黑龙江省稻瘟病菌致病基因的检测及分布情况研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用分子标记技术对黑龙江省17县(市)的167个稻瘟病菌携带MPG1, MPS1 MagB, CPKA, MNH1 MgYCA1 MgS11和MgATG5等致病相关基因进行了检测,阐明了8个致病相关基因在黑龙江省稻瘟病菌群体中分布情况。
     检测结果表明,不同的致病相关基因在黑龙江省稻瘟病菌群体中的出现频率有明显差异,致病基因MPS1出现频率最高(40.12%)并分布最广,致病基因MPG1其次(出现频率37.13%),致病基因CPKA. MagB、MgATG5、MgYCA1和MgS11的出现频率依次为33.53%、31.14%、29.34%、25.75%和23.35%,没有检测到致病基因MNH1。
     应用Wolfe和Schwarzbach(1975)提出的方法将携带相同致病基因的菌株归为一类,依据7个致病基因在理论上可划分为127个致病遗传型。本试验共检测出64个致病遗传型,其中携带5个致病基因的遗传型3个,出现频率为2.4%;携带4个致病基因的遗传型12个,出现频率为10.8%;携带3个致病基因的遗传型21个,出现频率为18.6%;携带2个致病基因的遗传型20个,出现频率为35.3%;携带1个致病基因的遗传型7个,出现频率为25.7%;不携带致病基因的遗传型1个,出现频率为7.2%。说明黑龙江省稻瘟病菌群体的结构比较复杂的,所携带的致病基因数量具有明显差异。
     各致病遗传型在黑龙江省出现频率明显不同。致病遗传型127、64、58、59、96、119、91和123号等出现频率较高,其次是致病遗传型61、62、81、93、122和126号。这些致病遗传型在黑龙江省分布较广,但地区间有较大差异。在这些致病遗传型中,绝大多数所携带的致病基因数量比较少,其致病遗传基础比较简单。而携带3个以上致病基因的致病遗传型在黑龙江省出现频率较低,均在局部地区出现,地区间存在着很大差异。表明黑龙江省稻瘟病菌群体结构比较复杂。
     各致病菌株遗传型的实际出现频率与理论出现频率相差较大,这可能与致病基因之间的相互作用有关。黑龙江省各稻作区之间稻瘟病菌群体结构存在较大差异,这可能与本地区水稻品种种植结构有关。
The experiment utilized Molecular markers to identify and analysis Pathogenicity genes of Magnaporthe grisea in Heilongjiang Province,which were MPG1、MPS1、MagB、CPKA、MNH1、MgYCA1、MgS11and MgATG5.It clarified the distribution of the eight Pathogenicity genes and pathogenic ability of Magnaporthe grisea group in Heilongjiang Province.
     The results showed that the frequency of different Pathogenicity genes was significant different in Heilongjiang Province.The MPS1 had the most widely distributed with the positive frequency up to 52.94%; the second biggest distribution was the Pathogenicity gene MPG1 of which positive frequency was 37.13%; The positive frequencies for CPKA,MagB,MgATG5,MgYCA1 andMgS 11 were 33.74%,31.33%,29.48%, 25.75%and23.51%, respectively;The MNH1 was not detected here.
     Different the strains tested carried a significant difference in the number of Pathogenicity genes. Application Wolfe and Schwarzbach(1975) proposed methods will carry the same strain of pathogenic genes classified as a class, based on seven Pathogenicity genes in theory can be divided into 127 types of Pathogenicity genetic.The test detected a total of 64 pathogenic genotype type, five Pathogenicity genes carre 3 genotype type,The frequency was2.4%; four Pathogenicity genes carre 12 genotype type, The frequency was 10.8%; three Pathogenicity genes carre 21 genotype type, The frequency was 18.6%; two Pathogenicity genes carre 20 genotype type,The frequency was35.3%; one Pathogenicity genes carre 7 genotype type, The frequency was 25.7%; zero Pathogenicity genes carre 1 genotype type, The frequency was 7.2%; showing the structure of Magnaporthe grisea is more complex in Heilongjiang Province,but the genes that less Pathogenicity genes carrying mainly, most of the genetic basis of pathogenicity of individual is relatively simple and pathogenicity is not strong, so planting resistant varieties use control.
     The pathogenic genotype significantly different frequencies in Heilongjiang Province. The pathogenic genotype of higher frequency is 127、64、58、59、96、119、91and123, the second is 61、62、81、93、122 and 126. These pathogenic genotype widely distributed, but differed greatly among regions in Heilongjiang Province. In these type of genetic pathogenic,most of the genes carried by the number of relatively small,Its relatively simple genetic basis of genetic pathogenic.While carrying three Pathogenicity genes more than genotype is the lower frequencies in Heilongjiang Province, are in the local region, there is great difference between regions. Description structure of Magnaporthe grisea is more complex in Heilongjiang Province.
