电影胶片修复及噪声处理关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旧电影修复技术是计算机视觉、数字图像处理、数字视频处理、数字节目非线性编辑等许多研究领域的核心技术和热点方向。本文针对胶片电影中存在的几种主要失真做了详细研究,其中主要研究了数字电影修复策略、数字修复过程中的基础技术、以及几种典型失真的数学模型,并在充分汲取现有视频处理理论及相关应用中技术优点的基础上,对稳像,划痕,闪烁,图像噪声和低亮度CCD噪声的检测和修复做了细致分析,针对它们在空时域上的数学特征,修复算法的计算复杂度以及图像恢复质量的不足进行了拓展性研究,提出了一些相对应的视频失真检测或恢复方法,从而在有效地增强了图像序列修复质量的同时,还提升了视频编码器处理该类电影序列时的性能。具体的,本论文的主要研究成果如下:
     首先,阐述了数字实时稳像技术的理论基础,回顾了两种典型的传统稳像算法,设计了一种实时视频稳像系统,包含完整的稳像处理步骤.其中全局运动分析,局部运动块剔除,切边时图像尺寸约束,帧扩边和稳像帧生成步骤都有一定的创新性设计。该系统具有三个工作模式,可以设置不同的输入输出视频尺寸,其对平移和旋转抖动的稳像效果优良,并且速度性能完全能适应低速嵌入式平台环境。
     其次,阐述了直线划痕的视觉特征,改进了划痕数学模型表达式,同时改进了空间直线划痕检测器的设计,并结合划痕在时间域上低幅度,与全局运动不相关的运动特征,设计了一种基于上述准则进行时域判决的补充算法。这种空时检测器算法具有更大的适用范围和更强的识别能力。
     第三,阐述了亮度闪烁的视觉特征,描述了多种闪烁数学模型,基于其中的不同模型回顾了SLAR修复算法和Roosmalen的迭代算法,分析了其优缺点,提出一种改进型的SLAR算法(ISLAR),以实现低复杂度快速修复,最后设计了一种基于块的多帧统计恢复算法。以达到更精确的修复效果。
     最后,提出了一种新的双向细节空时降噪滤波器设计:它由一个噪声估计器,一个运动检测器,一个双向细节检测器和一个三帧高斯自适应加权滤波器构成,使用前两个修复帧和当前帧来达到实时去噪的目的。该滤波器适合处理高斯噪声,面对脉冲噪声和混合噪声时可以增加一个脉冲噪点检测器和一个改进的中心加权中值滤波器来处理。此外,还提出一种针对CCD低亮度噪声的空时多帧平均降噪滤波器算法,其关键是带有一个严格的基于块的运动检测器,为了处理镜头摇摆带来的误判,还增加了全局运动估计和基于块的运动补偿。面对低亮CCD视频,该算法在高效修复的基础上,保持了较低的算法复杂度,有效地去除了低亮场景下的灰度噪声和彩色噪声,并且提升了编码器的编码帧率,降低了压缩流码率。
Old film restoration is one of key technology and has drawn tremendous attention in research of computer vision, digital image processing, digital video processing and digital program non-linear editing technology. In this thesis, the digital film repair scheme, the basic theory of video restoration and mathematical models of several typical artifacts are investigated. By fully taking advantages of the existed video process theory technology on related applications, this thesis deeply analyzes the detection and removal method for stabilization, scratch, flicker, image noise and low light level CCD noise, extend the research upon above artifact features in spacial and temporal field, reduce the complexity of restoration algorithms and improve their repairing effect. In this thesis, we provide some novel corresponding detection and restoration algorithms, which not even enhance the quality of restored sequence, but also improve the efficiency of video encoder when compressing the film sequence degraded by these kinds of artifacts. The creativities and contribution are discussed in detail as follows:
     Firstly, the technological framework and basic theory of digital video real-time stabilization are presented. Here we review two typical traditional algorithms for video anti-shaking, then propose a real-time video stabilization system, which includes all steps for stabilized video generating. Some innovative designs are presented in global motion analysis, local motion block removal, constraint of limited edge for cropping, frame’s edge extending, stabilized frame reconstruction, etc. This system has three working modes, can support different sizes for input and output video. It not only gets good effect on smoothing translation and rotation unsteadiness, but also reaches a high speed performance and fits for many applications on low speed environment, such as the embedded platform.
