高活性高抗性氧化亚铁硫杆菌的选育及其在铜矿浸出中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,简称A.ferrooxidans)能氧化亚铁离子和还原性硫实现金属离子的溶浸作用,是浸矿过程中起主要作用的细菌。本文选取铜绿山与石头嘴古铜矿区域酸性矿坑水,筛选高活性铁氧化细菌,进行了16S rDNA分子鉴定、生理生化特征分析及重金属抗性研究,并利用该菌株对云南、安徽、大冶等地的低品位氧化-硫化混合型铜矿石进行了摇瓶浸出试验。主要结果如下:
     1.在初步的富集实验中,共获得8株铁氧化细菌,进一步进行二次筛选,得到氧化活性最高的菌株SY。
     2.对菌株SY的16S rDNA进行扩增、克隆、序列测定和同源性分析与序列比对,发现其与氧化亚铁硫杆菌菌株(DQ 062116.1)最为相似,鉴定该菌株为氧化亚铁硫杆菌。
     3.生理生化性质测定表明,菌株SY的最适生长温度为30℃,最适pH值为2.0,接种量对亚铁离子完全氧化时间影响不大。
     4.菌株SY对Cu~(2+)、Cd~(2+)、Ni~(2+)、Zn~(2+)等重金属离子抗性的最低抑菌浓度分别为300、350、700和800 mmol/L,对多种重金属离子均显现出很高的抗性。对该菌株经过约一个月的驯化,在400 mmol/LCu~(2+)离子的环境下,48小时内能完全氧化亚铁离子。
     5.利用菌株SY对湖北大冶、云南丽江及安徽枞阳等地的氧化-硫化混合型低品位铜矿石进行的20天浸出实验显示,细菌浸出比酸浸Cu~(2+)的回收率高出近30%,表明该菌株在硫化矿浸出中具有较好的应用前景。另外,在生物浸出过程中,菌株SY对湖北大冶、安徽枞阳、云南丽江等地的低品位矿样的浸出率分别为84.28%、74.38%、33.31%。
     通过与相关文献中使用的氧化亚铁硫杆菌菌株比较,菌株SY对多种重金属表现出很高的抗性,非常符合多金属复杂矿的浸出要求,表现出较好的应用价值。SY菌对大冶地区混合型铜矿石浸出结果表明土著分离的菌株在本土矿石生物浸出中能显示出很大的优势。
Acidithiobacillus ferrooxidans can oxidize ferrous ions and reductive sulfur and results in metal ions leached, it is considered to be the major bacterium in the course of leaching. In this dissertation, firstly, acid mine drainage from tonglv mountain and shitouzui ancient mine area were collected for the isolation and purification of high active Acidithiobacillus ferrooxidans and the 16S rDNA of the isolate was analyzed. Secondly, we study the physiological property and determine the decree of resistance of strain SY to Cu~(2+), Cd~(2+), Ni~(2+), Zn~(2+). Lastly, bioleaching experiments with strain SY to the low-grade oxide - sulphide mixed copper ore collected from yunnan、anhui and daye were studied and discussed.
     In the initial enrichment experiment, eight strains of iron-oxidizing bacteria were isolated. Ferrous iron oxidation activity was measured as the second screening for these isolates. Strain SY was the most active on ferrous iron oxidation among the Acidithiobacillus ferrooxidans strains tested and selected for further study.
     The 16S rDNA fragments of strain SY was amplified, cloned, sequenced and homologous analysis. It revealed that the strain SY was closely related to Acidithiobacillus ferrooxidans (DQ 062116.1). Therefore it is accepted that strain SY is Acidithiobacillus ferrooxidans.
     The physiological and biochemical characteristics analysis showed that the optimal growth pH and growth temperature was about 2.0 and 30°C respectively. But the whole time of ferrous ions complete oxidation was not heavily affected by the inoculation.
     Experiments about heavy metal resistance of strain SY show that the MTC values were: 300, 350, 700, 800 (mmol/L) to Cu~(2+), Cd~(2+), Ni~(2+), Zn~(2+) and it demonstrate a high resistance. In addition, after the domestication about a month, the copper-adapted strain was able to complete oxidation ferrous ions at 400 mmol/L Cu~(2+) with 20% (v/v) inoculation amount in two days.