     The actual pathogenic genotype frequency and theoretical frequency difference larger, this may be related to the interaction between the Pathogenicity genes.
     The rice blast fungus range Magnaporthe grisea structure are quite different in Heilongjiang Province, the rice area has been formed with the characteristics of this region the structure of Magnaporthe grisea. This may be related to Rice Varietiesin Planting this region related to the structure.
引文
[1]OU S H.Pathogen variability and host resistance in rice blast disease Annu Rev Phytopathol,1980,18: 167-187.[2]余艺涛.稻瘟病生理小种田间监测及防治策略[J].湖北农业科学,2003,6:16-18.
    [3]沈瑛,株培良,袁筱萍,等.中国稻瘟病菌的遗传多样性[J].植物病理学报,1993,23(4):309-313.
    [4]李继露,杨隆维,向极轩,等.80年代以来抗稻瘟病育种子主要成就[J].种子,2001.114:44-45.
    [5]孙漱元,孙国昌.我国稻瘟病研究的现状和展望[J].植保技术与推广,1996,16(3):39-40.
    [6]De Wit PJG M. Molecular characterization of gene for gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annual Review ofPhytopathology,1992,30: 391-418.
    [7]贺春萍,林春花,廖奇亨,李锐,郑服丛.稻瘟病菌T-DNA插入突变体库构建及致病相关突变体筛[J].选热带作物学报2007-03-1580-84.
    [8]SU BHANKAR R, CHATTOO B.R ice b last fungus sequenced[J].Current Science,2005,89(6): 930-931.
    [9]南京农业大学主编.农业植物病理学.江苏科学技术农业出版社,1996.
    [10]ZEIGLER R S, LEONG S A, TEENG P S. Rice Blast Disease[J].Internationa, Wallingford,1994.
    [11]RALPH A D, NICHOLAS JT, DANIEL JE, et a.1 The genome se-quence of the rice blast fungusMagnaporthe grisea[J].Natere,2005,434:981-986.
    [12]SESMA, A.&OSBOURN,A.E.The rice blastpathogen undergoes developmental processes
    [13]毛建辉,何忠全.品种混植对水稻稻瘟病及其产量的影响[J].西南农业学报,1990,3(1):56-61.
    [14]孙国昌,杜新法,陶荣祥等.水稻稻瘟病防治策略和21世纪研究展望.植物病理学报,1998,28(4):289-292.
    [15]姜丽霞,朱海霞,纪仰慧,等.黑龙江省水稻稻瘟病研究进展[J].黑龙江农业科学.2008,(3):134~136.
    [16]马成云,申宏波,马淑梅,等.黑龙江省水稻稻瘟病发生危害情况调查及防治建议[J].植物保护,2006,第32卷第5期.
    [17]何明,何忠全,秦敏.水稻主要病虫害防治技术体系的新发展[C].中国植物保护研究进展,北京:中国科学技术出版社,1996,19-24.
    [18]董继新,董海涛,李德葆.水稻抗瘟性研究进展[J].农业生物技术学报,2000,8(1):99-102.
    [19]张德水,陈受宜.植物抗病性的分子生物学研究进展[J].植物病理学报,1997,26(3):193-203.
    [20]王焰玲,秦敏,周青.抑制稻瘟菌生长的几丁酶产生菌的分离和鉴定[J].植物保护学报,1998,25(4):289-294.
    [21]赵智娴,董锦艳,莫明和,等.日本亮耳菌对植物病原真菌的拮抗实验[J].云南大学学报(自然科学版),2002,24(6):475-477.
    [22]游春平,肖爱萍,魏金莲,等.稻瘟菌拮抗细菌的活性研究[J].江西农业大学学报,2002,2,24(1):24-27.
    [23]深见顺一,上杉康彦,石家皓造,等.农药实验法-杀菌剂篇[M].北京:农业出版社,1991.
    [24]Gesth K, Bedorf N, Hofle G, et al. Epothilons A and B:anti-fungal and cytotoxic compounds from sorangium celiulosum(Myxobacterical)[J].Antibiot,1996,49(6):560.
    [25]杨荣明,周明国,叶钟音.三环唑防治稻瘟病的作用机制[J].南京农业大学学报,1998,21(2):34-37.
    [26]周明国主编.农业植物病理学[M].南京:江苏科学技术出版社.1996,6:79-85.