     Secondly, we describe the visual feature of line scratch, improve the mathematical model and spacial method of line scratch detection, and then, we reinforce the precision of detection results with a novel temporal refining detector according to the especial motion feature of scratch, which is small and different from the global frame motion
     Thirdly, we present the visual feature of intensity flicker, list several degradation models with different precision, and then we describe two previous recovery method: SLAR algorithm and Roosmalen’s iterative algorithm, analyzes the advantage and shortcoming of thesis methods. In order to realize a fast and low complexity restoration, we provide an improved SLAR method (ISLAR) to deal with the quickly moving object. On the other hand, for the sake of getting more accurate restored sequence, we design a block-based method based on a multi-frame statistical average algorithm, which is complicated but effective.
     Finally, a novel bidirectional detail-preserved spatio-temporal de-noise algorithm is proposed, which consists a noise estimator, a motion detector, a bidirectional detail detector, and a three-frame adaptive weighted filter. This method uses two previous restored frames and the current frame to reduce noise. The filter is suitable for Gaussian noise, but if it is employed to filter the impulse noise or mixed noise, an optional impulse noise detector and an optional CWM filter will be activated to work together. Furthermore, this thesis proposed a spatio-temporal multi-frame average filter to deal with low light level CCD noise. The key part of this filter is a strict block-based motion detector. In order to deal with the false judgment comes from the camera shaking, we employee a global motion estimation (GME) and block-based motion compensation. For the low light level CCD video, this algorithm takes a small amount of calculation but lead a high quality recovery. Actually the filter can not only remove most of luminance noise and color noise caused by LLL background, but also improve the encoding frame rate and reduce the data size of compressed bit stream efficiently.
引文
[1] 余兆明编著, 数字电视与高清晰度电视, 人民邮电出版社, 北京, 1997
    [2] 余松煜,周源华,吴时光编著, 数字图像处理, 电子工业出版社, 北京, 1989
    [3] 宋利, “图像鲁棒匹配及相关技术的应用研究”, 上海交通大学博士论文, 2005
    [4] A.C. Kokaram, Motion Picture Restoration Digital Algorithms for Artifact Suppression in Degraded Motion Picture Film and Video, Springer-Verlag, Berlin, April 1998
    [5] AURORA Project: Automated Restoration of Original film and video Archives (1995-1998). http://www.ina.fr/recherche/projets/finis/aurora/index.en.html
    [6] BRAVA Project: Broadcast Restoration of Archives through Video Analysis (2000-2002). http://brava.ina.fr/
    [7] 许秀贞,李自田,薛利军 CCD噪声分析及处理技术,红外与激光工程 Vol.33(4), pp343-357, 2004年8月
    [8] 丁力, 数字技术在档案影片影像修复中的应用研究, 影视技术 Vol.257(12), pp16-24,1999 年 12 月
    [9] V. Roosmalen, Restoration of Archived Film and Video, Ph.D. thesis, Holland: Delft University of Technology, 1999
    [10] P. Schallauer, A. Pinz, and W. Haas, Automatic restoration algorithms for 35 mm film, VIDERE: J. Computer Vision Research, vol. 1, No. 3, 1999
    [11] M. Irani, B. Rousso S. Peleg, Recovery of ego-motion using image stabilization, Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Vol.2, pp. 454-460, 1994
