峰山含铜硫化物矿床地质特征及成因初探[J]. 化工矿产地质, 2002, 24(1): 39-47.
    [91] 陈宏威. 大兴安岭中南段铜多金属矿成矿特征与找矿方向[D]. 北京: 中国地质大学(北京), 2007. 1-64.
    [92] 尹维青,李生路,刘成忠. 内蒙古驼峰山铜-金矿床地质、地球化学特征及成因分析[J]. 矿产与地质, 2005, 19(2): 140-143.
    [93] 张喜周, 张振邦. 内蒙大兴安岭南段地质构造与成矿[J]. 矿产与地质, 2003, 17: 298-301.
    [94] 张德全. 大兴安岭南段不同构造环境中的两类花岗岩[J]. 岩石矿物学杂志, 1993, 12(1): 1-11.
    [95] 刘建明, 张锐, 张庆洲. 大兴安岭地区的区域成矿特征[J]. 地学前缘, 2004, (01).
    [96] 姚金炎,耿文辉,莫江平. 大兴安岭东坡中——南段铜多金属矿床找矿研究中的几个问题[J]. 有色金属矿产与勘查, 1996, 5(1): 10-15.
    [97] 叶杰, 刘建明, 张安立, et al. 沉积喷流型矿化的岩石学证据——以大兴安岭南段黄岗和大井矿床为例[J]. 岩石学报, 2002, (04).
    [98] Franklin J. M., Sangster D. F., Lydon J. W. Volcanic-associated massive sulfide deposits[J]. Economic Geology, 1981, 75(8): 485-627.
    [99] 戴培根,龚玲兰,张起钻. 应用地球化学[M]. 长沙: 中南大学出版社, 2005. 1-268.
    [100] 牟堡磊. 元素地球化学[M]. 北京: 北京大学出版社, 1999. 1-227.
    [101] 韩吟文,马振东等. 地球化学[M]. 北京: 地质出版社, 2003. 202-203.
    [102] 赵振华. 微量元素地球化学原理[M]. 北京: 科学出版社, 1997. 56-129.
    [103] 郑永飞,陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000. 1-316.
    [104] Bostrom K. Genesis of ferromanganese deposits-diagnositc criteria for recent and old deposit[M]. New York: Plenum Press, 1983. 473-489.
    [105] Haskin L A. Petrogenetic modelling-Use of rare elements[A]. P H. Rare Earth Element Geochemistry(Developments in Geochemistry 2)[M]. Amsterdam: Elsevier, 1984. 115-152.
    [106] Mckay G A. Partitioning of rare earth elements between major silicate minerals and basaltic melts[A]. Lipin B R, Mckay G A. Geochemistry and Mineralogy of Rare Earth Elements(Reviews in Mineralogy Vol.21)[M]. Washington D C: The Mineralogical Society of America, 1989. 45-74.
    [107] Grauch R I. Rare earth elements in upper mantle rocks[A]. Lipin B R, Mckay G A. Geocheimistry and Mineralogy of Rare Earth Elements(Reviews in Mineralogy Vol.21)[M]. Washington D C: The Mineralogical Society of America, 1989. 147-167.
    [108] R B M. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sediment Geol, 1985, 45(1-2): 97-113.
    [109] Taylor S R., Mclennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell, 1985. 1-312.
    [110] Taylor S R., Mclennan S M. The geochemical evolution of the continental crust[J]. Reviews Of Geophysics, 1995, 33(2): 241-165.
    [111] Mclennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary process[A]. Lipin B R., Mckay G A. Geochemistry and Mineralogy of Rare Earth Elements(Reviews in Mineralogy Vol.21)[M]. Washington D C: The Mineralogical Society of America, 1989. 169-200.
    [112] Mclennan S M., Hemming S R., Taylor S R., Eriksson K A. Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North Amercia[J]. Geochim Cosmochim Acta, 1995, 59(6): 1153-1177.
    [113] Mclennan S M., Hemming S., Mcdaniel D K., Hanson G N. Geochemical approaches to sedimentation, provenance, and tectonics[A]. Johnson M J., Basu A. Processes Controlling the Composition of Clastic Sediments[M]. Washington D C: GSA SpecPaper, 1993. 21-39.