    [27]Ekwamu A,1991.Influence of head blastinfection on seed germination and yield components of finger millet (Eleusinecoracana L. Gaertn) Trop. Pest Management,37:122-23.
    [28]Howard, RJ, and Valent, B,1996.Breaking and entering:Host penetration by the fungal rice blas pathogen Magnaporthe oryzae.Annu.Rev.Microbiol,50:491-512.
    [29].Hamer JE and NJ Talbot,1998.Infection-related development in the rice blast fungus Magnap-orthe oryzae.Curr Opin Microbiol,1:693-697.
    [30]Money NP, RJ Howard,1996. Confirmation of a link between fungal pigmentation,turgor pressure, and pathogenicity using a new method o turgor measurement.Fungal Gent Biol,20:217-227.
    [31]Howard RJ, MA Ferrari, DH Roach, and NP Money,1991.Penetration of hard substrates by a f-ungus employing enormous turgor pressures. Proc Natl Acad Sci.USA.
    [32]Talbot NJ, Kershaw MJ, Wakley GE, OMH de Vries, Wessels JGH, Hamer JE,1996. MPGI encodes a fungal hydrophobin involved in surface interactions during infection-related development ofMagnaporthe grisea. Plant Cell,8:985-999.
    [33]Talbot NJ,1995.Having a blast:exploring the pathogenicity of Magnaporthe oryzae. Trends in Microbiology,3:9-16.
    [34]HAMER JE, GIVAN S.Geneticmappingwith dispersed repeated sequences in the rice blast fungus, mapping the SMO locus[J].Molecular and GeneralGenetics,1990,223:487-495.
    [35]LEVYM, ROMAO J, MARCHETTIM A, et a.l DNA fingerprint-ingwith dispersed repeated sequence resolves pathotype diversityin the rice blast fungus[J].PlantCel,11991,3:95-102.
    [36]LEVYM, CORREA F J, ZEIGLER R S, et a.l Genetic diversityof the rice blast fungus in a disease nursery in Colombia[J].Phy-topathology,1993,83:1427-1433.
    [37]ZEIGLER R S, CUOC L X. The relationship between lineage andvirulence in Pyricularia grisea in the Philippines[J].Genetics,1995,85(4):443-451.
    [38]Chen D H, et al.Population structure of Pyricularia grisea at two screening sites in thep hilippin-es[J].Phytopathology,1995,85(9):1011-1020.
    [39]沈瑛,朱培良,袁筱萍,等.中国稻瘟病菌的遗传多样性[J].植物病理学报,1993,23(4):309-313.
    [40]沈瑛,朱培良,袁筱萍,等.我国稻瘟病菌的遗传多样性及其地理分布[J].中国农业科学,1996,29(4):39-46.
    [41]朱衡,蒋琬如,陈美玲,等.稻瘟病菌株的DNA指纹及其与小种致病性相互关系的研究[J].作物学报,1994,20(3):257-263.
    [42]雷财林,王久林,蒋琬如,等.我国北方部分稻区稻瘟病菌群体遗传结构研究[J].植物病理 学报,2002,32(3):219-226.
    [43]周益军,白娟,程兆榜,等.我国稻瘟病菌群体多样性研究[J].中国水稻科学,2004,18(3):277-280.
    [44]王建飞,鲍永美,李培富,等.基于无毒基因序列的稻瘟病菌指纹类型与致病型的关系初探[J].中国水稻科学,2006,2(1):109-112.
    [45]黄富,程开禄,罗庆明等稻瘟病菌致病性变异研究两南农业学报1999,12-(4):69-73.
    [46]Ou SH.Rice Disease, Commonwealth Mycological Institiute, Kew, UK,1985,pp.109-121.
    [47]Latterell F M, Rossi A E. Longebity and pathogenic stability of Pyricularia oryzae.Phytopathology.1986,76:231-235.
    [48]何月秋,唐文华,2001.水稻稻瘟病菌研究进展(一)水稻稻瘟病菌多样性及变异机制,云南农大学学报,16(1):60-64.
    [49]沈瑛,李成云等,1997.稻瘟病菌的菌丝融合现象及其后代致病性变异,中国农业科学,30(6):16-22.
    [50]ValentB.Farrall L.Chumley FG Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses 1991.
    [51]Yaegashi, H.Hevert T T. Perithecial development and nuclear behavior in Pyricularia. Phytopathology.1976,66:122-126.
    [52]沈瑛,李成云,袁筱萍等稻瘟病菌的菌丝融合现象及其后代的致病性中国农业科学,1997,30(6):16-22.