    [12] Z. Zhu, G. Xu., Y. Yang and J. Jin, Camera stabilization based on 2.5D motion estimation and inertial motion filtering, Proceedings of IEEE International Conference on Intelligent Vehicles, Vol. 2, pp.329-334, Stuttgart, Germany, 1998
    [13] S. Srinivasan and R. Chellappa, Image stabilization and mosaicking using the overlapped basis optical flow field. International Conference on Image Processing (ICIP), Vol. 3, pp.356-359, 1997
    [14] A. Litvin, J. Konrad, W. Karl, Probabilistic video stabilization using kalmanfiltering and mosaicking, Proceedings of SPIE Conference on Electronic Imaging, 1993
    [15] A. Litvin, J. Konrad, W. Karl, Probabilistic video stabilization using Kalman filtering and mosaicking, Proceedings of SPIE Image and Video Communications and Process, Vol. 5022, pp. 663-674, 2003
    [16] S. Erturk, Image sequence stabilization based on kalman filtering of frame positions, Electronics letters, Vol. 37(20), pp.1217-1219, 2001
    [17] M. K. Gullu and S. Erturk, Fuzzy image sequence stabilization, Electronics letters, Vol.39(16), pp.1170-1172, 2003
    [18] A. Licsor, L. Czoni, T. Szironyi. Adaptive stabilization of vibration on archive films, Proceedings of International Conference on Computer Analysis of Images and Patterns (CAIP), pp.230-237, 2003
    [19] J. K. Sung, H. L. Sung, H. L. Kung, Digital image stabilizing algorithms based on bit-plane matching, IEEE Transactions on Consumer Electronics, Vol.44 , pp. 617-622, 1998
    [20] P. Maurizio, Video stabilization as a variational problem and numerical solution with the viterbi method, Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Vol.2, pp. 625-630, 2004
    [21] Pilu M., A method for real-time, robust frame-to-frame global motion estimation, HP Labs Technical Report, HPL-2003-65, 2003
    [22] 冈萨雷斯, 数字图像处理(MATLAB 版), 电子工业出版社, 北京, 2006
    [23] Tekalp A. M. (崔之祜等人译), 数字视频处理, 电子工业出版社, 北京, 1998
    [24] I. Koprinska, S. Carrato, Temporal Video Segmentation, A Survey, Signal Processing: Image Communication Vol.16 pp.477-500, 2001
    [25] S. Lefèvre, J. Holler, and Nicole Vincent, A Review of Real-time Segmentation of Uncompressed Video Sequences for Content-based Search and Retrieval, Real-Time Imaging, vol.9, pp.73-89, 2003
    [26] H.J. Zhang, A Kankanhalli, S. W. Smoliar, Automatic Partitioning of Full-motion Video, Multimedia Systems pp.10-28, Jan.1993
    [27] L-H Chen, C-W Su, H-Y M. Liao, and C-C Shih, On the Preview of digitalMovies, Journal of Visual Communication and Image Representation, No.14, pp.358-368, 2003
    [28] M. R. Naphade, R. Mehrotra, A. M. Ferman, J. Warnick, T. S. Huang, and A.M. Tekalp, A High-performance Shot Boundary Detection Algorithm Using Multiple Cues, ICIP 98
    [29] X. B. Gao, and X.O. Tang, Unsupervised Video-Shot Segmentation and Model-Free Anchorperson Detection for News Story Parsing, IEEE Transaction on Circuits and Systems for Video Technology, Vol.12, No.9, pp.765-776, September 2002
    [30] C-C Lo, S.-J. Wang, Video Segmentation Using a Histogram-based Fuzzy C-Means Clustering Algorithm, Computer Systems & Interfaces Vol.23, pp.429-438, 2001
    [31] W. A. C. Fernando, C. N. Canagarajah, D. R. Bull, Fade and Dissolve Detection in Uncompressed and Compressed Video Sequences, ICIP 1999(III), pp.299-303
    [32] Z. Rasheed and M Shah, Scene Detection in Hollywood Movies and TV Shows, Oral presentation in IEEE Computer Vision and Pattern Recognition Conference, Madison, Wisconsin, pp.16-22, June ,2003