    [114] Gu X X. Geochemical characteristics of the Triassic Tethysturbidites in the northwestern Sichuan, China: Implications for provenance and interpretation of the tectonic setting[J]. Geochim Cosmochim Acta, 1994, 58(21): 4615-1631.
    [115] Bau M. Rare-earth element mobility during hydrothermal and metamoophic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 1991, 93(3-4): 219-230.
    [116] German C R., Hergt J., Palmer M R., Edmond J M. Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21 N East Pacific Rise[J]. Chemical Geology, 1999, 155(1-2): 65-75.
    [117] Klinkhammer G P., Elderfield H., Edmond J M., Mitra A. Geochemical inplications of rare earth element patterns in hydrothermal fluids from min-ocean ridges[J]. Geochim Cosmochim Acta, 1994, 58(23).
    [118] Mills R A., Elderfield H. Hydrothermal activity and the geochemisty of metalliferous sediment[A]. Humphris S E., Zierenberg R A., Mullineaux L S., Thomson R E. Seafloor Hyhrothermal Systems: Physical, Chemical, Biological, and Geological Interactions[M]. Washington D C: AGU Geophysical Monograph 91, 1995. 392-407.
    [119] Mills R A., Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26N Mind-Atlantci Ridge[J]. Geochim Cosmochim Acta, 1995, 59(17).
    [120] Savelli C., Marani M., Gamberi F. Geochemistry of metalliferous, hydrothermal deposits in the Aeolian arc (Tyrrhenian Sea)[J]. Journal Of Volcanology And Geothermal Research, 1999, 88(4): 305-323.
    [121] Sherrell R P., Field M P., Ravizza G. Uptake and fractionation of rare earth elements on hydrothermal plume particles at 9'45"N, East Pacific Rise[J]. Geochim Cosmochim Acta, 1999, 63(11-12).
    [122] Van Middlesworth P E., Wood S A. The aqueous geochemistry of the rare earth elements yttrium. Part 7. REE, Th and U contents in thermal springs associated with the Idaho Batholith[J]. Applied Geochemistry, 1998, 13(7): 861-884.
    [123] Schade J., Cornell D H., Theart H F J. Rare earth element and isotopic evidence for the Prieska massive sulfide deposit, South Africa[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists, 1989, 84(1): 49-63.
    [124] Oreskes N., Einaudi M T. origin of rare earth element-enriched hematite baeccias at the Olympic Dam Cu-U-Au-Ag deposit, Roxby Downs, South Australia[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists, 1990, 85(1): 1-28.
    [125] Eppinger R G., Closs L G. Variation of trace elements and rare earth elemnents in fluorite: A possible tool for exploration[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists, 1990, 85(8): 1896-1907.
    [126] Vander A. J., Andre L. Trace elements (REE) and isotopes (O, C. Sr) to characterize the metasomatic fluid sources: Evidence from the skarn deposit (Fe, W, Cu) of Traversella (Ivrea, Italy)[J]. Contrib Mineral Petrol, 1991, 106: 325-339.
    [127] Lottermoser B G. Rare earth element study of exhalites within the Willyama Supergroup, Broken Hill Block, Australia[J]. Mineralium Deposita, 1989, 24.
    [128] Lottermoser B G. Rare-earth element behaviour associated with strata-bound scheelite mineralisation (Broken Hill, Australia)[J]. Chemical Geology, 1989, 78(2): 119-134.
    [129] Lottermoser B G. Rare earth elements and hydrothermal ore formation processes[J]. Ore Geol Rev, 1992, 7(1): 25-41.
    [130] Parr J. M. Rare-earth element distribution in exhalites associated with Broken Hill-type mineralisation at the Pinnacles deposit, New South Wales, Australia[J]. Chem Geol, 1992, 100(1-2): 73-91.
    [131] Siddaiah S N., Hanson G N., Rajamani V. Rare earth element evidence for syngenetci origin of an Archean stratiform gold sulfide deposit, Kolar schist belt, South India[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists, 1994, 89(7): 1552-1566.