     Bioleaching experiments with strain SY to the low-grade oxide - sulphide mixed copper ores collected from Yunnan、Anhui and Daye in Hubei reveal that bacterial leaching with a high recovery rates nearly 30% than acid leaching after leaching about 20 days. It indicates that the strain has good application prospects in the leaching of sulfide minerals. In addition, the extraction rate were 84.28%.. 74.38%、33.31% from Yunnan、Anhui and Daye core sample in bio-leaching process respectively.
     Compared with the relevant literature about strains of Acidithiobacillus ferrooxidans, we can see that strains SY with a relatively high resistance to some heavy metal is able to meet the leaching requirements of complex multi-metal ore. It indicates that the strain has a good application prospect. The leaching result of mixed copper ore in Daye region by strain SY showed that indigenous strains can show a lot of advantages in the bioleaching of ores.
引文
1.李志章,羊依金.氧化亚铁硫杆菌的生长条件及低pH值高铁离子驯化的研究.化学研究与应用,2006,18:1313-1316
    2.刘汉钊,张永奎.微生物在矿物工程上应用的新进展.国外金属选矿,1999,36:9-12
    3.刘清,徐伟昌,聂春龙等.我国浸矿微生物研究的发展概况.南华大学学报(理工版),2003,17:21-24
    4.刘亚洁,李江,牛建国等.铀矿石生物浸出中氟对铁-硫氧化细菌的影响.有色矿冶,2006,22:18-211
    5.刘艳阳,陈志伟,姜成英等.一株嗜酸化能异养菌Acidiphilium sp.的分离鉴定及其对Fe(Ⅲ)代谢的研究.微生物学报,2007,47:350-354
    6.刘缨,林建群,颜望明.浸矿细菌—钩端螺旋菌属菌株研究进展.微生物学通报,2006,33:151-155
    7.钮因健.大力发展铜湿法冶金技术是“十五”我国铜工业技术进步的重要任务.有色金属,2002,54:24-29
    8.裘荣庆,丁朝模.细菌治金.有色金属,1965,8:13-17
    9.沈璧蓉,吴学玲,杜修桥等.抗Cu~(2+)嗜酸氧化亚铁硫杆菌的驯化及诱变育种.现代生物医学进展,2007,7:507-510
    10.王淀佐,阮仁满.矿物生物提取技术的研究与进展.镍铜湿法冶金技术交流及应用推广会论文集,2001,2-9
    11.徐晓军,孟运生.氧化亚铁硫杆菌紫外线诱变及对低品位黄铜矿的浸出.矿冶工程,2005,25:34-361
    12.姚静,徐文静,李红玉.氧化亚铁硫杆菌驯化菌株的铜离子运输特性.中国有色金属学报,2005,15:2009-2015
    13.杨显万等编著.微生物湿法冶金.北京:冶金工业出版社,2003版
    14.杨宇,张燕飞,黄菊芳等.嗜酸氧化亚铁硫杆菌的保藏方法.中南大学学报(自然科学版),2006,37:432-435
    15.殷志勇,成海芳,张文彬.生物技术在湿法冶金领域的应用现状及研究趋 势.湿法冶金,2006,25:113-116
    16.余水静,郭燕华,宋秋华.微生物选育技术在生物冶金中的应用进展.矿业工程,2007,5:66-69
    17.余新文,杨晓军,崔永刚.四川某地难选铜矿石选冶工艺试验研究.矿产综合利用,2007,(4):19-22
    18.赵贺永.地下溶浸采矿技术与我国铀矿山的可持续发展.矿业快报,2005,24:1-3
    19.赵清,刘相梅,边疆等.抗砷载体的构建及在喜温硫杆菌中的接合转移.微生物学报,2005,45:675-679
    20.Ageeva S N,Kondrat'eva T F,Karavaiko G E.Phenotypic characteristics of Thiobacillus ferrooxidans strains.Mikrobiologiia,2001,70:226-234
    21.Ageeva S N,Kondrat'eva T F,Karavaiko G I.Plasmid profiles of Acidithiobacillus ferrooxidans strains adapted to different oxidation substrates.Microbiology,2003,72:579-584
    22.Akcil A,Ciftci H.Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate.Minerals Engineering,2007,20:310-318
    23.Azevedo J S N,Silva-Rocha R.Gene expression of the arsenic resistance operon in Chromobacterium violaceum ATCC 12472.Canadian Journal of Microbiology,2008,54:137-142.