    [53]Hebert T T. The perfect stage of Pyricularia grisea. Phytopathology,1971,61:83-87.
    [54].Hayashi N, Li C, Li J, et al.Distribution of fertile grisea fugus pathogenic to rice in Yunnan Province, China. Annals-of-the-Phytopathological-Society-of-Japan.1997,63(4):316-323.
    [55]Kumar J, Nelson R J, Zeigler R S.Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas. Gentics,1999,152:971-984.
    [56]潘汝谦,康必鉴.水稻稻瘟病菌致病性分化研究[J].华南农业大学学报,1999,30(3):15-18.
    [57]林代福.应用离体接种技术鉴定稻瘟病菌生理小种[J].植物保护,1998:4:29-30.
    [58]孙国吕,孙漱沉,申宗坦.水稻穗瘟离体接种技术研究[J].中国水稻科学,1992,6(1):39-42.
    [59]徐大雅.马铃薯晚疫菌生理小种的蛋白质电泳分析[J].真菌学报,1982,1(1):40-47.
    [60]鲁国东,郑武,阮志平,等.福建稻瘟茵毒性类型组成及其对水稻几个Pi基因的毒性频率[J].植物病理学报,2003,33(3):248-253.
    [61]何月秋,唐文华,Hei Leung,等.Pot2在稻瘟病菌群体结构分析中的应用[J].华中农业大学学报,2000,19(4):317-321.
    [62]金敏忠,柴荣耀.我国稻瘟病菌生理小种研究的进展[J].植物保护,1990,16(3):37-40.
    [63]RALPH A D, NICHOLAS JT, DANIEL JE, et a.1 The genome squence of the rice blast fungus Magnaporthe grisea[J].Natere,2005,434:981-986.
    [64]JEON J, PARK SY, CHIMH, eta.1 Genome-wide functionala-nalysis ofpathogenicity genes in the rice blast fungus[J].NatureGenetics[J],2007,39:561-565.
    [65]Foster A J, Jenkinson J M, Talbot N J. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea [J].EMBO J.2003,22(2):225-235.
    [66]Talbot N J.On the trail of a cereal killer:Exploring the biology of Magnaporthe grisea [J].Annu Rev Microbiol.2003,57:177-202.
    [67]Clergeot P-H, Gourgues M, Cots J et al. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA.2001,98: 6963-6986.
    [68]Talbot NJ, Ebbole DJ, Hamer JE,1993.Identification and characterization of MPGI, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell,5:1575-1590.
    [69]Wosten HA, Schuren FH, Wessels JG,1994. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates.attachment to hydrophobic surfaces. The EMBO Journal,13: 5848-5854.
    [70]Zhu H, Whitehead DS, Lee YH,Dean RA,1996. Genetic analysis of developmental mutants and rapid mapping of APPI, a geneed for appressorium formation in Magnaporthe grisea. Molecular Plant Microbe Interaction,9:767-774.
    [71]Shi Z, Chistian D, Leung H,1995.Enhanced transformation in Magnaporthe grisea by restriction enzyme mediated integration of plasmid DNA.P topathology,85:329-333.
    [72]Wosten HA,Schuren FH, Wessels JG,1994. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates.attachment to hydrophobic surfaces. The EMBO Journal,13: 5848-5854.
    [73]Shi Z, Leung H,1995.Genetic analysis of sporulation inMagnaporthe grisea by chemical and insertional mutagenesis. Molecular Plant Microbe Interaction,8:949-959.
    [74]Silue D, Tharreau D, Talbot NJ, Clergeot PH, Notteghem JL, Lebrun MH,1998.
    [75]DeZwaan TM, Carroll AM, Valent B,Sweigard JA,1999.Magnaporthe grisea pthl 1p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell[J],11:2013-2030.
    [76]Tucker SL, Talbot NJ,2001.Surface attachment and pre-penetration stage development by plant pathogenic fungi.Annual Review ofPhytopathology,39:385-417.
    [77]Choi WB, Dean RA,1997.The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development.Plant Cell,9:1973-1983.
    [78]Adachi K, Hamer JE,1998.Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell,10:1361-1373.
    [79]Xu JR, Staiger CJ,Hamer JE,1998.Inactivation of the mitogen-activated protein kinase Mpsl from the rice blast fungus prevents penetration of host cells but allows activation of plant defence responses. Proc Natl Acad Sci USA,95:12713-12718.
    [80]Thines E, Eilbert F, Sterner O, AnkeH,1997.Signal transduction leading toappressorium formation in germinatingconidia of Magnaporthe grisea:effects of second messengers diacylglycerols, ceramindesand sphingomyelin. FEMS Microbiology Letters,156:91-94 Nature 389:244-255.