    [132] Bierlein F P. Rare-earth element geochemistry of clastic and chemical metasedimentary rocks associated with hydrothermal sulphide mineralisatiion in the Olary Block, South Australia[J]. Chemical Geology, 1995, 122(1-4): 77-98.
    [133] Davies J F., Prevec S A., Whitehead R E., Jackson S E. Variations in Ree and Sr-isotope chemistry of carbonate gangue, Castellanos Zn-Pb deposit, Cuba[J]. Chemical Geology, 1998, 144(1-2): 99-119.
    [134] Moller P, Morteani G, Hoefs J E A. The origin of ore-bearing solution in Pb-Zn veins of the Western Herz, Germany, as deduced from rare-earth element and isotope distributions in caclites[J]. Chemical Geology, 1979, 26: 197-215.
    [135] 陈骏,王鹤年. 成矿流体作用过程的REE示踪研究[J]. 南京大学学报, 1997, 33: 28-35.
    [136] Michard A., Albarede F., Michard G. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermalvent field[J]. Nature, 1983, (303): 795-797.
    [137] Mills R. A., Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mount, 26N mid-Atlantic Ridge[J]. Geochimica Et Cosmochimica Acta, 1995, 59(17): 3511-3524.
    [138] Klinkhammer G P., Elderfield., Edmond J M. Geochemical implication of rare element patterns in hydrothermal fluid from mid-ocean ridges[J]. Geochimica Et Cosmochimica Acta, 1994, 58(23): 5105-5113.
    [139] Barrett T., Jarvis I, Jarvis K E. Rare earth element geochemistry of massive sulfide-sulfates and gossans on the southern explorer ridge[J]. Geology, 1990, 18: 583-586.
    [140] Shanks W. C., Bishoff J. L. Ore transport and depositionin the Red Sea geothermal system: a geochemical model[J]. Geochimica Et Cosmochimica Acta, 1977, 41: 1507-1519.
    [141] 宋维宇. 冲绳海槽块状硫化物的矿物学和地球化学特征[D]. 吉林: 吉林大学, 2007. 1-82.
    [142] 丁振举,刘从强,姚书振,周宗桂,杨明国. 东沟坝多金属矿床矿质来源的稀土元素地球化学限制[J]. 吉林大学学报(地球科学版), 2003, 33(4): 437-442.
    [143] 丁振举, 姚书振, 刘丛强, et al. 东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪[J]. 岩石学报, 2003, : 792-298.
    [144] Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and signifiance of the oxidaion state of europium[J]. Chemical Geology, 1991, 93(3-4): 219-230.
    [145] Hass J R., Shock E. L, Sassani D C. Rare earth elements in hydrothemal systems: Estimates of standard partial modal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperature[J]. Geochimica Et Cosmochimica Acta, 1995, 59(21): 4329-4350.
    [146] Bach W., Irber W. Rare earth element mobility in the oceanic lower sheeted dyke complex: evidence from geochemical data and leaching experiments[J]. Chemical Geology, 1998, 151: 309-326.
    [147] Sverjensky D. A. Europium redox equilibria in aqueous solution[J]. Earth And Planetary Science Letters, 1984, 67: 70-78.
    [148] Brookins D. G. Aqueous geochemistry of rare earth elements[C]. 1989. 201-225.
    [149] 唐建武,金景福,陶琰. 锡矿山锑矿田硅化岩的稀土元素特征及其地质意义[J]. 地质地球化学, 1999, 27(4): 40-44.
    [150] Fleet A. J. Hydrothermal and hydrogeneos ferro-mangandeposits: Do they form a continuum? The rare earth element evidence in hydrothermal processes at seafloor spreading center, in Rona P. A. et al. Eds. Hydrothermal processes at seafloor spreading centers[M]. New York: Pleum Press, 1983. 533-555.
    [151] 涂光炽. 中国层控矿床地球化学[M]. 北京: 科学出版社, 1984. 13-69.
    [152] Kulp, J.l. And Ault W U. Sulfur isotope and the origin of oreforming fluids[J]. Economic Geology, 1956, 1: 139-149.
    [153] Ba格里年科лh格里年科. 硫同位素地球化学[M]. 北京: 科学出版社, 1980. 1-235.