    [33] A. M. Ferman and A. M. Tekalp, Efficient filtering and clustering methods for temporal video segmentation and visual summarization, Journal of Visual Communication and Image Representation, vol. 9, pp. 336–352, 1998
    [34] 王亮,胡卫明,谭铁牛。人运动的视觉分析综述。计算机学报,Vol.25(3),pp.225-237, 2002
    [35] Oral, M.; Deniz, U. Motion detection in moving pictures. Signal Processing and Communications Applications Conference 2005, pp.187 – 190, May 2005
    [36] Chang G, Ming-chieh L, Semantic Video Object Tracking Using Region-based Classification, IEEE ICIP 98, Chicago, pp.643-647, 1998
    [37] Lipton A, Fujiyoshi H,Patil R. Moving target classification and tracking from real-time video. Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, pp.8-14, 1998
    [38] Stauffer C,Grimson W E L. Adaptive Background Mixture Model for Real-TimeTracking. IEEE Computer Society, pp.246-252, 1999
    [39] R.Y.Tsai, T.S.Huang. Estimation three-dimensional motion of rigid objects from noisy observations, IEEE Trans. Vol.13, No.1, pp.61 – 66, Jan.1991
    [40] Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis, Proc IEEE International Conference on Image Processing, Vol. 3, pp.78 – 81, Oct. 1997
    [41] 詹劲峰,戚飞虎,王海龙。基于时空马尔可夫随机场的运动目标分割技术。通信学报 Vol.21 No.11, 2000 年 11 月
    [42] Alsaqre, F.E.; Yuan, B.Z Moving shadows detection in video sequences, Signal Processing, 2004, Vol.2, pp.1306 – 1309, 2004
    [43] Knox, W.J., Shading models for realistic image synthesis, Aerospace and Electronics Conference, NAECON 1989. Proceedings of the IEEE 1989 National, vol.2, pp.596 – 603,1989
    [44] Durucan, E.; Ebrahimi, T. Change detection and background extraction by linear algebra, Proceedings of the IEEE, Vol.89, No.10, pp.1368 – 1381, Oct. 2001
    [45] A. Hirani and T. Totsuka, Combining Frequency and spatial domain information for fast interactive image noise removal, Computer Graphics, SIGGRAPH 96, pp. 269-276, 1996
    [46] M. Nitzberg, D Mumford, and T. Shiota, Filtering, Segmentation and Depth, Springer-Verlag, Berlin, 1993
    [47] S. Masnou, J. M. Morel. Level lines based dis-occlusion, In Fifth IEEE International Conference on Image Processing (ICIP’98), 1998
    [48] T F Chan,S Osher,J Shen, The Digital TV Filter and Nonlinear Denoising, .IEEE Trans on Image Processing, vol.10 (2), pp.231-241, 2001
    [49] Bertalmio M, Vese V, Sapiro G. Simultaneous Structure and Texture Image Impainting, IEEE Trans. on Image Processing, No.12(8), pp.882, 2003
    [50] A.K. Jain, “Fundamentals of Digital Image Processing”, Prentice Hall, 1989
    [51] R.L. Joshi and T.R. Fisher, Comparison of Generalized Gaussian and Laplacian Modeling in DCT Image Coding, IEEE Signal Processing Letters, Vol 2, No. 5, pp.81-82, 1995
    [52] B. I. Justusson, Median Filtering: Statistical Properties, in Topics in Applied Physics 43, T.S. Huang ed., pp.161-196, 1981
    [53] S. Kalra, M.N. Chong, and D. Krishnan, A new Auto Regressive (AR) model-based algorithm for Motion Picture Restoration, Proc. of ICASSP 97, Vol. 4, pp. 2557-2560, Munich, Germany, 1997
    [54] R.P. Kleihorst, Noise Filtering of Image Sequences, Ph. D. Thesis, TU Delft, Delft, The Netherlands, 1994
    [55] A.C. Kokaram, R.D. Morris, W.J. Fitzgerald, and P.J.W. Rayner, “Detection of Missing Data in Image Sequences”, IEEE Trans. on Image Processing, pp. 1496-1508, Vol. 4, No. 11, 1995
    [56] A.C. Kokaram, R.D. Morris, W.J. Fitzgerald, and P.J.W. Rayner, “Interpolation of Missing Data in Image Sequences”, IEEE Trans. on Image Processing, pp. 1509-1519, Vol. 4, No. 11, 1995