    24.Bacelar-Nicolau P,Johnson D B.Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures.Applied and Environmental Microbiology,1999,65:585-90
    25.Blake R C,Sasaki K,Ohmura N.Does aporusticyanin mediate the adhesion of Thiobacillus ferrooxidans to pyrite? Hydrometallurgy,2001,59:357-372
    26.Bruins M R,Kapil S,Oehme F W.Microbial resistance to metals in the environment.Ecotoxicology and Environmental Safety,2000,45:198-207
    27.Bustos S,Castro S,Montealegre R.The Sociedad Minera Pudahuel bacterial thin-layer leaching process at Lo Aguirre.FEMS Microbiology Reviews,1993,11:231-236
    28. Cabrera G, Go'mez J M, Cantero D. Kinetic study of ferrous sulphate oxidation of Acidithiobacillus ferrooxidans in the presence of heavy metal ions. Enzyme and Microbial Technology ,2005,36: 301-306
    29. Cabrera G, Go'mez J M, Cantero D. Influence of heavy metals on growth and ferrous sulphate oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures. Process Biochemistry, 2005, 40:2683-2687
    30. Chen H, Yang B, Chen X H. Identification and characterization of four strains of Acidithiobacillus ferrooxidans isolated from different sites in China. Microbiology Research, 2007,09,002
    31. Chisholm I A, Leduc L G, Ferroni G D. Metal resistance and plasmid DNA in Thiobacillus ferrooxidans. Antonie van Leeuwenhoek, 1998,73: 245-254
    32. Colmer A R, Hinekel M E. The role of microorganism in acid mine drainage: a preliminary report, Science, 1947,106:253-256
    33. Coram N J, Rawlings D E. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptosphillum ferriphilum sp nov dominates South African commercial biooxidation tanks that operate at 40 degrees. Applied and Environmental Microbiology, 2002,68: 838-845
    34. Das A, Modak J M. Technical note studies on multi-metal ion tolerance of Thiobacillus ferrooxidans. Minerals Engineering, 1997,10: 743-749
    35. Dopson M, Baker-Austin C, Koppineedi P R. Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology-SGM, 2003,149: 1959-1970
    36. Dopson M, Lindstrom E B, Hallberg K B. Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus. Extremophiles, 2001, 5: 247-255
    37. Dressier C, Kues U, Nies D. Determinants Encoding Resistance to Several Heavy Metals in Newly Isolated Copper-Resistant Bacteria. Applied and Environmental Microbiology, 1991, 57: 3079-3085
    38. Duncan D W, Trussell P C, Walden C C. Leaching of Chalcopyrite with Thiobacillus ferrooxidans: Effect of Surfactants and Shaking. Applied microbiology, 1964,12:122-126
    39. Escudero M E, Gonzalez F, Blazquez M L, Ballester A, Gomez C. The catalytic effect of some cations on the biological leaching of a Spanish complex sulphide. Hydrometallurgy, 1993, 34: 151-169
    40. Gehrke T, Telegdi J, Thierry D, Sand W. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching. Applied and Environmental Microbiology, 1998,64:2743-2747
    41. Ghosh S, Mahapatra N R, Banerjee P C. Metal Resistance in Acidocella Strains and Plasmid-Mediated Transfer of This Characteristic to Acidiphilium multivorum and Escherichia coli. Applied and Environmental Microbiology, 1997, 63: 4523-4527
    42. Hallmann R, Friedrich A, Koops H P, Pommerening-Roser A, Rohde K, Zenneck C, Sand W. Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching. Geomicrobiol Journal, 1992,10:193-206
    43. Imai K, Sugio T. Effect of heavy metal ions on the growth and iron-oxidizing activity of Thiobacillus ferrooxidans. Plant Physiology and Biochemistry, 1975, 39: 1349-1354
    44. Johnson D B, Stallwood B. Isolation and characterization of Acidicaldus organivorus, gen. nov., sp. nov.: a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium. Archives of Microbiology, 2006,185:212-221