    [154] 肖建新,倪培. 论喷流沉积(SEDEX)成矿与沉积——改造成矿之对比[J]. 地质找矿论丛, 2000, 15(3): 238-245.
    [155] 曾庆栋,刘建明,贾长顺,万志民等. 内蒙古赤峰市白音诺尔铅锌矿沉积喷流成因:地质和硫同位素证据[J]. 吉林大学学报(地球科学版), 2007, 37(4): 559-667.
    [156] Ohmoto H. Stalbe isotope geochemistry of ore deposits[C]. 1986. 491-559.
    [157] Canfield D E, Teske A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies[J]. Nature, 1996, (382): 127-132.
    [158] Habicht K H, Canfield D E. sulfur isotope fractionation during bacterial sulfate reduction in organic rich sediments[J]. Geochimica Et Cosmochimica Acta, 1997, 61(24): 5351-5361.
    [159] 张伟,刘从强,梁小兵. 硫同位素分馏中的生物作用及其环境效应[J]. 地球与环境, 2007, 35(3): 223-227.
    [160] G福尔. 同位素地质学原理[M]. 科学出版社, 1977. 1-351.
    [161] 孙省利,王国安,袁明坤. 西成铅锌矿田铅、硫同位素特征及成矿物质来源的研究[J]. 甘肃地质学报, 1992, 1(2): 51-65.
    [162] Ohmoto H. Systematics of sulfur and carbon isotope in hydrothermal ore deposit[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists, 1972, 67: 551-579.
    [163] Hiroshi Ohmoto R. Isotope of sulfur and carbon[M]. 2nd ed ed. Joh Willey & Sons, 1979. 509-567.
    [164] 曾志刚,蒋富情,翟世奎,秦蕴珊,候增谦. 冲绳海槽中部Jade热液活动区中海底热液沉积物的硫同位素组成及其地质意义[J]. 海洋学报, 2000, 22(4): 74-82.
    [165] Bowers T S. Stable isotope signatures of wanter-rock interaction in min-ocean ridge hydrothermal systems: sulfur, oxygen, and hydrogen[J]. Journal Of Geophysical Research-Atmospheres, 1989, 94: 5775-5786.
    [166] 地质部宜昌地质矿产研究所同位素地质研究室. 铅同位素地质研究的基本问题[M]. 北京: 地质出版社, 1979.
    [167] 张理刚. 同位素地质研究现状与展望[J]. 地质与勘探, 1992, 28(4): 21-29.
    [168] 朱炳泉. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M]. 北京: 科学出版社, 1998.
    [169] 吴开兴,胡瑞忠,毕献武,彭建堂,唐群力. 矿石铅同位素示踪成矿物质来源综述[J]. 地质地球化学, 2002, 30(3): 73-81.
    [170] 张乾,潘家永,邵树勋. 中国某些金属矿床矿石铅来源的铅同位素诠释[J]. 地球化学, 2000, 29(3): 231-238.
    [171] 李志昌,路远发,黄圭成. 放射性同位素地质学方法与进展[M]. 武汉: 中国地质大学出版社, 2004. 17-208.
    [172] 张长青,李厚民,代军治,杨兴朝,李莉,毛景文,余金杰,娄德波. 铅锌矿床中矿石铅同位素研究[J]. 矿床地质, 2006, 25(增刊): 213-216.
    [173] 何琼,李向阳. 铅同位素地球化学示踪进展[J]. 地质找矿论丛, 1998, 13(3): 79-82.
    [174] 马振东. 论铅同位素的地质指示作用[J]. 地球科学, 1986, 11(4): 437-443.
    [175] 马振东. 从铅同位素组成特征初步探讨豫西东秦岭钼矿带的成因和构造环境[J]. 地球科学, 1984, (27): 57-64.
    [176] Zartman R. E., Doe B. R. Plumbotectonics-the model[J]. Tectonophysics, 1981, 75(3): 135-162.
    [177] Zartman R. E., Haines S. M. The Plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs, a case for bi-directional transport[J]. Geochimica Et Cosmochimica Acta, 1988, 52: 1327-1339.