    [81]Mochly RD. Localization of protein kinases by anchoring proteins.a theme in signal transduction. Science,1995,268:247-251.
    [82]Lee YH, Dean RA.cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell,1993,5:693-700.
    [83]Kang SH, Khang CH,Lee YH. Regulation of camp-dependent protein ltinase during appressorium formation in Magnaporthe grisea. FEMS Microbiology Letters,1999,170:419-423.
    [84]Mitchell TK, and Dean The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea.Plant Cell,1995,7: 1869-1878.
    [85]Throes E, Weber RW and Talbot NJ. MAP lcinase and protein lcinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea.Plant Cell,2000, 12:1703-1718.
    [86]杨文鹏.DNA分子标记及其在遗传育种上的应用[J].种子,1997,(2):30-34.
    [87]Williams J G K, Kubelik A R, Livak J et al. DNA polymorphisms amplified by arbitrary primersare useful as genetic markers. Nucleic Acid Research,1990,18(22):6531-6535.
    [88]Welsh J, Petersen C, MmClelland M. Fingerprinting genomes using PCR with arbitary primers[J]. Nucleic Acid Research,1990,18:7213-7218.
    [89]何祯祥,施季森.木林遗传图谱构建的技术和策略[J].1998,15(2):151-157.
    [90]郑燕.稻瘟病抗性基因Pi-2(t)紧密连锁的SSR标记的筛选及其应用:[硕士学位论文].福州:福建农林科技大学2004.
    [91]邓一文.水稻广谱抗稻瘟病基因的遗传分析与定位:[硕士学位论文].北京:中国农业科学院2004.
    [92]Weber,May Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction[J].Am J Hum Genet,1989,44:388-396.
    [93]Morgante M.,Olivieri A.M. PCR-amplified mocrosatellites as markers in plant genetics[J].Plant Journal,1993,3:175-182.
    [94]Cho Y G,Ishii T, Teemnykh S, Chen X, et al.,Diversity of microsatallites derived from geno-mic library and Gene-bank sequencesin rice (Oryza sativa L.).100:713-72.
    [95]朱永生.云南稻三磅七十箩抗稻瘟病基因分析:[博士学位论文].武汉:华中农业大学,2003-2005.
    [96]http://www.microbiohome.com/forum/dispbbs.asp?boardid=8&id=2698.
    [97]Paran I,Michelmore W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce [J].Theor. Appl.Genet.,1993,85:985-995.
    [98]侯义龙,曹同.苔藓植物与分子生物学标记技术[J].生态学杂志,2005,24(1):83-87.
    [99]Leung H, borromeo E S, bermardo M A et al. Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology,1988,78:1227-1233.
    [100]王云月,范静华,汪安云,等.稻瘟病菌rep-PCR分子指纹聚类分析.植物病理学研究进展,1999,101-102.
    [101]刘二明,刘志贤,魏林.湖南两类稻瘟病生态系病菌群体遗传多样性研究.湖南农业大学学报,2003,29(3):211-215.
    [102]雷财林,王久林,蒋如,等.我国北方粳稻区稻瘟病菌生理小种与毒性及其变化动态的研究[J].作物学报,2000,26(6):759-776.
    [103]刘二明,张志飞,罗峰,等.湖南稻瘟病病菌群体遗传多样性研究.湖南农业大学学报,2002,28(5):391-394.
    [104]石军基于稻瘟病菌毒性相关基因的指纹类型与致病型关系分析[硕士学位论文].四川:四川农业大学,2007.
    [105]段志军.稻瘟病菌MNHI和MgYCAl基因的克隆与功能分析[硕士学位论文].杭州:浙江大学,2007.
    [106]冯晓晓.稻瘟病菌致病相关基因MgSll,MgATG5和MgATG8的克隆与功能分析[硕士学位论文].杭州:浙江大学,2006.
    [107]方中达.植病研究法[M].北京:中国农业出版社,1996.
    [108]吕军.黑龙江省水稻稻瘟病菌致病性分化与RAPD分析[硕士学位论文].大庆:黑龙江八一农垦大学,2006.
    [109]李彩华.农业措施对大豆田土壤微生物区系影响的研究:[硕士学位论文].大庆:黑龙江八一农垦大学,2006.
    [110]He YQ. An improved protocol for fungal DNA preparation [J].Mycosystema,2000,19(3):434.
    [111]Wolfe M S.Schwarzbach E The use of virulence analysis in cereal mildews 1975(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700