    [57] A.C. Kokaram, P.M.B. van Roosmalen, P.J.W. Rayner, and J. Biemond, “Line Registration of Jittered Video”, ICASSP-97, pp. 2553-2556, Munich, Germany, 1997
    [58] J. Konrad and E. Dubois, “Bayesian Estimation of Motion Vector Fields”, IEEE Trans. on PAMI, Vol. 14, No. 9, 1992
    [59] R.L. Lagendijk and J. Biemond, Iterative Identification and Restoration of Images, Kluwer Academic Publishers, 1991
    [60] C.W. Therrien, Discrete Random Signals and Statistical Signal Processing, Prentice Hall, USA, 1992
    [61] V.Bruni, D.Vitulano, ” Scratch detection via underdamped harmonic motion”, Pattern Recognition, 2002. Proceedings on 16th International Conference, Vol. 3, 11-15 Aug. 2002
    [62] Joyeux, L.; Boukir, S.; Besserer, B, Film line scratch removal using Kalman filtering and Bayesian restoration, Applications of Computer Vision, 2000, Fifth IEEE Workshop on. , 4-6 Dec. 2000
    [63] Joyeux, L.; Buisson, O.; Besserer, B.; Boukir, S., Detection and removal of line scratches in motion picture films, Computer Vision and Pattern Recognition, 1999, IEEE Computer Society Conference , Volume: 1, pp.23-25 June 1999
    [64] Tegolo, D.; Isgro, F; A genetic algorithm for scratch removal in static images, Image Analysis and Processing, 2001. Proceedings, 11th International Conference, Sept. 2001
    [65] Maddalena, L.; Efficient methods for scratch removal in image sequences, Image Analysis and Processing, 2001. Proceedings on 11th International Conference, Sept. 2001
    [66] Joyeux, L.; Boukir, S.; Besserer, B; Buisson, O, Reconstruct of degraded image sequences: Application to film restoration, Image and Vision Computing 19(2001) pp.503-516
    [67] Kokaram A.C., Motion picture restoration, PhD thesis, University of Cambridge, May 1993
    [68] Canny J. “Finding edges and lines in images. Technical report, MIT Artificial Intelligence Laboratory, June 1983
    [69] D. Ferrandiere, Motion Picture Restoration using Morphological Tools, International Symposium on Mathematical Morphology (ISMM), pp. 361-368, Kluwer Academic Press, 1996
    [70] H. Muller-Seelich, W. Plaschzug, P. Schallauer, S. Potzman, and W. Haas, Digital Restoration of 35mm Film, Proc. of ECMAST 96, Vol. 1, pp. 255-265, Louvain-la-Neuve, Belgium, 1996
    [71] P. Richardson and D. Suter, Restoration of Historic Film for Digital Compression: A Case Study, Proc. of ICIP-95, Vol. II, pp. 49-52, Washington D.C. USA, IEEE, 1995
    [72] F. Pitié, Removing Flicker from Old Movie, Master Thesis Dept. of Electronic & Electrical Engineering, Trinity College, Dublin, September 2002
    [73] V. Naranjo and A. Albiol, Flicker reduction in old films, Proceedings of the International Conference on Image Processing (ICIP 2000), Canada, pp. 1300-1303
    [74] G. Ramponi, The rational filter for image smoothing, IEEE Signal Processing Letters, No.3 pp.63–65, 1996
    [75] Cocchia, F., Carrato, S., and Ramponi, G., Designand real-time implementationof a 3-d rational filter for edge preserving smoothing. IEEE Trans. on Consumer Electronics, Vol.43(4), pp.1291–1300, 1997
    [76] W.-Y.Wu, M.-J.Wang, C.-M. Liu, Performance evaluation of some noise reduction methods, Computer Vision, Graphics, and Image Processing, Vol.54, pp134–146, 1992
    [77] Zlokolica, V., Philips, W., and Van De Ville, D. Robust non-linear filtering for video processing, In IEEE Digital Signal Processing Conference, pp.101–105, 2002