    [178] 朱炳泉. 矿石Pb同位素三维空间拓扑图解用于地球化学省与矿种划分[J]. 地球化学, 1993, (3): 209-216.
    [179] 朱炳泉,陈毓蔚. 中国太古代地盾边缘成矿作用的铅同位素组成特征[C]. 吉林长春: 1985. 103-104.
    [180] 常向阳,朱炳泉,邹日. 铅同位素系统剖面化探与隐伏矿床预测评价:以金平龙脖河铜矿为例[J]. 中国科学(D), 2000, (1): 33-39.
    [181] 崔学军,朱炳泉. 铅同位素找矿方法研究现状与进展综述[J]. 甘肃地质学报, 2005, 14(2): 11-17.
    [182] 韩以贵,李向辉,张世红,张元厚,陈福坤. 豫西祈雨沟金矿单颗粒和碎裂状黄铁矿Rb-Sr等时线定年[J]. 科学通报, 2007, 52(11): 1307-1311.
    [183] 彭建堂,胡瑞忠,邓海琳,苏文超. 湘中锡矿山锑矿床的Sr同位素地球化学[J]. 地球化学, 2001, 30(3): 248-256.
    [184] 赵斌,赵劲松. 长江中下游地区若干铁铜(金)矿床中块状及脉状钙质夕卡岩的氧、锶同位素地球化学研究[J]. 地球化学, 1997, 26(5): 34-53.
    [185] 金章东,朱金初,李福春. 德兴斑岩铜矿成矿过程的氧、锶、钕同位素证据[J]. 矿床地质, 2002, 21(4): 341-349.
    [186] 何心一,徐桂荣. 古生物学教程[M]. 北京: 地质出版社, 1993. 1-174.
    [187] 戴永定. 生物矿物学[M]. 北京: 石油工业出版社, 1994. 1-572.
    [188] Hansen E, Ahmed K, Harlov D E. Rb depletion in biotites and whole rocks across an amphibolite to granulite facies transtiion zone, Tamil Nadu, South India[J]. Lithos, 2002, 64: 29-47.
    [189] Icenhower J., London D. Experimental partitioning of Rb, Cs, Sr and Ba between alkali feldspar and peraluminous melt[J]. American Mineralogist, 1996, 81: 719-734.
    [190] 邓海琳,李朝阳,涂光炽. 滇东北乐马厂独立银矿床Sr同位素地球化学[J]. 中国科学(D辑), 1999, 29(6): 496-503.
    [191] Mcculloch M. T., Greory R. T., Wasserburg G.j. Sm-Nd, Rb-Sr and 18O/16O isotopic systematics in an oceanic crustal scetion: Evidence from the Samail Ophiolite[J]. Journal Of Geophysical Research-Atmospheres, 1981, 86: 2721-2735.
    [192] Banner J. L., Hanson G. N. Calculation of simultaneous isotopic and trace element variation during water-rock interaction with application to carbonate diagenesis[J]. Geochimica Et Cosmochimica Acta, 1990, 54: 3123-3137.
    [193] Burke W H. Variation of seawater 87Sr/86Sr throught phanerozic[J]. Geology, 1982, 10:516-519.
    [194] Guoxiang Chi, I-ming Chou, Huan-zhang Lu. An overview on current fluid-inclusion research and applications[J]. Acta Petrologica Sinica, 2003, 19(2): 201-212.
    [195] Wilkinson J J. Fluid inclusions in hydrothermal ore deposits[J]. Lithos, 2001, 55: 229-272.
    [196] 卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮. 流体包裹体[M]. 北京: 科学出版社, 2004. 1-450.
    [197] 汤倩. 矿物中的包裹体及其研究意义[J]. 中山大学研究生学刊(自然科学、医学版), 2005, 26(3): 75-84.
    [198] Robert H., Goldstein. Fluid inclusions in sedimentary and diagenetic systems[J]. LITHOS, 2001, 55(2001): 159-193.
    [199] Roedder E. Fluid inclusions[J]. Reviews In Mineralogy. Mineral Society of America, 1984, 12: 1-644.
    [200] Hall D. L., Sterner S. M., Bodnar R. J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists, 1988, 83: 197-202.