    45. Keeling S E, Davies K L. Utilisation of native microbes from a spent chalcocite test heap. Hydrometallurgy, 2006, 83:124-131
    46. Lavalle L, Chiacchiarini P, Pogliani C. Isolation and characterization of acidophilic bacteria from Patagonia, Argentina. Process Biochemistry, 2005, 40:1095-1099
    47. Lavalle L, Giaveno A. Bioleaching of a polymetallic sulphide mineral by native strains of Leptospirillum ferrooxidans from Patagonia Argentina. Process Biochemistry, 2008 ,43: 445-450
    48. Leathen W W, Kinsel N A, Braley S A. Ferrobacillus ferrooxidans: A chemosynthetic autotrophic bacterium. Journal of Bacteriology, 1956, 72: 700-704
    49.Leduc L G,Ferroni O D,Trevors J T.Resistance to heavy metals in different strains of Thiobacillus ferrooxidans.Word Journal of Microbiology &Biotechnology,1997,13:453-455
    50.Lee Y A,Hendson M.Molecular cloning,chromosomal mapping,and sequence analysis of copper resistance genes from Xanthomonas campestris pv.juglandis:homology with small blue copper proteins and multicopper oxidase.Journal of Bacteriology,1994,176:173-188
    51.Legatzld A,Grass G,Anton A.Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans.Journal of Bacteriology,2003,185:4354-4361
    52.McCready R G L,Gould W D.Bioleaching of uranium.In:Ehrlich H L,Briedey C L(eds) Microbial Mineral Recovery,McGraw-Hill,New York,1990,107-125
    53.Mier J L,Ballester A,Gonzalez F,Blazqpez M L,Gomez E.The influence of metallic ions on activity of sulfolobus.Journal of Chemical Technology and Biotechnology,1996,65:272-280.
    54.Mousavi S M,Yaghmaei S,Vossoughi M.Bacterial leaching of low-grade ZnS concentrate using indigenous mesophilic and thennophilic strains.Hydrometallurgy,2007,85:59-65
    55.Natarajan K A,Sudeesha K.Stability of copper tolerance in Thiobacillus ferrooxidans.Antonie Van Leeuwenhoek,1994,66:303-306
    56.Nedelkova M,Merroun M.L,Rossberg A.Microbacterium isolates from the vicinity of a radioactive waste depository and their interactions with uranium.FEMS Microbiology Ecology,2007,59:694-705
    57.Olson G J,Brierley J A,Brierley C L.Bioleaching review part B:Progress in bioleaching:applications of microbial processes by the minerals industries.Applied Microbiology and Biotechnology,2003,63:249-257
    58.Park H S,Lee J U.The effects of Acidithiobacillus ferrooxidans on the leaching of cobalt and strontium adsorbed onto soil particles.Environmental Geochemistry and Health,2007,29:303-312
    59.Peng J B,Yan W M.Plasmid and Transposon Transfer to Thiobacillus ferrooxidans.Journal of bacteriology,1994a,60:2653-2656
    60. Peng J B, Yan W M. Expression of heterogenous arsenic resistance genes in the obligately autotrophic biomining bacterium Thiobacillus ferrooxidans. Applied and Environmental Microbiology, 1994b, 176:2892-2897
    61. Pina P S, Leao V A, Silva C. A. The effect of ferrous and ferric iron on sphalerite bioleaching with Acidithiobacillus sp. Mineral Engineering, 2005, 18: 549- 551
    62. Qiu G Z, Fu B. Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite. World Journal of Microbiology and Biotechnology, 2007,23:1217-1225
    63. Rawlings D E. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories, 2005,4:13
    64. Rawlings D E. Microbially assisted dissolution of minerals and its use in the mining industry. Pure and Applied Chemistry, 2004,76: 847-859
    65. Rawlings D E, Dew D. Biomineralization of metal-containing ores and concentrates. Trends in Biotechnology, 2003,21: 38-44
    66. Rawlngs D E, Pretorius I M, Woods D R. Expression of a Thiobacillus ferrooxidans origin of replication in Escherichia coli. Journal of Bacteriology, 1984,158:737-738
    67. Rawlings D E, Tributsch H. Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology-SGM, 1999,145: 5-13