    [78] Lee, K. and Lee, Y. (). Threshold Boolean filters, IEEE Trans. on Signal Processing, Vol.42(8), pp.2022–2036, 1994
    [79] Agaian, S., Astola, J., and Egiazarian, K. Binary Polynomial Transforms and Nonlinear Digital Filters. Dekker, NY. 1995
    [80] Kontropoulos, C. and Pitas, I. Nonlinear model based Image/video processing and analysis. A Wiley Inter-science Publication, 2001
    [81] Mitchell, H. and Mashkit, N. Noise smoothing by a fast k-nearest neighbor algorithm, Signal Processing: Image Communication, No.4, pp.227–232, 1992
    [82] Harwood, D., Subbarao, M., Hakalahti, H., and Davis, L. A new class of edge-preserving smoothing filters. Pattern recognition letters, No.6,:pp.155–162. 1987
    [83] Leung, H. and Haykin, S. Detection and estimation using an adaptive rational function filter, IEEE Trans. on Signal Processing, Vol.42, pp.3366–3376, 1994
    [84] Tai-Wai Chan, Oscar C. Au, Tak-Song Chong, Wing-San Chau, A novel content-adaptive video denoising filter, ICASSP 2005, pp.649–652. 2005
    [85] Davis, L. and Rosenfeld, A. Noise cleaning by iterated cleaning. IEEE Trans. on Syst. Man Cybernet, No.8: pp.705–710. 1978
    [86] Immerker J. Fast noise variance estimation, Computer Vision and Image Understanding, Vol.64(2), pp.300–302,1996
    [87] A. Bosco. Fast Method for Noise Level Estimation and Integrated Noise Reduction, IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, pp.1028-1033, Aug. 2005
    [88] Donald Graft’s website: http://neuron2.net/deflick/flick.html
    [89] Marr D, Hildreth E C. Theory of edge detection. Proceeding of Royal Soc.London,1980, B207:187~217
    [90] 朱娟娟 , 郭宝龙 , 电子稳像的特征点跟踪算法 , 光学学报 Vol..26, pp.516-521(2006).
    [91] Morimoto C. and Chellappa R., Fast electronical digital image stabilization, Proceedings of the International Conference on Image Analysis and Processing, pp.284-288, 1996.
    [92] Censi A., Fusiello A., Roberto V., Image stabilization by feature tracking, Proceedings of the 10th International Conference on Image Analysis and Processing, pp.665-667, 1996.
    [93] Odone F. and Fusiello A. Applications of 2D image registration, Research Memorandum RM/99/15, Department of Computing and Electrical Engineering, Heriot-Watt University, Edinburgh, UK, 1999.
    [94] T. Chen, Video stabilization using a block-based parametric motion model, technical report, Stanford University, Information Systems. Laboratory, Dept. of Electrical Engineering, Winter 2000.
    [95] D. Koller, K. Daniilidis, and H.-H. Nagel, Model-based object tracking in monocular image sequencesof road traffic scenes, Int. Journal of Computer Vision, 10(2):257–281, June 1993.
    [96] Lucas B. D. and Kanade T., “An iterative image registration technique with an application to stereo vision”, Proceedings of the 7th International Joint Conference on Artificial Intelligence, pp. 674-679, April, 1981.
    [97] Tomasi C. and Kanade T., “Detection and tracking of point features”, Technical report CMU-CS-91-132, Carnegie Mellon University, 1991.
    [98] Shi J. and Tomasi C., Good features to track, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Vol. 2, pp.593-600, 1996.
    [99] Morimoto C. and Chellappa R., Evaluation of image stabilization algorithms, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 2789-2792, Seattle, WA, May 1998.
    [100] 孙即祥, 模式识别中的特征提取与计算机视觉不变量, 国防工业出版社,北京, 2001.
    [101] 高文, 陈熙霖, 计算机视觉-算法与系统原理, 清华大学出版社, 北京, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700