    [201] Bondar R J. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica Et Cosmochimica Acta, 1993, 57: 683-684.
    [202] Sato T. Bahavious of ore-froming solutions in seawater[J]. Mining Geology, 1972, 22: 31-42.
    [203] Rona P. A., Scolt S. P. A special issure on sea-floor hydrothermal mineralizaiton: New perspective Preface[J]. Economic Geology, 1993, 88: 1933-1976.
    [204] 候增谦,李荫清,张绮玲,曲晓明. 海底热液成矿系统中的流体端员与混合过程:来自白银厂和呷村VMS矿床的流体包裹体证据[J]. 岩石学报, 2003, 19(2): 221-234.
    [205] Amond V. P., Ohmoto H. Thermal history and chemical and isotopic compostions of the ore-froming fluids responsible fir the Kuroko massive sulfide deposits in the Hokuroku distric of Japan[J]. Economic Geology, 1983, Monograph 5: 523-558.
    [206] Khin Zaw, Gemmell J. B., Large R. R., Mernagh T. P., Ryan C. G. Evolution and source of fluids in the stringer system, Hellyer VHMS deposit, Tasmania, Australia: evidence from fluid inclusion microthermometry and geochemistry[J]. Ore Geology Reviews, 1996, 10: 251-278.
    [207] 芮宗瑶,李荫清,王龙生,王义天. 从流体包裹体研究探讨金属矿床成矿条件[J]. 矿床地质, 2003, 22(1): 13-23.
    [208] Bondar R J. Amethod of calculateing fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids[J]. Economic Geology And The Bulletin Of The Society Of Economic Geologists, 1983, 78.
    [209] 卢焕章. 成矿流体[M]. 北京: 地质出版社, 1997. 1-207.
    [210] 刘斌,沈昆. 流体包裹体热力学[M]. 北京: 地质出版社, 1999. 1-277.
    [211] 刘斌,段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J]. 矿物学报, 1987, 7(4): 345-352.
    [212] 邵洁涟,梅建明. 浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因与找矿意义[J]. 矿物岩石, 1986, 6(3).
    [213] 中国科学院矿床地球化学开放研究实验室. 矿床地球化学[M]. 北京: 地质出版社, 1997. 248-266.
    [214] 吕新彪,姚书振,何谋春. 成矿流体包裹体盐度的拉曼光谱测定[J]. 地学前缘, 2001, 8(4): 429-433.
    [215] Burker E. A. J. Raman microspectrometry of fluid inclusion[J]. Lithos, 2001, 55(1-4): 139-158.
    [216] Yamamoto J, Kagi H, Kaneoka I, Lai Y, Prikhod'ko V S, Arai S. Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals: Implications for the geoharmoetry of mantle minerals using micro-Raman spectroscopy[J]. Earth And Planetary Science Letters, 2002, 198(3-4): 511-519.
    [217] 涂光炽. 我国南方几个特殊的热水沉积矿床[A]. 宋叔和. 中国矿床学-纪念谢家荣诞辰90周年文集[M]. 北京: 学术书刊出版社, 1989. 1-344.
    [218] 涂光炽. 热水沉积矿床[J]. 四川地质科技情报, 1987, 5.
    [219] 吕志成等. 国内外铅锌矿床成矿理论与找矿方法[Z]. 中国地质调查局发展研究中心, 2004.
    [220] 韩发,孙海田. Sedex型矿床成矿系统[J]. 地学前缘, 1999, 6(1): 139-155.
    [221] 薛春纪, 祁思敬, 郑明华, et al. 热水沉积研究及相关科学问题[J]. 矿物岩石地球化学通报, 2000, (03): 155-163.
    [222] 韩发,葛朝华. 福建马坑铁矿床海相火山热液-沉积成因地质-地球化学特征[J]. 中国地质科学院矿床地质研究所所刊, 1983, (2): 11-38.
    [223] 池三川. 非火山环境海底沉积——喷流“SEDEX”矿床[J]. 地学前缘, 1994, 1: 183.