    68. Rhodes M, Deeplaul V. Bacterial oxidation of Mt .L yell concentrates. Proceedings of the A1TA 1998 Copper Sulfides Symposium, Brishbane, Australia, 19 October 1998
    69. Romero J , Yanez C. Characterization and identification of an iron-oxidizing, Leptospirillum-like bacterium, present in the high sulfate leaching solution of a commercial bioleaching plant. Research in Microbiology, 2003,154: 353-359
    70. Salo-Zieman V L A, Sivonen T, Plumb J J. Characterization of a thermophilic sulfur oxidizing enrichment culture dominated by a Sulfolobus sp. obtained from an underground hot spring for use in extreme bioleaching conditions. Journal of Industrial Microbiology and Biotechnology, 2006,33: 984-994
    71. Sand W, Gehrke T, Jozsa P 0. Biochemistry of bacterial leaching—dieret vs.indieret bioleaching, Hydrometallurgy, 2001,59:159-175
    72. Schippers A, Jorgensen B B. Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments. Geochimica et Cosmochimica Acta, 2001, 65: 915-922
    73. Schippers A, Sand W. Bacterial Leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Applied and Environmental Microbiology, 1999, 65:319-321
    74. Schrenk M O, Edwards K J, Goodman R M. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science, 1998,279:1519-1522
    75. Sugio T, Mizunashi W. Purification and some properties of sulfur: ferric ion oxidoreductase from Thiobacillus ferrooxidans. Journal of Bacteriology, 1987, 169:4916-4922
    76. Sugio T, Fujii M, Takeuchi F. Volatilization of mercury by an iron oxidation enzyme system in a highly mercury-resistant Acidithiobacillus ferrooxidans strain MON-1. Bioscience Biotechnology and Biochemistry, 2003,67: 1537-1544.
    77. Sugio T, Wakabayashi M. Isolation and characterization of Acidithiobacillus ferrooxidans strain D3-2 active in copper bioleaching from a copper mine in Chile. Bioscience Biotechnology and Biochemistry, 2008, 72: 998-1004
    78. Temple K L , Delchamps E W. Autotrophic bacteria and the formation of acid in Bituminous Coal. Applied Microbiology, 1953,1: 255-258
    79. Tributsch H. Direct versus indirect bioleaching. Hydrometallurgy, 2001, 59:177-185
    80. Tuffin I M, de Groot P. An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus. Microbiology-Sgm, 2005,151: 3027-3039
    81. Tuffin I M, Hector S B. Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Applied and Environmental Microbiology, 2006, 72: 2247-53
    82. Tuovinen O H, Niemela S I. Tolerance of Thiobacillus ferrooxidans to some metals. Antonie Van Leeuwenhoek, 1971, 37: 489-96
    83. Tuovinen O H, Kelly D P. Studies on the growth of Thiobacillus ferrooxidans. II. Toxicity of uranium to growing cultures and tolerance conferred by mutation, other metal cations and EDTA. Archives of Microbiology, 1974,95: 153-64.
    84. Tyson G W,.Lo I, Baker B J. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp nov from an acidophilic microbial community. Applied and Environmental Microbiology, 2005, 71: 6319-6324
    85. Watling H R. The bioleaching of nickel-copper sulfides. Hydrometallurgy, 2008, 91:70-88
    86. Xia J L, Peng A A. A new strain Acidithiobacillus albertensis BY-05 for bioleaching of metal sulfides ores. Transactions of Nonferrous Metals Society of China, 2007,17:168-175
    87. Xia L X, Liu J S, Xiao L. Single and cooperative bioleaching of sphalerite by two kinds of bacteria — Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Transactions of Nonferrous Metals Society of China, 2008, 181:190-195
    88. Zimerley S R, Wilson D G , Parater J D. Cycle leaching Process employing iron oxdizing bacteria. US Patent, 1958,2829964

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700