    [224] Macintyre D G. Sedex-sedimentary-exhalative deposits[A]. Mcmillan W J., Hoy T., Macintyre D G., Nelson J L., Nixon G T., Hammack J L., Panteleyev A R G E A W I C L. Ore deposits, tectonics and metallogeny in the Canadian Cordillera[M]. Victoria: Queen's printer for british columbia, 1992. 25-66.
    [225] 彭润民,翟裕生,王志刚. 内蒙古东升庙、甲生盘中元古代Sedex矿床同生断裂活动及其控矿特征[J]. 地球科学-中国地质大学学报, 2000, 5(4): 117-205.
    [226] 陈先沛,高计元,陈多福. 热水沉积作用的概念和几个岩石学标志[J]. 沉积学报, 1992, 10(3): 124-132.
    [227] 赵一鸣,王大畏,张德全. 内蒙古东南部铜多金属成矿条件及找矿模式[M]. 北京: 地震出版社, 1994. 1-86.
    [228] 李鹤年,段国正,郝立波. 中国大兴安岭银矿床[M]. 长春: 吉林科学技术出版社, 1993. 162-179.
    [229] 薛传东. 个旧超大型锡铜多金属矿床时空结构模型[D]. 昆明: 昆明理工大学, 2002. 13-22.
    [230] 韩发,孙海田. Sedex型矿床成矿系统[J]. 地学前缘, 1999, 6(1): 139-155.
    [231] Fleet A. J. Hydrothermal and hydrogeneous ferromanganes deposits[A]. Rona P.a. Hydrothermal process at sea floor spreading centers[M]. Amsterdam: Elsevier science publishers, 1983. 345-358.
    [232] 朱上庆,郑明华. 层控矿床学[M]. 北京: 地质出版社, 1991. 101-120.
    [233] Carne R. C., Cathro R. J. Sedimentary-exhalative(SEDEX) Zn-Pb-Ag deposits, Northern Canadian Cordillera[J]. Canadian Institute of Mining and Metallury, Bulletin, 1982, 75: 66-78.
    [234] 候增谦. 现代与古代海底热水成矿作用[M]. 北京: 地质出版社, 2003. 1-423.
    [235] 王莉娟. 华北地台北缘及北邻地区铜、铅、锌、锡矿床流体包裹体研究[J]. 矿床地质, 1998, 17(3): 276-263.
    [236] 盛继福,张德全,李岩. 大兴安岭中南段金属矿床流体包裹体研究[J]. 地质学报, 1995, 69(1): 56-66.
    [237] 冯建忠,艾霞,吴俞斌. 内蒙古黄岗梁-孟恩陶勒盖矿带成矿地质特征及成矿模式[J]. 辽宁地质, 1993, (3): 244-253.
    [238] 贾长顺. 内蒙古白音诺铅锌矿成矿模式与找矿方向[D]. 北京: 北京科技大学, 2007. 1-137.
    [239] 朱笑青, 张乾, 何玉良, et al. 内蒙古孟恩陶勒盖银铅锌铟矿床成因研究[J]. 矿床地质, 2004, (01): 52-60.
    [240] 张乾, 战新志, 裘愉卓, et al. 内蒙古孟恩陶勒盖银铅锌铟矿床的铅同位素组成及矿石铅的来源探讨[J]. 地球化学, 2002, (03).
    [241] 储雪蕾, 张巽. 内蒙古林西县大井铜多金属矿床的硫、碳和铅同位素及成矿物质来源[J]. 岩石学报, 2002, (04): 566-574.
    [242] 王长明,张寿庭,邓军,刘建明. 内蒙古黄岗梁锡铁多金属矿床层状夕卡岩的喷流沉积成因[J]. 岩石矿物学杂志, 2007, 26(5): 309-417.
    [243] 陈毓川,朱裕生. 中国矿床成矿模式[A]. 北京: 地质出版社, 1993. 1-367.
    [244] 贾长顺,曾庆栋,徐九华,于昌明. 综合物化探技术在黄土覆盖区隐伏金矿体预测中的应用[J]. 黄金, 2005, 26(7): 8-11.
    [245] 孙兴国,刘建明,刘洪涛,于昌明,曾庆栋. 12[J]. 地球物理进展, 2007, 22(6): 1910-1915.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700